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SI Methods
Behavioral Traits. The considered behavioral traits, enumerated in
Table S1 and further described on the HCP website (https://wiki.
humanconnectome.org/display/PublicData/HCP+Data+Dictionary+
Public-+500+Subject+Release), are divided into three groups: well-
being, intelligence, and personality. Our motivation for choosing
these, and excluding, for example, health-related, sociological, and
demographical variables is to focus on the pure cognitive aspects of
the individuals, which can be reasonably well described using these
three categories. There is abundant literature on the neuroscience of
each of these three cognitive domains. In particular, the field of
affective neuroscience investigates which neurophysiological features
underpin pleasure and happiness (or the absence of) (43). A large
body of research has been devoted to identify the brain circuits that
sustain the various forms of intelligence, and the extent to which
different forms of intelligence are segregated in different brain
mechanisms (44). Finally, some advances have been carried through in
analyzing how different aspects of personality modulate the response
to emotional experience (45). There is, however, scarce research about
how each of these relates to dynamic functional connectivity.

Hidden Markov Modeling. The HMM assumes that the time series
data can be described using a hidden sequence of a finite number
of states. More explicitly, if vector xt represents the data and st
represents the hidden state at time point t, we assume that

xtjst = k∼Multivariate Gaussianðμk,ΣkÞ,

where μk is a vector with (number of channels) elements con-
taining the mean blood oxygen level-dependent (BOLD) activa-
tion and Σk is the (number of channels by number of channels)
covariance matrix codifying the variances and covariances be-
tween channels when state k is active. This is referred to as the
observational model, which, in this case, characterizes the distri-
bution of each state k by parameters (μk, Σk). Although we use a
multivariate Gaussian here, other choices for the observation
model are possible; for example, one could use a multivariate
autoregressive (MAR) observation model, where the states are
defined and identified by their distinct spectral signature (20).
Furthermore, the state sequence is regularized by modeling the
probability of transition between all pairs of brain states; that is,
before observing the data, the probability, Pr, of a given state at
time point t depends on which state was active at time point t − 1:

Prðst = kÞ=Σ lΘl,k   Prðst-1 = lÞ,

where Θl,k refers to the transition probabilities. Within matrix Θ,
we can further distinguish between the on-diagonal elements,
Θkk, which control the persistence of each state, and the off-
diagonal elements, Θkl (with k ≠ l), which refer to the actual
transitions. Finally, a parameter η encodes the initial state prob-
abilities for each scanning session. Therefore, according to this
formulation, the observed data at each time point are effectively
modeled as a mixture of Gaussian distributions, with weights
given by wtk = Pr (st = k).
Although it is possible to apply the HMM on each subject

independently, we applied the HMMon all concatenated subjects
here, such that we obtained a group estimation of the states.
Therefore, whereas the states were at the group level, the in-
formation of when a state becomes active (the state time course)
is specific to each subject. On these premises, an inference al-
gorithm is used to estimate the parameters defining the posterior

distribution of each state (what are the states μk and Σk), the
probability of each state being active at each time point (when
the states occur, st), and the transition probabilities between each
pair of states from the available data (probabilities, Θl,k). In
particular, based on the principles of variational Bayes (VB), we
use an approach providing an analytical approximation of the
model posterior distribution at a reasonable cost by assuming
certain additional factorizations in such posterior distribution
(42). In practice, VB inference is typically based on the idea of
updating groups of parameters in turn, iterating through the
different groups of parameters until convergence is attained.
Because of the large amount of data, however, VB is still com-
putationally costly, such that we use a strategy based on sto-
chastic learning, which greatly alleviates both time and memory
requirements (46). In a nutshell, the basic idea is to update the
parameters on a subset of subjects at a time only, such that the
update is noisy but inexpensive. Comprehensive details about
VB and HMM modeling can be found elsewhere (19, 20, 42, 46).
One important byproduct of VB is the free energy, an approxi-
mation to the Bayesian model evidence that provides an esti-
mation of how well the model fits the data and can be used for
model selection purposes (42). Before the main inference pro-
cedure, we estimated five shorter (independent) inference runs,
each starting from a random initialization; the best in terms of
the free energy was then used as an initial point for the main
inference run.

