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Abstract
Accumulating evidence suggests that Alzheimer’s disease (AD) has a long preclinical phase,
during which time its characteristic pathology accumulates and patient function declines, but
symptoms are insufficient to warrant a clinical diagnosis of dementia. There have been increasing
reports of noncognitive symptoms, including loss of motor function, reported to be associated with
incident AD. To understand the link between motor function and preclinical AD, this article
examines: our understanding of motor function and its clinical assessment in cohort studies; the
relationship of motor function and loss of cognition in older persons; risk factors for cognitive and
motor decline; and the relation of post-mortem indices of AD and motor function prior to death.
Together, these data suggest that age-related cognitive and motor decline may share a common
causation. Furthermore, individuals with a clinical diagnosis of AD may represent the ‘tip of the
iceberg’, since AD pathology may also account for a substantial proportion of cognitive and motor
dysfunction currently considered ‘normal aging’ in older persons without dementia. Thus, AD
may have a much larger impact on the health and wellbeing of our aging population.

Keywords
Alzheimer’s disease; cognitive decline; dementia; mild cognitive impairment; motor decline;
preclinical AD

Alzheimer’s disease
Clinical Alzheimer’s disease (AD) is characterized by insidious onset and slowly
progressive cognitive dysfunction, particularly impaired memory [1]. The most widely used
criteria for dementia are those developed by the joint working group of the National Institute
of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and
Related Disorders Association [2]. These criteria require a history of intellectual decline and
a standardized assessment of cognition, with unmistakable deterioration in two cognitive
domains relative to the patient’s previous level of functioning. A clinical diagnosis of
probable AD can usually be confirmed with post-mortem indices of AD in more than 80–
90% of cases and in nearly all cases of typical AD [3]. The hallmark pathologic lesions of
AD are neurofibrillary tangles and senile plaques [4]. Neurofibrillary lesions include
neurofibrillary tangles, neurophil threads and neuritic plaques. All of these lesions contain
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hyperphosphorylated tau protein (PHF-tau). Neuritic senile plaques are extracellular
deposits with a dense core of amyloid that are surrounded by an amyloid corona containing
PHF-tau dystrophic neuritis and reactive microglia. Non-neuritic plaques lack the amyloid
core, dystrophic neurites and microglia and are composed exclusively of amyloid. Several
different classification schemes have been employed for the pathologic diagnosis of AD [5–
7].

Preclinical AD
While a general consensus regarding the clinical and pathologic diagnoses of AD had
emerged by the mid-1980s [2,8], accumulating evidence over the following decade
suggested that clinical AD develops over the course of years, during which time many
individuals may demonstrate mild cognitive impairment (MCI) insufficient for a clinical
diagnosis of dementia [9,10]. In addition, post-mortem studies suggest that some older
individuals with widespread evidence of AD pathology may not have dementia during their
lifetime [11–16]. Recent ante-mortem brain imaging studies of amyloid extend these cross-
sectional post-mortem findings, providing evidence that AD pathology accumulates well
before the clinical diagnosis of dementia [9,10]. Thus, both ante-mortem and post-mortem
data lend support to the notion that AD has a preclinical period, during which its
characteristic neuropathology accumulates and cognitive function declines, but symptoms
are insufficient to warrant a clinical diagnosis of AD.

Converging evidence suggests that the pathophysiologic processes that eventually lead to
AD begin years, if not decades, prior to the clinical diagnosis of AD dementia. Nonetheless,
since MCI and functional impairment may represent an early stage of AD, distinct from
normal aging, the long preclinical phase of AD provides a critical opportunity for potential
intervention with disease-modifying therapy. However, this underscores the need to more
precisely characterize the emerging clinical syndrome during the preclinical stage of AD.
The recognition that several noncognitive symptoms, such as motor impairment, predict the
subsequent development of AD suggests that noncognitive behaviors may serve as
phenotypic markers of preclinical AD, as illustrated in Figure 1 [17–20].

This article will focus on changes in motor function that occur prior to the clinical diagnosis
of AD, during its preclinical phase. To understand the link between motor function and
preclinical AD, we will review recent advances in: our understanding of motor function and
its clinical assessment in cohort studies; the relationship between motor function and loss of
cognition in older persons; risk factors for cognitive and motor decline; and the relationship
between ante-mortem measures of motor function and post-mortem indices of AD
pathology. Together these data suggest that loss of cognition and motor function in old age
may share a common underlying pathophysiology, and accumulation of AD pathology
contributes to age-related functional decline, including both cognitive and motor decline.

