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Leveraging speech and artificial intelligence to 
screen for early Alzheimer’s disease and 
amyloid beta positivity
Emil Fristed,1 Caroline Skirrow,1 Marton Meszaros,1 Raphael Lenain,1 

Udeepa Meepegama,1 Kathryn V. Papp,2,3 Michael Ropacki4 and Jack Weston1

Early detection of Alzheimer’s disease is required to identify patients suitable for disease-modifying medications and to improve access 
to non-pharmacological preventative interventions. Prior research shows detectable changes in speech in Alzheimer’s dementia and its 
clinical precursors. The current study assesses whether a fully automated speech-based artificial intelligence system can detect cogni-
tive impairment and amyloid beta positivity, which characterize early stages of Alzheimer’s disease. Two hundred participants (age 
54–85, mean 70.6; 114 female, 86 male) from sister studies in the UK (NCT04828122) and the USA (NCT04928976), completed 
the same assessments and were combined in the current analyses. Participants were recruited from prior clinical trials where amyloid 
beta status (97 amyloid positive, 103 amyloid negative, as established via PET or CSF test) and clinical diagnostic status was known 
(94 cognitively unimpaired, 106 with mild cognitive impairment or mild Alzheimer’s disease). The automatic story recall task was 
administered during supervised in-person or telemedicine assessments, where participants were asked to recall stories immediately 
and after a brief delay. An artificial intelligence text-pair evaluation model produced vector-based outputs from the original story 
text and recorded and transcribed participant recalls, quantifying differences between them. Vector-based representations were fed 
into logistic regression models, trained with tournament leave-pair-out cross-validation analysis to predict amyloid beta status (pri-
mary endpoint), mild cognitive impairment and amyloid beta status in diagnostic subgroups (secondary endpoints). Predictions were 
assessed by the area under the receiver operating characteristic curve for the test result in comparison with reference standards (diag-
nostic and amyloid status). Simulation analysis evaluated two potential benefits of speech-based screening: (i) mild cognitive impair-
ment screening in primary care compared with the Mini-Mental State Exam, and (ii) pre-screening prior to PET scanning when 
identifying an amyloid positive sample. Speech-based screening predicted amyloid beta positivity (area under the curve = 0.77) and 
mild cognitive impairment or mild Alzheimer’s disease (area under the curve = 0.83) in the full sample, and predicted amyloid beta 
in subsamples (mild cognitive impairment or mild Alzheimer’s disease: area under the curve = 0.82; cognitively unimpaired: area un-
der the curve = 0.71). Simulation analyses indicated that in primary care, speech-based screening could modestly improve detection of 
mild cognitive impairment (+8.5%), while reducing false positives (−59.1%). Furthermore, speech-based amyloid pre-screening was 
estimated to reduce the number of PET scans required by 35.3% and 35.5% in individuals with mild cognitive impairment and cog-
nitively unimpaired individuals, respectively. Speech-based assessment offers accessible and scalable screening for mild cognitive im-
pairment and amyloid beta positivity.
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Graphical Abstract

Introduction
Alzheimer’s disease is not routinely screened for in clinical 
practice.1 Instead it is most commonly tested for when pa-
tients present with cognitive complaints, or after cognitive 
impairment interferes with daily functioning. Research indi-
cates that half of individuals aged 65+ with dementia are 

missed from primary care dementia registers, which suggests 
that around 50% of cases remain undiagnosed even at the 
more advanced stages of Alzheimer’s disease.2

Alzheimer’s disease is characterized by changes in the 
brain including accumulation of amyloid beta (Aβ) neuritic 
plaques, aggregated tau neurofibrillary tangles and neurode-
generation, often beginning decades before routine 

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/4/5/fcac231/6761085 by guest on 18 O

ctober 2022

mailto:caroline@novoic.com


Speech screening in early Alzheimer’s disease                                                                  BRAIN COMMUNICATIONS 2022: Page 3 of 12 | 3

diagnosis.3 Pathologic changes are typically tracked initially 
by more subtle and later by more overt cognitive and clinical 
symptoms and impairments.4

Episodic memory, commonly assessed using story recall 
tasks, is impaired in Alzheimer’s dementia.5 Story recall dif-
ferentiates individuals with mild cognitive impairment 
(MCI; an earlier stage of the disease), from those that are 
cognitively unimpaired (CU)6 and is commonly used for 
screening into Alzheimer’s disease trials.7 Story recall is typ-
ically scored via comparison of the recalled information 
units with the story source, allowing for paraphrastic vari-
ation.8 More granular changes in story recall, such as a re-
duction in the recall of proper nouns9 and an effect of the 
serial position of elements recalled,10 have been associated 
with Aβ positivity in CU individuals.