Estimation and Statistical Testing on the Metastates. The metastates
were apparent in two different ways. The first method was using
the Louvain community detection algorithm (22) on the transition
probability matrix (TPM). This method aims to find communities
or nodes (here, metastates) in a graph (here, a directed, weighted
graph representing the TPM), such that the connectivity between
the nodes (here, states) within a community is strong with respect
to the connectivity across communities. We embedded the esti-
mation into a bootstrapped subject resampling procedure from
which we can obtain intervals of confidence for the metastate
separation and, then, a P value. Second, if we look at the
structure of the FO correlation matrix, which contains the cor-
relation for each pair of states’ FO across subjects, the meta-
states naturally emerge from the fact that this matrix has a strong
mode of covariance (or eigenvector) that contains most of the
information and reflects the metastate distribution. This eigen-
vector mainly captures that the correlation between states that
belong to the same metastate is very high and positive and that
the correlation between states that belong to different metastates
is also very high and negative. Hierarchical clustering using the
Ward’s algorithm confirms this result.

Assessing the Relation Between the States and the Behavioral Traits.
To assess how strongly the state distribution relates to the con-
sidered behavioral traits, we use Bayesian partial least squares
(BPLS), which aims to predict the state distribution from the
behavioral traits using an intermediate low-dimensional space
(23). To rule out any possible sex or age influence, we regressed
them out, along with motion, from both the FO and the traits. To
test the significance of the prediction, BPLS was embedded into
permutation testing (1,000 permutations), with the permutations
respecting the family structure of the subjects (47). To evaluate
the relationship of the behavioral traits with each state and
metastate separately, we use regularized regression (42) in a
10-fold, cross-validation setting, again regressing out sex, age, and
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motion. To assess how much the metastates’ FO is better pre-
dicted than the individual states’ FO, we repeated this cross-
validation analysis for 1,000 bootstrap examples. Finally, we
used canonical correlation analysis (CCA) (24) to quantify the
individual significance of each variable (either FO or trait). CCA
estimates the linear relation between two sets of variables by
finding an optimal linear combination for each of the sets in such
a way that these linear combinations (referred to as a canonical
covariates) are maximally correlated. The difference with the
CCA model used by Smith et al. (24) is, essentially, that we use
the nonstationary dynamics encoded in the FO instead of sta-
tionary functional connectivity. Because we have 12 states
(12 measures of FO) only, as opposed to the 19,900 functional
connectivity edges in the study by Smith et al. 24, we do not need
to perform principal component analysis or any other regulari-
zation mechanism to control the dimensionality of the data;
hence, our use of CCA here does not require any tuning pa-
rameter. Once the CCA model is trained, we can assess each
variable (FO or behavioral trait) independently by looking at the
correlation between the variable and the opposite canonical
covariate. To assess the statistical significance of these correla-
tions, this procedure was embedded into permutation testing
(1,000 permutations).

SI Results
Relation Between the HMM Dynamics and FO Correlations. What is
the relation between the TPM (Fig. 2A) and the FO correlation
matrix (Fig. 2B)? Does the latter follow from the former? We
next show through simulations that the strong FO correlation
(metastate) structure can be caused by corresponding structure
in the state transition probabilities (probability of switching from
one state to another) and persistencies (probability of remaining
in the current state). While this effect is stronger for the state
transition probabilities, we find that either factor on its own is
sufficient to bring about state time courses with a strong FO
correlation (metastate) structure. Also, to a large extent, this
effect is caused by between-subject differences in these statistics.
More specifically, we calculated the subject-specific TPMs from

the estimated HMM state time courses, and simulated new state
time courses of the same size as the original (estimated) state time
courses. (Note that in the HMM results from the real data, there
is no subject-specific modeling of state transition probabilities,
which are modeled only at the group level). Then, we recomputed
the TPM and the FO correlation. In a second set of experiments,
we simulated state time courses using the group-level TPM (as
provided by the HMM), thus ignoring between-subject differ-
ences. With this experiment, we aim to investigate which aspects
of the TPM (on- or off-diagonal elements;Methods) are linked to
the FO correlations, and to what extent this effect is due to
between-subject differences. For each of these two cases, we
carry out six variations of this scheme. In the first three, we
suppress the influence of one of the three elements that define
the HMM dynamics (initial state probabilities, on-diagonal ele-
ments of the TPM, and off-diagonal elements of the TPM;
Methods) in turn. More specifically, we do so by setting the
corresponding parameters to be equal to the prior distributions
of the model, which are the same for all states and subjects and
do not contain any information about metastates or hierarchies.
In the other three, we keep just one of the three elements and
remove the information from the other two.
First, the fact that we can faithfully reproduce the behavior seen