Motor function is not a unitary process
Motor function is not a unitary process, but different motor abilities derive from the
coordinated activity of varied motor control systems located throughout the brain and spinal
cord, and that extend via the peripheral nervous system to musculoskeletal structures [21–
23]. Motor control systems that regulate the initiation, planning and execution of motor
performances are located in multiple interconnected cortical and subcortical motor regions
[24–29]. Descending white matter tracts provide the means for these supraspinal motor
systems to influence spinal motor systems that directly control muscle, the final effector of
all movement [22,23,30–34].
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The best known role of muscle is its pivotal function in motor function. However, muscle
has other essential roles in maintaining homeostasis, including temperature control and
systemic metabolism, and it provides the body’s only reserve of amino acids. Furthermore,
as muscle is situated outside of the CNS, it is not protected by the BBB. Therefore, muscle
is vulnerable to a host of systemic diseases, as well as catabolic, inflammatory, immune,
endocrine and metabolic processes that may not affect the motor control systems located
within the CNS. Consequently, changes in muscle structure and function that can affect
motor function may reflect neurologic disorders or other systemic disorders or both
[23,35,36].

Recent advances in imaging and neurophysiologic testing have begun to elucidate the
complex processes necessary to ensure accurate movements. Integration of a wide range of
sensory and visuospatial information is essential for accurate movements (i.e., postural
control, spatial navigation and joint position) [37,38], and different motor-related brain
regions may control distinct aspects of movements (i.e., speed vs balance) [39–41]. Finally,
the increasing complexity and novelty of motor tasks demand increasing cognitive and
sensory information processing for the accuracy of successful movements.

Consequently, motor impairment may derive from damage to the integrity of the gray matter
of motor-related brain regions (i.e., neuronal loss), as well as damage to white matter tracts
(i.e., connectivity), which connect distributed gray matter, motor-related brain regions or a
combination of both types of damage. As a result, the type of damage (i.e., loss of neuronal
elements or accumulating pathology), and its location within CNS structures, may lead to
different clinical motor deficits. These dissociations underscore that motor function is not a
unitary process, and that several motor measures may be necessary to adequately assess
motor impairment in older persons.

Loss of motor function is common in older persons
Age-related motor decline is common and associated with a wide range of adverse health
consequences [42–46]. There are currently approximately 40 million persons over the age of
65 years in the USA, and by 2030, there will be more than 70 million persons over the age
of 65 years [201]. It is estimated that up to 50% of older persons may have some elements of
motor impairment by the age of 80 years [47,48]. This would suggest that the public health
challenge of motor impairment in old age may be an even larger challenge than dementia
and cognitive impairment. Motor impairment can include reduced gait speed, loss of muscle
strength and bulk, and reduced balance, as well as dexterity. Thus, the growing public health
challenge of identifying motor impairment in old age is complicated by the variability of its
clinical expression. Several constructs based on assessments of different motor abilities have
been used to document mild motor symptoms in old age, including sarcopenia, based on
muscle bulk or mass and strength [49]; physical frailty, based on grip strength, body
composition, gait speed, fatigue and physical activity [50]; parkinsonian signs, based on
signs of bradykinesia, tremor, rigidity and parkinsonian gait [51]; and various summary
measures, based on testing for a wide range of common motor performances [52].
Regardless of the motor measures that have been employed, most studies have demonstrated
that mild motor symptoms are all associated with adverse health consequences, including
all-cause mortality, as well as incident disability, and other outcomes, including the
development of AD. Assessments that employ several motor measures may more accurately
identify individuals at risk for adverse health consequences in old age [53].

Motor function predicts AD, MCI & cognitive decline in older persons
Over the last decade there has been increasing recognition of a link between motor function
and the risk of developing AD (Figure 1). This article focuses on motor function prior to a
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diagnosis of AD. Changes in motor function in individuals after a clinical diagnosis of AD
have been examined in prior publications [54–57]. Advances in imaging techniques (i.e.,
functional MRI, PET and diffusion tensor imaging) and electrophysiologic methods have
advanced our understanding of the complex structural and functional brain changes that can
be demonstrated for both simple and more complex motor tasks in older individuals with
and without AD [28,58–60]. This article focuses on motor testing employed in community-
based cohort studies of older individuals.