There is a growing interest in speech and language data 
that can be collected on ubiquitous digital devices and in 
everyday situations or healthcare settings. Speech is func-
tionally important and naturalistic, and is commonly elicited 
in cognitive tasks. Speech can be separated into linguistic 
(such as semantic content, syntactic complexity, repetitions) 
and prosodic patterns (relating to intonation and rhythm); 
which may be altered both in MCI and Alzheimer’s disease 
as shown by recent meta-analyses.11,12

Much of the completed speech research to date in 
Alzheimer’s disease has been carried out on a small number 
of cohorts with openly available datasets, such as the 
DementiaBank Pitt corpus,13 and the Alzheimer’s 
Dementia Recognition through Spontaneous Speech 
(ADReSS) Challenge cohort,14 which contains recorded pic-
ture descriptions from a cohort with probable Alzhiemer’s 
dementia. Notable limitations of these datasets include the 
small sample sizes under investigation, with participants 
without biomarker confirmation of Alzheimer’s disease, 
and in the more progressed dementia stages where impair-
ments are more overt.

Where documented in the research literature, changes in 
features of speech in Alzheimer’s disease (including for ex-
ample, pronoun rate, speech rate, dysfluencies, or partial 
words), are often manually scored,15,16 More recently, 
speech features have been automatically extracted via nat-
ural language processing methods,17–20 some of which 
have been found to correlate with CSF phosphorylated tau 
biomarkers.17 Although individual speech features typically 
have limited predictive value on their own, they are usually 
combined via simple machine learning methods to deliver 
good predictive value for MCI or Alzheimer’s dementia.12

More recent methodologies use a data-driven approach to 
learn patterns directly from raw audio and transcript speech 
data. Deep learning methods can decompose disease signa-
tures from this highly dimensional data, to identify cognitive 
processes that are not directly observable, and exploit infor-
mation from interactions among low level features. Previous 
approaches have used Transformer-based models pre- 
trained on extremely large data corpora, to capture a range 
of linguistic variables. There are two common approaches 
to using pre-trained Transformer models to make 

predictions on downstream tasks: attaching a prediction 
head to a later layer of the Transformer and fine-tuning the 
entire network,21 or using the output at a later layer as a 
fixed feature extractor and using these features as input to 
a separate model.22 The fine-tuning approach is typical for 
larger datasets (i.e. thousands of examples) but can be un-
stable on the small datasets that are typical of clinical studies. 
Where extracted features are fed into a separate model this 
poses a different limitation, since the underlying 
Transformer models have been pre-trained to understand 
language in general, rather than the specific patterns that 
change with disease pathology.

For the current paper, we hypothesize that the combin-
ation of a sensitive speech task and model architecture could 
form the basis of speech biomarkers more sensitive to early 
disease stages. In the current study, speech data are elicited 
from an automatically administered story recall task, the 
automatic story recall task (ASRT).23 As well as being sensi-
tive to episodic memory impairments, evidence suggests that 
speech produced during narrative discourse tasks elicit more 
content rich and varied speech,24 and show better differenti-
ation of early Alzheimer’s than other speech sampling strat-
egies.25 Further, direct comparison of a story source text 
with the spoken recall allows for the identification of para-
phrases and repetitions, tracking of insertions such as filled 
pauses or commentary, omissions, or changes in the order 
or content of the story.

We use ParaBLEU,26 a state-of-the-art model optimized 
for text-pair comparison, allowing direct comparison of 
source texts and retellings. The model has been trained on 
a large corpus of text-pairs to evaluate their similarity, which 
requires the model to understand general linguistic patterns 
and the ability to compare one text to another. This provides 
the model with strong inductive biases for evaluating re-
sponses on the ASRT.26 We evaluate the performance of 
this model with digitally captured and analysed speech 
data from the ASRT system (task and model combined), to 
identify language biomarkers to form the basis of a binary 
classifier for amyloid positivity and/or cognitive impairment. 
We compare an automated analysis pipeline with automatic 
transcription, to a pipeline where speech data are manually 
transcribed prior to analysis. Furthermore, we complete 
simulation analysis to examine potential benefits of the 
ASRT artificial intelligence (AI) system for facilitating MCI 
referral, and enriching samples for amyloid positivity prior 
to PET scan. We present results from combined sister studies 
conducted in the UK and the US.