in real data when we account for subject-specific differences in the
TPM (Fig. S3A, first column) means that the strong structure in
the FO correlation matrix can be explained, to a large extent, by
Markovian statistics (i.e., transition probabilities and state per-
sistence). Further, as observed in Fig. S3A, any two of these
three elements of the HMM dynamics are sufficient to re-
produce the block-wise FO correlation matrix (Fig. S3A; second,

third, and fourth columns). On the contrary, the metastate
structure vanishes completely from the FO matrix when we
suppress both the on- and the off-diagonal elements of the TPM
(Fig. S3A, fifth column), indicating that the initial probabilities
are not sufficient to produce this effect. Importantly, both the
state persistencies (on-diagonal elements of the TPM) and the
transition probabilities (off-diagonal elements of the TPM) can,
in isolation, produce the block-wise FO correlation matrix (Fig.
S3A, sixth and seventh columns), although more strongly in the
case of the transitions (as reflected when comparing the third
and fourth or sixth and seventh columns in Fig. S3A). When
ignoring the between-subject differences in the state dynamics by
using a single TPM (Fig. S3B), we observe that the correlations
in the FO correlation matrix are massively decreased, although
some hints of the metastates are still present when the transition
probabilities are preserved (Fig. S3B; first, second, third, and
sixth columns). Therefore, these simulations show that (i) the
block-wise structure of the FO correlation matrix can be caused
to a large extent by the between-subject differences in the TPM
and (ii) both the on-diagonal (state persistencies) and off-
diagonal (state transition probabilities) elements of the TPM
are, on their own, sufficient to produce such structure. Hence,
both the state persistencies and transition probabilities reflect
the hierarchical nature of the state time courses.

Reproducibility. We assessed the reproducibility of the metastates
and the sensitivity of the result to the choice of the model pa-
rameters, particularly to the number of states. To answer the first
question, we divided the data into four blocks, where, for each of
them, we take one-fourth of each subject’s sessions (i.e., the first
block will contain 1–400 s, the second 401–800 s, and so on) and
then repeat the analysis. The two metastates clearly emerge in all
four blocks, as illustrated in Fig. S6A. We then estimated new
models from scratch using eight and 16 states. The correlation of
the FO across subjects reflects a consistent two-metastate pattern
(Fig. S6B). Altogether, these results demonstrate that the meta-
states are a reproducible and robust pattern of brain activity.

The Autoregressive Model and the Metastates. We now analyze the
relationship between the autoregressive (AR) model and the
HMM in the context of the metastates. To get some insight about
whether the metastate information is contained in an AR model
representation of the data, we designed a new set of simulations,
where we generated four different simulated datasets. In each
case, we fitted a specific model to the real data and then simulated
data from the fitted model to generate the same amount of data as
in the real dataset (i.e., 1 h of data in four sessions, with repetition
time = 0.73 s). In the first scenario, we fitted a single MAR
model of order 1 for all subjects. In the second simulation, we
fitted a MAR model of order 1 for each subject separately. In the
third simulation, for each subject, we fitted a univariate AR
model of order 7 to each channel. In the fourth simulation, we
fitted a multivariate Gaussian distribution for each subject. In
summary, the first, second, and fourth simulations account for
cross-region interactions; the second, third, and fourth simulations
account for subject-specific differences; and the fourth simulation
matches the observation model used by the HMM. We then fitted
an HMM on the simulated data for each of the four types of
simulations, with exactly the same configuration of parameters as
in the real experiments. Note that whereas three of the simula-
tions use 820 different models (one per subject), the HMM is
itself a group-level model containing only 12 (Gaussian) models.
Fig. S7 summarizes the results. Importantly, the first simulation