Muscle bulk
Loss of muscle strength and bulk is common in older individuals and is recognized as a
prominent feature of several age-related geriatric syndromes (e.g., frailty, sarcopenia or
metabolic syndrome) [49,50,61]. Muscle mass is a major determinant of body weight or
BMI in older persons. While body composition (e.g., BMI) has long been known to be
associated with mortality and other common medical conditions, recent studies suggest a
link between BMI and AD [62–67]. These studies suggest that changes in BMI may be an
early noncognitive sign of AD. The two main components of BMI are muscle mass and
body fat. Since both muscle and fat can vary without an appreciable change in BMI, more
work is needed to explicate the relative contributions or synergy of low muscle mass
(sarcopenia) or high body fat (adiposity) and the association of BMI with cognition in old
age. Muscle mass and fat can be measured more precisely with dual-energy x-ray
absorptiometry (DXA) or with imaging modalities. Since these techniques are not feasible in
the community setting, it is difficult to disentangle these two aspects of BMI in community-
based studies.

Morphologic studies of muscle demonstrate that the loss of muscle structure (i.e., number or
size of muscle fibers), either from disease or from disuse, is associated with lower muscle
strength (function) [68,69]. It is also important to remember that since muscle is the final
effector of motor output, dysfunction of a wide variety of CNS and peripheral nervous
system structures cause decreased strength without concomitant structural changes in
muscle. Thus, assessing muscle structure is crucial since it clarifies whether loss of muscle
structure contributes to the loss of muscle function [70]. Although many factors contribute
to declining muscle function in old age, loss of muscle structure is an important element that
can be assessed in community-dwelling older persons [71].

While some report that low BMI is associated with an increased risk of AD, others suggest
the opposite [47,48]. Accumulating evidence suggests that the link between BMI and the
risk of dementia is more complex and may vary over the lifespan. Differences between the
associations of BMI at midlife versus late-life may account in part for conflicting reports
[71]. Several studies report that baseline lower BMI, as well as a more rapid rate of
declining BMI, are associated with an increased risk of AD. Declining BMI may occur
several years before the clinical diagnosis of dementia and raises the question of whether
mild motor symptoms may represent an early sign of AD [20]. BMI is also associated with
incident MCI [64]. To circumvent diagnostic imprecision, and because change in cognitive
function is the principal manifestation for clinical AD, studies have demonstrated that BMI
is also related to the annual rate of cognitive decline [20].

Muscle strength
Several studies have reported that low grip strength is associated with an increased risk of
incident AD [17]. A recent study used a summary measure of appendicular and axial muscle
strength, which was also related to the risk of AD, MCI and cognitive decline [72].
Secondary analyses in this study suggested that their findings were primarily the result of
grip strength and axial muscle strength [72]. Thus, accumulating evidence suggests that both
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lower levels of muscle structure (muscle bulk) and lower levels of function (muscle
strength) are associated with an increased risk of MCI and AD, as well as with a more rapid
rate of cognitive decline.

Motor performances
In contrast to strength testing, which depends mostly on motor units and muscle function,
motor performances reflect the functional integrity of widely distributed cortical and
subcortical motor-related brain regions, as well as sensory, visuospatial and cognitive
functions. Motor performances, including gait and balance or finger tapping, are commonly
impaired in older persons [73]. Lower levels of motor function may be more pronounced in
older persons with cognitive impairment compared with those who are cognitively intact
[74–77]. Both a lower level and more rapid rate of motor decline in cognitively intact
individuals predict the subsequent development of MCI and AD, and loss of motor function
can precede cognitive impairment by several years [74,75,77–83].

Parkinsonian signs
Several community-based studies report that mild parkinsonian signs, including motor
slowing (bradykinesia), gait and posture disturbances, rigidity and resting tremor, may be
present in up to 50% of community-dwelling older persons without clinical Parkinson’s
disease (PD), and mild parkinsonian signs are associated with adverse health consequences,
including death and disability [48]. In cross-sectional analyses, a global measure of
parkinsonism and individual parkinsonian signs were related to a global measure of
cognition and specific cognitive abilities [84]. A higher level of parkinsonian signs in
individuals without cognitive impairments is associated with an increased risk of developing
both MCI and AD [51,84,85]. In addition, individuals with MCI exhibiting a higher level of
parkinsonism have a higher risk of the subsequent development of AD [77]. A higher level
of parkinsonian signs prior to the diagnosis of AD is associated with a more rapid rate of
cognitive decline both before and after the diagnosis of AD [84,86].