Materials and methods
Study design
AMYPRED-UK and AMYPRED-US studies (clinicaltrials.-
gov registration NCT04828122, NCT04928976) are pro-
spective studies with data collection planned before the 
ASRT system index test was performed. The studies used a 
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2 × 2 cross-sectional design, combining amyloid status (Aβ+ 
and Aβ) and clinical status (CU and MCI/mild Alzheimer’s 
disease). Binary reference standards, based on prior clinical 
trial allocation for Aβ positivity and clinical status were es-
tablished prior to recruitment into the study. Index test re-
sults were therefore not available to the assessors of the 
reference standard. Primary outcomes were assessed using 
tournament leave-pair-out cross-validation analysis,27 a 
form of cross-validation used to estimate the model perform-
ance on unseen data.

Participants
Sister studies in two distinct geographical locations were 
completed: the UK (three sites: London/Guildford, 
Plymouth, and Birmingham), and the USA (one site: Santa 
Ana, California).

Potential participants were a convenience sample re-
cruited from trial participant registries between November 
2020 and August 2021. Participants were approached if 
they had confirmed amyloid biomarker status, having under-
gone a prior Aβ PET scan or CSF test (confirmed Aβ− within 
30 months or Aβ+ within 60 months), and if they were CU or 
diagnosed with MCI in the previous 5 years. In the UK study, 
participants diagnosed with mild Alzheimer’s disease in the 
last 5 years were also included. MCI due to Alzheimer’s dis-
ease and mild Alzheimer’s disease diagnoses were made fol-
lowing National Institute of Aging-Alzheimer’s Association 
core clinical criteria.28

Potential participants were screened via video conferen-
cing (AMYPRED-UK) or in-person (AMYPRED-US), dur-
ing which the Mini-Mental State Exam (MMSE)29 was 
administered. Inclusion criteria comprised: age 50–85; 
MMSE raw score of 23–30 for participants with MCI/mild 
Alzheimer’s Disease, 26–30 for CU; clinical diagnosis made 
in previous 5 years for participants with MCI/mild 
Alzheimer’s Disease; English as a first language; availability 
of a study partner to support completing the Clinical 
Dementia Rating scale (CDR) semi-structured interview30; 
ability to use and access a smartphone (Android 7 or above 
or iOS 11 or above), for a fully remote component of the 
study reported elsewhere.23 UK participants required access 
to the internet on a personal computer, notebook, or tablet 
supporting audio and video recording for telemedicine ap-
pointments. Supported operating systems and internet 
browser software are provided in the Supplementary 
methods.

Exclusions comprised current diagnosis of general anxiety 
disorder; 6-month history of unstable psychiatric illness; his-
tory of stroke within the past 2 years; or transient ischaemic 
attack or unexplained loss of consciousness in the last 12 
months. Participants taking medications for Alzheimer’s dis-
ease symptoms were required to be on a stable dose for at 
least 8 weeks. Participants with a current diagnosis (UK 
study) or a 2-year history of Major Depressive Disorder 
(US study) were excluded.

Procedure
Participants completed all assessments with a trained psy-
chometrician via a secure Zoom link (UK study) or in-clinic 
(US study). For UK study participants, remote assessments 
were recorded via Zoom after disabling echo cancellation 
and audio-enhancing features. US assessments were recorded 
using either a Sony PCM A10 dictaphone or an iPhone 12. 
Audio recordings were uploaded after each assessment and 
transferred to Novoic’s servers.

Clinical assessments
Participants underwent a cognitive and clinical test battery. 
The full test battery is detailed in Supplementary Table 1
alongside modifications to enable remote assessments for 
UK participants. Assessments relevant to the current ana-
lyses are described below.

The ASRT is an automatically administered story recall 
task with pre-recorded instructions and stimuli. The ASRT 
has multiple parallel variants, balanced for linguistic and 
discourse metrics.23 ASRT stories, equivalent in structure, 
but with differences in names and locations tailored to UK- 
and US-based locations and landmarks were used. Three 
long ASRT stories were presented consecutively. 
Participants were asked to retell each story in as much detail 
as they could remember both immediately after hearing each 
story (immediate recall), and again in the same order, after 
completing all immediate recall trials (delayed recall).