reveals that a group-level MAR is unable to generate data with
metastates, providing confidence that the metastate result is not a
trivial consequence of the average spectral properties of the
BOLD signal captured by a global MAR. Further, neither
the subject-specific univariate AR model (third simulation) nor
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the subject-specific multivariate Gaussian distribution (fourth
simulation) can generate data from which the HMM can find
metastates, suggesting that (i) the two metastates can only be
identified when we allow for differences in functional connec-
tivity (which the univariate AR disregards) and (ii) the subject-
specific multivariate Gaussian distributions are unable to capture
the dynamics that also characterize each metastate. Interestingly,
the HMM metastates do emerge to some extent when we use
subject-specific MAR models to generate the simulated data
(second simulation). This is because the metastate profile is very
subject-specific (Fig. 4C), and the subject-specific features that (at
least partly) drive the metastates are reasonably captured by the
subject-level MAR models. This is not surprising, as the MAR
model (containing 2,500 parameters per subject) has sufficient
explanatory power to capture similar dynamics (35) to those cap-
tured by the HMM in a more parsimonious manner (using a few
simpler observation models). Importantly, although a subject-
specific multivariate AR model contains the information that is
relevant to the metastates, these are not straightforwardly revealed
in the parameters of this model.

Using the HMM to Assess Nonstationarity. We can assess the non-
stationarity in the data using the simulations described in the
preceding section. In particular, in the fourth simulation, we used
a single (subject-specific) multivariate Gaussian distribution
(inferred from the real data) to generate the simulated data and
applied the HMM using the same configuration as in the real
data. We then compared real and simulated data using the
maximum FO per session, which reflects the amount of switching
between states: If this value is close to 1.0 for a given session, then
a single state is taking up most of the time; if lower, then different
states are needed to explain the session. The distribution of this
statistic is shown in Fig. S7C. For the real data (Fig. S7C, Top),
the maximum FO distribution indicates that most sessions need
more than one state to be described; in contrast, in the simulated
data (Fig. S7C, Bottom), a large proportion of sessions are
explained well with just one HMM state. Altogether, this shows
that, when we account for estimation uncertainty, there is still
evidence of nonstationarity in the sense of the data being gen-
erated from a multivariate Gaussian distribution.

Relation to Activity Propagation. Another interesting perspective
on the data is the analysis of activity propagation (36, 37). This
approach estimates, for each pair of regions, the lag at which
the cross-covariance is maximal. The matrix decomposition of the
resulting lag matrix yields the main “propagation threads” in the
data. This approach has the benefit of offering an interpretable
and robust characterization of this type of dynamics. However,
could the metastates be captured by this type of analysis? The
metastates have dwell times that range from 5 s to more than
1 min (Fig. S5C), and network dynamics at slow time scales can
be accessed through post hoc analysis of the HMM state time
course dynamics. It is not clear that such slow time scales would
be accessible to activity propagation analysis. On the other hand,
there may well be other characteristics of brain dynamics that
can be better captured using activity propagation analysis com-
pared with the HMM.

Methodological Considerations.The HMMmakes two assumptions
that require some consideration when applied to brain activity
data. First, while it is the case that the inferred state assignments
are probabilistic, such that the states can share the responsibility
of explaining every time point (Fig. 1), the HMM does assume
that the states are mutually exclusive (i.e., at each given time

point, only one state is assumed to be active). In theory, this might
limit the number of possible expressible patterns to the number of
HMM states. For example, how well could the HMM (using a
discrete and not very high number of states) capture the brain
activity in a cognitive task with varying difficulty, such that the
magnitude of the activity varied continuously? One way in which
graded activity could be represented in the HMM is through
different state FOs (i.e., the proportion of time that the brain
visits a particular state) at different time scales or, perhaps,
through higher order state relationships such as the prevalence of
certain sequences of states. Clearly, an alternative would be to
dispense with the state exclusivity assumption. However, it is
worth noting that this would require other assumptions (with their
own limitations) to be made in order for the decomposition to
remain identifiable.
A second important assumption in the HMM is the Markovian

assumption. This assumes that provided that we know the state at
time t − 1, then we can predict what the state will be in at time
t without needing to know the state time courses before time t − 1.
This results in what is known as short-range dependency, where
the dependency between state occurrences decays exponentially
with time and does not reach very temporally distant data. This is
potentially limiting, since there is good evidence that brain activity
exhibits long-range dependency (8, 48). However, even though the
HMM does not model long-range dependency, it does not pro-
hibit it; in other words, the inferred HMM state sequence is free
to discover long-range dependencies inherent to the data. Indeed,
in this study, we have shown that the HMM is able to infer a
certain type of long-range time dependencies in the form of
metastates, even when these are not explicitly parameterized in
the model.
An important question to bear in mind is the potential vari-