Physical frailty
Impaired motor function is a prominent characteristic of physical frailty, a heterogeneous
syndrome whose features include loss of muscle strength and body composition, impaired
gait and fatigue [50,87,88]. Physical frailty is associated with both the level of cognition and
dementia. Longitudinal studies suggest that a higher level of physical frailty is associated
with the subsequent development of both MCI and AD [89,90]. Furthermore, both a higher
level of frailty at one point in time, as well as a more rapid rate of increasing frailty (i.e.,
developing more impairments), were related to a more rapid loss of cognitive function [89].

In summary, prior reports have examined a wide range of motor measures and their
relationship with cognitive function in old age. Together these reports suggest that both the
level and rate of motor decline are associated with adverse health outcomes, including
incident AD and MCI, as well as the rate of cognitive decline (Figures 1 & 2).

Motor & cognitive decline share common risk factors
Developing interventions that decrease the burden of age-related motor and cognitive
decline requires an understanding of their underlying neurobiology. Mechanisms of disease
known to damage the brain and neuronal elements, such as oxidative stress, inflammation
and impaired energy metabolism, have been the focus of intense study [91–94]. In addition
to studies of these basic mechanisms, identifying risk factors that are associated with
functional decline can also direct efforts to understand their underlying neurobiology and the
development of novel intervention strategies. For example, prior reports demonstrating that
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apolipoprotein E4 is a risk factor for developing AD and cognitive decline led to a body of
work that has identified a causal chain linking apolipoprotein E4, AD pathology and
incident AD (Figure 2) [95,96]. This work has led to the use of apolipoprotein E4 as a
biomarker for individuals at risk for AD, as well as efforts to treat AD by modifying the
accumulation of amyloid.

Over the past decade, a wide range of genetic, medical and psychosocial factors have been
demonstrated to predict the development of incident AD and MCI, as well as cognitive
decline. In light of the associations of motor function with the loss of cognitive function in
older persons (Figure 1), risk factors for cognitive decline may also be risk factors for motor
decline. Here, we review several genetic, medical, psychosocial and modifiable experiential
factors that are risk factors for both cognitive and motor decline.

Genetic
The increased availability of tests for genetic polymorphisms has led to studies that have
demonstrated that the presence of one or more alleles of apolipoprotein E allele (APOE) ε4
is associated with a number of adverse health consequences, including mortality, AD,
cognitive decline, cardiovascular disease, infection and stroke [97–101]. In a recent study of
community-dwelling older persons, the presence of at least one copy of the APOE ε4 allele
was associated with an increased rate of motor decline, and this association increased with
age [102]. These findings suggest that apolipoprotein E allele status is a risk factor for age-
related motor decline. In contrast to APOE ε4, several other genes (CLU, PICALM, CR1 and
BIN1) have been linked with an increased risk of AD, but these genes have not been
reported to be associated with motor decline [103,104], with the exception of a recent case
of an individual with centronuclear myopathy and a novel mutation of BIN1 [105].

Odor identification
Impaired odor identification has been associated with a variety of age-related
neurodegenerative conditions that impair cognitive and motor function [106–111]. Loss of
odor identification was associated with incident AD and MCI, as well as a greater rate of
cognitive decline and an increased risk of MCI [106,107]. Similarly, in a recent study, lower
ability to identify odors was associated with increased impairment on a global measure of
parkinsonism at baseline and more rapid progression of global parkinsonism and
parkinsonian gait disturbance during the study period [109]. The results suggest that
difficulty recognizing familiar odors is associated with increased severity and progression of
parkinsonian motor impairment in old age.

Medical factors
Several common medical conditions, such as hypertension and diabetes, are associated with
an increased risk of AD, MCI and cognitive decline [112–118]. The presence of
hypertension has been reported to be associated with lower walking speed and more rapid
decline [119]. Recent studies have demonstrated that impaired cerebral blood flow
regulation is associated with both cognitive function and gait slowing in old age, but not
muscle strength [120]. In cross-sectional analyses, diabetes was associated with a global
measure of parkinsonism and, in particular, with a more severe parkinsonian gait
disturbance [121,122]. Progression of parkinsonian gait disturbance and rigidity were more
severe in older persons with diabetes [122]. Respiratory muscle strength was associated with
the rate of change in mobility, even after controlling for leg strength and physical activity
[123]. In a subsequent study, respiratory muscle strength, leg strength, physical activity and
pulmonary function were all found to make relatively independent contributions to the
development of mobility disability based on assessment of gait speed [124].
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Modifiable experiential factors
Physical activity is a modifiable risk factor for overall musculoskeletal fitness (i.e., muscular
strength, endurance, power and flexibility) and cardiovascular disease, as well as a variety of
other chronic diseases [125]. Many, but not all, observational studies suggest that higher
levels of physical exercise are beneficial for cognition and may be associated with a lower
risk of AD [126,127]. These findings are supported by several recent exercise intervention
studies, which have demonstrated statistically significant improvement in cognitive function
[126–132].