Cognitive tests contributing to the Preclinical Alzheimer’s 
cognitive composite with semantic processing (PACC5) were 
administered and mean z-score was calculated as previously 
described.31 The composite includes summary scores from 
five measures: (i) the MMSE,29 a global cognitive screening 
test; (ii) the Logical Memory Delayed Recall,8,32 a delayed 
story recall test; (iii) Digit-Symbol Coding,33 a symbol sub-
stitution test; (iv) the sum of free and total recall from the 
Free and Cued Selective Reminding Test,34 a multimodal as-
sociative memory test; and (v) Category Fluency (animals, 
vegetables, fruits), a semantic memory test.

The CDR30 is a subjectively rated global clinical staging 
instrument that involves discussions with the participant 
and informant using a semi-structured interview format. 
The test was completed by experienced research staff and 
scored to deliver the Global CDR Score (CDR-G).

In the US study, where participants had completed PACC5 
or CDR assessments within 1 month prior to the study visit, 
tests were not re-administered but the recent historical test 
results were used.

Sample size determination
Power calculations completed using the pROC package in 
R. Prior work has described a threshold of area under the 
curve (AUC) ≥ 0.75 as being minimally clinically useful.35

With significance level set at 0.05, this AUC would be 
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detectable with 99% power for samples of n = 50 individuals 
in each group.

Outcome measures
Key ASRT system outcomes included the AI-based index test 
result from speech data identifying: (i) Aβ positivity in the 
full sample; (ii) MCI in the full sample; (iii) Aβ positivity in 
MCI/mild Alzheimer’s disease; (iv) Aβ positivity in the CU 
subsample. Diagnostic accuracy was established through 
comparison with PET or CSF Aβ status and clinical diagnosis 
established in prior recent trials. Automatically transcribed 
ASRTs were the primary measures of interest. Secondary 
analysis examined data from manually transcribed ASRTs, 
to identify any change in test accuracy with transcription 
automation.

Ethics statement
Informed consent was obtained by qualified staff, at the 
study site (US sites) or electronically in accordance with 
HRA guidelines (UK sites). The research was approved by 
the Institutional Review Boards in the relevant research au-
thorities (UK Research Ethics Committee reference: 20/ 
WM/0116; US Institutional Review Board reference: 
8460-JGDuffy).

Statistical methods
Overview of the ASRT system
The ASRT system evaluates story recall as a combination of 
input pairs, capturing both episodic memory function and 
linguistic aspects of speech differences between the story 
source text and spoken recall. The ASRT system was based 
on the ‘edit encoder’ of the ParaBLEU model, a 
state-of-the-art machine learning model for text-pair evalu-
ation, which is described in detail in Weston et al.26

ParaBLEU was adapted for use with the ASRTs using a pre- 
trained Longformer36 model to accommodate longer texts, 
rather than the RoBERTa37 model described in the original 
publication. Differing from the standard setup, the model 
was pre-trained with longer text-pair examples from the 
ParaCorpus26 dataset to mirror the length of source-recall 
pairs from the ASRT, and without the entailment component 
of the loss function as entailment labels were unavailable for 
the longer text-pair pre-training dataset. Pre-training was 
carried out via masked language modelling and autoregres-
sive causal language modelling.

Given two input texts, the edit encoder outputs a vector- 
based representation encoding the abstract, generalized pat-
terns that differ between them.

ASRT system application
Responses were transcribed using Google’s Speech-to-Text38

automatic speech recognition system, and also manually fol-
lowing a standardized procedure, and including transcrip-
tion of commentary, filled pauses and partial words. 
Analyses were completed in Python and the machine 

learning package PyTorch. Participants who did not com-
plete ASRT assessments were excluded from onward ana-
lysis. The word error rate (WER) of the automatic 
transcript was calculated using the HuggingFace package39

as the average number of errors per manual transcript 
word. This was calculated after removing punctuation and 
setting all text characters to lower case, and removing filled 
pauses and partial words from transcripts prior to 
comparison.

ParaBLEU was used to derive six vectors for each story, 
based on the following non-redundant combinations of in-
put pairs: (i) source (original story text) → immediate recall; 
(ii) immediate recall → source, (iii) source → delayed recall; 
(iv) delayed recall → source; (v) immediate recall → delayed 
recall; and (vi) delayed recall → immediate recall. These vec-
tors were averaged to produce one vector for each story in a 
triplet, and used to train and test predictions of pairs of labels 
(MCI/mild Alzheimer’s disease or CU; Aβ+ or Aβ−) via logis-
tic regression with the sklearn package in Python. Analysis 
was completed using tournament leave-pair-out cross- 
validation analysis. Reference standards (MCI and Aβ labels) 
were available for training but not for test data. Research has 
shown that leave-pair-out cross-validation has robust per-
formance relative to other cross-validation approaches, 
and limited bias.27 In tournament leave-pair-out cross- 
validation analysis, every possible pair of data points is 
held out in turn while the model is trained using all other 
data points. The AUC estimate is calculated by ranking the 
data points according to the model’s predictions. The train-
ing set for each test fold comprised all ASRTs from all parti-
cipants not in the test set. In each fold, the predictions for 
each recall were ensembled by simple averaging to make 
participant-level predictions.