ability of the hemodynamic function across subjects and regions,
or even within sessions. While the within-state, zero-lag, multi-
variate Gaussian distribution assumption is robust to this con-
found, the state time course dynamics may not be. Hence, despite
the intrinsic regularization mechanisms imposed by the HMM
on the dynamics, the hemodynamic remains a possible limitation
of the current method. It is, however, unlikely that the hemo-
dynamic variability explains the metastate structure reported in
this study, given that the metastate dwell times (duration of the
metastates’ visits) are around 30 s, on average, with some visits
being longer than 1 min (Fig. S5C), while the time scales of
possible hemodynamic variation are much shorter [time to peak
on the order of 2–6 s (49)].
Finally, we can observe there are pairs of states that are sig-

nificantly anticorrelated in their mean activity (Fig. S1). The most
prominent example is state 1 and state 2, which also have rela-
tively similar connectivity profiles and have larger amplitude in
comparison to the other states within metastate 1. Insofar as the
signal has a dominant pink noise (1/f) spectral component and
the data have been demeaned, this is to be expected, given that
the mean of the states (one of the parameters that characterize
the states, together with the covariance matrix) is signed. Fur-
ther, there is evidence that the brain exhibits alternating periods
of high and low general synchronization and activity (10), which
would explain why some of the states have a larger amplitude
than others within each metastate. An alternative configuration
of the HMM (not explored in this study) is to let the states be
characterized only by functional connectivity (covariance matrix)
by fixing the mean activity to zero. By focusing only on functional
connectivity, the HMM results would be more directly compa-
rable with standard sliding window analyses (21).
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Fig. S1. Each metastate is composed of different brain states, with each defined by mean activation and functional connectivity. Each panel shows the mean
activation for one state (functional connectivity is not shown). The first four states correspond to the sensorimotor/perceptual metastate. State 5 is considered
to be independent of the metastates. States 6–12 correspond to the cognitive metastate.
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state courses, we recompute the TPM (Top) and the FO correlation matrix (Bottom) in the same manner as on the real data. Considering that the HMM
dynamics are ruled by three different elements (initial state probabilities, on-diagonal elements of the TPM or state persistencies, and off-diagonal elements of
the TPM or between-state transition probabilities), we repeated this procedure by removing the influence of one or two of these elements at a time; the
resulting recomputed TPM and the FO correlation matrices are shown in the second to seventh columns. (B) We repeat this procedure generating data from
the group HMM instead of from subject-specific parameters, such that all between-subject differences in the HMM dynamics are ignored; the metastates are
still present in the FO correlation matrix when preserving the transition probabilities, but the effect is greatly reduced.
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the number of the HMM states (B). In all cases, the same hierarchical organization emerges from the corresponding FO matrix.
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Fig. S7. Analysis of the HMM results on data generated from different synthetic models. (A) TPM and FO correlation matrix obtained from applying the HMM
on the real data (as in Fig. 2). (B) TPM and FO correlation matrix obtained from applying the HMM on simulated data; columns correspond to simulated data
using a one group-level MAR model of order 1, one MAR model of order 1 per subject, one AR model of order 7 per subject and channel, and one Gaussian
distribution per subject, respectively. (C) Distribution of maximum FO per session (i.e., the FO of the state with the largest occupancy) for both the real data and
the data simulated with one Gaussian distribution per subject, which represents the scenario where the correlations are stationary but subject-specific. The
marked difference between the two distributions is an indication of genuine nonstationarity in the data.
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Table S1. Behavioral traits

Well-being Intelligence Personality

Anger-affect Episodic memory Agreeableness
Anger-hostility Episodic memory (age-adjusted) Openness to experience
Anger-aggression Cognitive flexibility Conscientiousness
Fear-affect Cognitive flexibility (age-adjusted) Neuroticism
Fear-somatic Inhibitory control Extraversion
Sadness Inhibitory control (age-adjusted)
Life satisfaction Fluid intelligence accuracy
Mean purpose Fluid intelligence speed
Positive affect Reading
Friendship Reading (age-adjusted)
Loneliness Vocabulary
Perceived hostility Vocabulary (age-adjusted)
Perceived rejection Processing speed
Emotional support Processing speed (age-adjusted)
Instrumental support Spatial orientation
Perceived stress Attention TP
Self-efficacy Attention TN

Verbal episodic memory
Working memory
Working memory (age-adjusted)
Emotion recognition

TN, true negatives; TP, true positives.
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