Previous studies have also demonstrated that a higher level of physical activity at one point
in time predicts a higher level of motor function years later. However, the extent to which
this association is due to a higher level of motor function at baseline is unclear because it is
difficult to fully assess change in motor function as an outcome and distinguish it from
initial level of performance on the basis of only two observations [125,133]. A recent study
using repeated observations reported that self-reported physical activity is associated with a
slower rate of decline in motor function, even after controlling for baseline levels of physical
activity [134]. This association was primarily owing to the effect of physical activity on
motor performance, rather than muscle strength, underscoring the need for further work to
clarify the beneficial mechanisms of physical activity on motor function. Accumulating
literature suggests that participation in a broad spectrum of late-life activities are associated
with positive health outcomes in old age and, in particular, that more frequent participation
in social activity may be protective against motor decline in older persons [135].

Psychosocial
There is increasing recognition of the importance of lifestyle and psychosocial factors for
healthy aging in older persons [136]. Distress, neuroticism and loneliness have been
reported to be associated with incident AD, MCI and cognitive decline [137–140]. Similarly,
in a recent study, self-perceived isolation, loneliness and social engagement as measured by
late-life social activities were relatively independent predictors of the rate of motor decline.
The association of loneliness and motor decline persisted even after controlling for a wide
range of leisure activities, including physical and cognitive activities, depressive symptoms
and other possible confounding covariates, as well as after controlling for baseline disability
or history of stroke and PD [141]. Cross-sectional studies have reported that personality
traits, such as neuroticism and extraversion, are related to levels of physical activity and
walking speed [142,143]. A recent longitudinal study reported that neuroticism and
extraversion were independently associated with the rate of change in motor function, such
that a higher level of neuroticism and a lower level of extraversion were associated with
more rapid motor decline [Buchman AS, Boyle PA, Wilson RS, Leurgans SE, Arnold SE,
Bennett DA. Neuroticism, extraversion, and motor function in community-dwelling older
persons. Manuscript submitted].

Motor function prior to death is related to AD pathology
Since motor and cognitive function are related and common risk factors predict declines in
both, one may expect that they share a common causation [144]. AD pathology is also
related to MCI and cognitive decline in old age and is common, even in older persons
without cognitive complaints prior to death [145,146]. Since AD pathology is associated
with loss of cognition, the accumulation of AD pathology in motor-related brain regions
could also contribute to the loss of motor function. It has been suggested that β-amyloid and
its precursors are abnormally and specifically present in inclusion body myositis muscle
fibers and may link muscle with AD pathology, but there is limited evidence to support this
notion [147,148]. AD pathology in cognitive systems may affect motor function by
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impairing the widespread distributed neural systems that are recognized to play an important
role in the serial or parallel processes, which are essential for the planning and execution of
movements [149].

Muscle bulk, as measured by BMI, has been reported to demonstrate an inverse linear
relationship with the amount of AD pathology in both individuals with and without dementia
during life [150]. Similarly, a higher level of a composite measure of physical frailty prior to
death was related to a higher level of AD neuropathology at autopsy [151]. In the latter
study, AD neuropathology was related to grip strength and BMI prior to death and there was
a trend for gait speed [151]. The associations of BMI and frailty with AD pathology was
similar in both individuals with and without dementia, suggesting that loss of BMI and
increasing frailty may occur before both MCI and AD [150,151].

While prior studies measured post-mortem indices of AD in cognitive regions, recent studies
suggest that AD pathology also accumulates in regions known to subserve motor function,
such as the primary and supplementary motor cortices, striatum and substantia nigra [152–
157]. Furthermore, reports that have documented early clinical motor signs in patients
demonstrated to have severe post-mortem AD pathology in the motor cortex emphasize the
correlation between the location of AD pathology in the brain and ante-mortem clinical
motor signs [155]. Recent data demonstrate that neurofibrillary tangles in the substantia
nigra are related to parkinsonian signs in persons both with and without dementia [152,156].
Together, these data suggest that AD pathology in cortical and subcortical regions may
contribute not only to loss of cognition, but also to age-related motor decline.