Clinical and biomarker discrimination of models
Participant-level predictions were used to create a ranking 
for receiver operating characteristic (ROC) curve analysis. 
Two comparison models were generated (i) a demographic 
comparison (age, sex and years of education) and (ii) the 
PACC5 z-score. For three participants, missing data for 
years in education were replaced with the group median. 
For 23 participants, one or more PACC5 subtests were not 
available and PACC5 performance was estimated as the 
mean z-score of their available PACC5 test z-scores.

The demographic model was analysed using an identical 
setup to the models trained on top of the ParaBLEU output 
vectors. PACC5, for which the input was a single score, 
was analysed as a logistic regression model within the tour-
nament leave-pair-out framework using the score directly.

Predictions were assessed by the AUC, with accompany-
ing 95% confidence intervals (95%CIs); and sensitivity, spe-
cificity and Cohen’s kappa at Youden’s index for the test 
result in comparison with reference standards. Statistical sig-
nificance of differences between AUCs, comparing the pre-
dictions ASRT system with demographics and PACC5 
results, and 95%CIs for AUCs were computed using 
DeLong’s method.40
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Screening simulation
Screening for MCI and amyloid positivity was simulated in a 
hypothetical age 65+ sample (n = 1000) with proportional 
representation of each age group representative of the US 
population,41 and MCI prevalence estimates by age from 
prior meta-analysis.42 Prevalence estimates of amyloid posi-
tivity by age, and in MCI and CU individuals were also taken 
from prior meta-analyses.42,43 The ASRT system’s sensitivity 
and specificity within the full sample was determined at 
Youden’s index, and compared with the MMSE for detecting 
MCI in prior meta-analysis (pooled sensitivity = 62.7% and 
specificity = 63.3%).44 Furthermore, following methods de-
scribed by Keshavan et al.,45 the proportion of PET scans re-
quired and the number of participants recruited during 
pre-screening with the ASRT system was modelled compared 
with routine PET scanning to deliver a pre-specified sample 
size.43 Simulation methods are detailed in Supplementary 
methods.

Results
Participants
Two hundred participants completed the study visit (106/ 
200 MCI/Mild Alzheimer’s disease, and 94/200 CU)—see 
Fig. 1. Aβ status was confirmed in 88% by PET scan (176/ 
200), 7.5% via CSF (15/200). For 4.5% (9/200), amyloid 
positivity source information was unavailable. The MCI/ 
mild Alzheimer’s disease participant group comprised pri-
marily MCI participants, with 13 individuals (12.3%) hav-
ing a diagnosis of mild Alzheimer’s disease.

ASRT assessment recordings were completed by 96.5% 
(193/200). Six of the seven participants with missing data 
were in the MCI/mild Alzheimer’s disease group. 
Participants who did not complete ASRT assessment record-
ings had lower MMSE scores (r = −0.16, P = 0.03), but did 
not differ from the remainder of the group with respect to 

Figure 1 Participant selection. (A) Participant inclusion criteria: participants were included based on prior amyloid status and clinical diagnosis 
confirmation. (B) Participant flow diagram, documenting exclusions, and dropouts during study recruitment. MCI, mild cognitive impairment; AD, 
Alzheimer’s disease; MMSE, Mini-Mental State Exam; n, number.
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Global CDR scores (r = −0.12, P = 0.10), age (r = −0.06, 
P = 0.40), years in education (r = −0.11, P = 0.13), Aβ+/Aβ− 
ratio (Fishers exact test, P = 0.64), or male/female ratio 
(Fishers exact test, P = 0.99).

Two participants became distressed during cognitive as-
sessments. One aborted their participation in the study and 
was excluded from further analyses; the other participant 
partially completed assessments but was happy and able to 
continue and was included. No other adverse events were 
reported.

Demographics in the sample completing ASRTs and in-
cluded in analyses are shown in Table 1. Groups were overall 
well matched for most demographic variables. Age at assess-
ment differed significantly between Aβ+ and Aβ− biomarker 
groups in the full sample. In subgroup analyses, age differ-
ences were seen between Groups 1 and 2 (Aβ+ and Aβ− par-
ticipants with MCI/mild Alzheimer’s disease), and Groups 1 
and 4 (MCI/mild Alzheimer’s disease Aβ+ and CU Aβ− par-
ticipants). Demographics separated by AMYPRED-UK and 
AMYPRED-US studies are provided in Supplementary 
Tables 2 and 3.

ASRT system application
The ASRT task yielded on average over 6 (6.56) min of 
speech per participant. The ASRT system area under the 
ROC curve (AUC) of our primary endpoint, Aβ classification 
in the full sample was 0.77 (95%CIs ±0.07) (Fig. 2A), above 
chance (z = 7.89, P < 0.001) and with significantly better pre-
diction than demographics (z = 2.69, P < 0.01) and PACC5 
(z = 4.37, P < 0.001). The AUC for predicting Aβ classifica-
tion within the MCI sample (Fig. 2C) was even higher at 
AUC = 0.82 (95%CIs ±0.08), above chance (z = 7.27, P < 
0.001) and superior again to demographics (z = 2.27, P = 
0.02) and PACC5 (z = 2.64, P = 0.008). In the CU subsample 
(Fig. 2D), the ASRT system AUC for Aβ detection was 0.71 
±0.10, above chance (z = 4.03, P < 0.001) and better than 
PACC5 (z = 2.34, P = 0.02), but not superior to demograph-
ics (z = 1.63, P = 0.10).

MCI classification in the full sample using the ASRT sys-
tem in the full sample yielded an AUC of 0.83 (95%CIs 
±0.06) (Fig. 2B), significantly better than chance (z = 
11.02, P < 0.001) and demographics (z = 8.01, P < 0.001) 
but not better than the PACC5, which showed modestly bet-
ter performance than the ASRT system (z = −2.20, P = 0.03).

Contrast of results from manual and automatic transcrip-
tion is shown in Supplementary Fig. 1. Manual and automat-
ically transcribed models were broadly overlapping. The 
pattern of differences with comparison models was the 
same, with the exception of the model for detecting Aβ in 
CU participants, where manually transcribed data had a 
modestly lower AUC (0.65, 95%CIs ±0.11), which although 
remaining better than random (z = 2.61, P = 0.009), did not 
perform better than PACC5 (z = 1.41, P = 0.16), or demo-
graphics (z = 0.82, P = 0.41). AUCs generated for manually 
and automatically transcribed data did not differ (MCI full 
sample: z = 0.39, P = 0.72; amyloid full sample z = 1.03, 

P = 0.30; amyloid in MCI: z = 0.36, P = 0.71; amyloid in 
CU: z = 1.91, P = 0.06). Average WER across participant re-
cordings for automatic transcripts when compared with 
manual transcripts, was 0.16.

Screening simulation
In a simulated population sample age 65+ (MCI prevalence 
15.4%) screening for MCI in primary care using the ASRT 
system is estimated to modestly improve detection of indivi-
duals with MCI by 8.5% and reduce false positives by 59.1% 
in comparison with screening with the MMSE. This repre-
sents an increased positive predictive value from 23.7 to 
45.3% and negative predictive value from 90.3 to 93.6%.

The potential benefit of speech-based Aβ screening prior to 
PET scan was examined in a simulated population aged 65– 
85. In individuals with MCI (overall Aβ+ prevalence estimated 
at 55.9%) for a pre-specified sample size of PET Aβ+ indivi-
duals, screening using the ASRT system prior to PET scanning 
was estimated to reduce the number of PET scans required by 
35.3%. This reduction is dependent on prevalence and there-
fore also age,43 with the greatest benefit of screening seen for 
younger individuals. In CU individuals aged 65–85 (Aβ+ 
prevalence 24.9%), screening using the ASRT system could 
reduce the number of PET scans required by 35.5%.

Discussion
The current study presents the ASRT system, an automatic-
ally administered and analysed screening test, analysed with 
an advanced AI system to predict Aβ positivity (AUC = 0.77 
±0.07) and MCI (AUC = 0.83 ±0.06). Aβ positivity is detect-
able in speech in individuals with MCI/mild Alzheimer’s dis-
ease (AUC = 0.82 ±0.08), and in otherwise CU individuals 
(AUC = 0.71 ±0.10). The results reveal changes in speech oc-
curring at the earliest stages in the disease. Further, we find 
similar results for automatic and manually transcribed 
data, despite moderate levels of transcription errors. This in-
dicates that at the level noted in the current study, transcrip-
tion errors do not significantly impact the sensitivity of the 
ASRT system.

The binary classification ability reported here is similar to 
those previously reported from other studies identifying 
MCI/mild AD from speech assessment in the literature.10

For detecting MCI, the ASRT system also performs similarly 
to a range of other available traditional cognitive tests, as 
shown in prior meta-analysis (AUC 0.70–0.94, mean 
AUC across tests evaluated AUC = 0.81).46 In the current 
study, the ASRT system is superseded by the PACC5 cogni-
tive composite for detecting MCI.

In the current study the ASRT system is superior to the 
PACC5 for detecting Aβ positivity. Research indicates that 
traditional cognitive tests and cognitive composites, al-
though sensitive to cognitive decline, on their own show 
more modest differentiation between amyloid positive and 
negative individuals,47–49 reflected also in the current results. 
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Figure 2 ROC curves for the ASRT system and comparison models. AUCs and 95% confidence intervals for the classifiers predicting: 
(A) amyloid positivity and (B) mild cognitive impairment (MCI)/mild Alzheimer’s disease in the full sample. Subsample comparisons of classifier 
performance predicting (C) amyloid positivity within the MCI/mild Alzheimer’s disease; and (D) amyloid positivity in the CU sample. The table 
below each figure provides sensitivity (Sn) and specificity (Sp) at Youden’s index and Cohen’s kappa (Cohen K). The reference test was biomarker 
confirmation from PET or CSF for A, C, and D. Reference test was clinical diagnosis for B. The demographic comparison includes age, sex and 
education level. AD, Alzheimer’s disease; ASRT, automatic story recall test; PACC5, preclinical Alzheimer’s cognitive composite with semantic 
processing; ROC, receiver operator characteristic; AUC, area under the curve.
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Together, this indicates that subtle differences in which the 
way spoken cognitive tasks are performed may be more pre-
dictive of amyloid positivity than more standard measures of 
recall or response accuracy typically obtained in cognitive 
assessment.

A positive prediction of amyloid from speech data alone 
has not been reported before, although amyloid sensitivity 
has been shown for certain cognitive tests,49 and prior 
work shows sensitivity of speech measures to phosphory-
lated tau but not beta amyloid biomarkers as measured via 
CSF test.17 The greater sensitivity to amyloid identified in 
the current study, as compared with prior research, could 
be attributed to a combination of factors. First, the study de-
sign allowed for combined and separate evaluation of 
changes in speech associated with MCI, and underlying bio-
marker profiles. Second, the task used is sensitive to episodic 
memory impairments commonly seen in early-stage 
Alzheimer’s disease, and is likely to generate more linguistic-
ally varied responses than other common speech tasks.24

Third, the design of the model as a text comparisons system 
allows for the evaluation of the participant response relative 
to a source text, identifying not just the frequency of key lin-
guistic differences, but also embedding these changes within 
context in which they occur.

A recent report from the Lancet Commission indicates 
that 12 modifiable risk factors account for around 40% of 
worldwide dementia cases, which could theoretically be pre-
vented or delayed.50 Aduhelm, the first disease-modifying 
treatment for Alzheimer’s disease was approved by the 
FDA in June 2021 through its Accelerated Approval path-
way using brain amyloid load as a surrogate endpoint. The 
approval of Aβ as a surrogate for the treatment of 
Alzheimer disease may open a ‘floodgate’ of amyloid- 
targeting drugs.51 Treatments will primarily have been tested 
in patients with MCI or mild Alzheimer’s disease with ele-
vated amyloid biomarkers and will likely be indicated in 
these populations.

Effective screening and early detection of MCI/mild 
Alzheimer’s disease, biomarker-positive individuals could 
help quickly and appropriately identify patients for clinical 
trials and/or approved treatments, potentially reducing in-
terim cognitive deterioration. Affordable and accessible test-
ing to direct the appropriate patient population to further 
assessments and treatment is a key to controlling healthcare 
system costs of these drugs. Blood-based testing for 
Alzheimer’s disease holds promise for widespread and lower 
cost diagnostic testing, and is expected to approach clinical 
use in a few years.52 However, research to date indicates 
that blood-based biomarkers do not differentiate clinical 
stages of the disease well,53 which indicates that even with 
further improvement in the sensitivity and consistency of 
blood-based testing a continued need for cognitive and clin-
ical assessment will remain. Furthermore, blood-based test-
ing remains invasive, requires in-person assessment, and 
usually has a turnaround time of days to weeks, whereas 
speech-based diagnostic assessment can be completed non- 
invasively, remotely and with instantaneous and automatic 

generation of results. Prior work using the ASRT system ad-
ministered in a remote setting shows that participants report 
the application to be easy to use and the tasks broadly 
interesting.23

The ASRT system requires no trained personnel or special-
ist equipment, and could improve efficiency of screening for 
MCI and mild Alzheimer’s disease, making it possible for pa-
tients and clinicians to engage in more routine cognitive 
monitoring or health checking. Furthermore, screening for 
amyloid positivity in MCI may help to identify whether pa-
tients are likely at risk of disease progression. This can help 
to support risk reduction approaches, and initial screening 
for suitability of approved disease-modifying treatments.

Finally, The ASRT system can help to reduce costs in clin-
ical trials by enriching recruited samples. To obtain a pre- 
specified sample size of Aβ+ individuals, pre-screening using 
the ASRT system would require recruitment of a higher num-
ber of participants (+53.8% in MCI, and +35.1% in CU par-
ticipants), but reduce the volume of costly PET scans needed 
(−35.3% in MCI, and −35.1% in CU individuals).

Limitations
In the current study, participant recruitment was dependent 
on the availability of prior amyloid PET and CSF amyloid 
test results within the past 30 (Aβ−) to 60 months (Aβ+). 
Since Aβ positivity increases with age,43 conversion may 
have occurred for some participants in the interim period. 
CSF and PET Aβ positivity are differentially associated 
with cognitive decline and may be optimally sensitive at dif-
ferent disease stages.54 Variation in biomarker and diagnos-
tic criteria (between trials where participants were recruited 
from) is likely to have introduced increased variability in our 
diagnostic reference standards. Even a small number of false 
labels can impact training of AI systems. Improvements in 
model performance could be expected with concurrent and 
consistent reference standards, and with quantitative rather 
than binary amyloid results.

In the UK, cognitive assessments comprising the PACC5 
were completed via telemedicine, which deviates from typ-
ical test administration which is carried out in clinic. 
However, test results shown here are in keeping with prior 
research administering similar cognitive composites in clin-
ic.47 There was also a high level of missing data from 
PACC5 subtests (in 11.5% of participants) where data col-
lection was cut short due to time limitations or participant 
fatigue. Averaging z-scores across the existing subtests for 
these participants is likely to provide a reasonable estimate 
of generalized cognitive ability.

Our demographic baselines included age, sex and educa-
tion and additional sensitivity for demographic predictors 
could be gained with the inclusion of family history for 
Alzheimer’s and Apolipoprotein E (APOE) genotype, which 
are known risk factors. Similarly, combining the algorithm 
with other risk factors (e.g. age, APOE genotype) could 
help to further increase discriminative power. Our analysis 
was limited to textual analysis of transcribed retellings, 
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and acoustic and temporal features of the voice recording 
were not evaluated in the current study. Additional sensitiv-
ity to cognitive impairment and amyloid positivity could be 
afforded through the inclusion of this additional information 
in future analyses.11

Our simulation analyses evaluate hypothetical savings in 
clinician resources and PET scans given the sensitivity and 
specificity of the ASRT system test results derived in the cur-
rent study. Although study samples were carefully recruited 
in a balanced fashion, with no overall differences noted be-
tween the groups on key demographic variables, it is not 
clear to what extent subtle variation in these measures be-
tween groups, or other unmeasured demographic imbal-
ances that may impact our models. While the results show 
promise for reducing referral burden and cost savings 
when screening for amyloid positivity prior to PET scan, 
the results require replication and therefore should be inter-
preted with caution.

Moreover, due to lack of evaluation of ethnic and racial 
variation of Aβ in the cited meta-analysis used to generate 
prevalence levels in our simulation,43 it is noted that the re-
ported amyloid positivity rates may not be reflective of all ra-
cial and ethnic groups.55 Similarly, the population under 
examination here showed limited ethnic or racial diversity 
(N = 193 white, N = 3 Asian and N = 4 Black or African 
American), indicating that replication across a broader and 
more representative range of ethnic and racial backgrounds 
is required. Participants were also required to have access 
to and ability to use a smartphone, which may have pre-
cluded a subset of individuals from taking part.56 While 
our findings, based on a combined UK and US sample, indi-
cate that the robust results can be achieved across different 
geographical locations and accents, replication and, ideally, 
out-of-sample validation in larger, more clinically and demo-
graphically heterogeneous samples is now needed.
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