Other possible links between risk factors, pathology & motor function
Identification of risk factors for motor decline does not clarify the underlying mechanism
that accounts for the association. Some risk factors, such as APOE, are likely to lead to
motor decline, in part through an association with the accumulation of AD pathology,
whereas other risk factors are likely to be associated with motor decline through other
common neuropathologies or unknown mechanisms. Assuming that the association of AD
pathology with motor decline represents the consequence rather than the cause of AD
pathology, of the risk factors discussed above we can only be certain that APOE is directly
associated with AD pathology. By contrast, psychological and experiential risk factors either
modify the relation of AD pathology with motor function or have effects on motor decline
separate from AD and other pathologies. Since cognitive and motor decline may share a
common causation, prior work with cognitive decline suggests that other neuropathologies
(i.e., infarcts and Lewy bodies), as well as factors that provide ‘neural reserve’, may modify
the deleterious effects of AD pathology on motor function [9,158,159]. These observations
have led us to consider a model (Figure 2) whereby the accumulation of AD pathology is
primarily under the control of genomic variation. By contrast, experiential and psychological
risk factors may primarily affect how the brain responds to the accumulation of pathology –
that is, neural reserve. Further studies are needed to demonstrate these hypothesized
relationships in motor decline.

Expert commentary
AD is best conceptualized as a continuum

Patients, families, payers, public health planners and physicians generally employ a
categorical approach to disease – that is, the disease is present or absent. The demand for
categorical definitions has also dominated aging research, in which the counting of cases is
predicated on the assumption that disease can be clearly defined [160]. However, it has been
epidemiologic research that has demonstrated that diseases such as osteoporosis,
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hypertension and chronic obstructive pulmonary disease behave as a continuum without
natural definitions. These disorders have an insidious onset over years and possibly decades,
and the demarcation between the presence and absence of the disease is a matter of
consensus criteria based on imperfect data. For some conditions, a designation that is an
intermediate between normality and disease is employed, such as prehypertension and
osteopenia. The situation is analogous for AD and preclinical AD. The public health
problem posed by AD is already large and growing in our aging population. Currently, the
notion that clinically diagnosed AD disease is but the ‘tip of the iceberg’ with respect to
cognitive impairment has gained acceptance. It is well-recognized that many individuals
with MCIs are likely to represent mild or early AD. Since it is likely that the
pathophysiologic processes that lead to AD pathology occur even before MCIs, efforts are
underway to identify biomarkers that can be used to characterize ‘AD in situ’ or that can be
used like laboratory tests to identify hypertension or renal insufficiency to identify
individuals at risk for AD before there are any clinical deficits.

Similarly, it is probable that individuals with noncognitive manifestations of AD, such as
mild motor impairments or impaired odor identification described above, also manifest early
AD (Figure 1). Just as the clinical manifestations of seizures or stroke vary with the region
of the brain that is affected, it is probable that noncognitive manifestations of AD vary with
the location of AD pathology. Further work is necessary to characterize the clinical profile
of preclinical AD, including both cognitive and noncognitive manifestations, to delineate the
clinical profile for AD from other neuropathologies – that is, cerebrovascular disease or
synuclienopathies. It is also necessary to characterize the contribution of AD pathology to
what is often referred to as ‘normal’ age-related functional decline in individuals who do not
meet clinical criteria for AD prior to death. Understanding the relationship of the
pathophysiologic processes that lead to AD and age-related functional decline among older
persons would increase the numbers of older persons who may benefit from interventions
that are developed to treat AD and may improve or slow functional decline. Thus,
recognition that AD is on a continuum will alter the paradigm of AD research and,
ultimately, have a large impact on the health and wellbeing of our aging population.

Evidence of a common causation for cognitive & motor decline
The association between cognitive and motor decline, as well as the accumulating reports
that they share similar risk factors for decline, suggest that there may be other common
factors that lead to both cognitive and motor decline. For example, AD pathology is one
example of common neuropathologies, such as Lewy bodies and infarcts, that may
contribute to the loss of cognitive and motor function in older individuals (Figure 2).
Alternatively, there are likely to be other processes and pathways that do not act through
known neuropathologies to cause both cognitive and motor decline. For example, motor
function may be a proxy for the level of physical activity and low levels of physical activity
may lead to both reduced activity in central pathways, such as those involving BDNF, which
may affect both cognitive and motor function.

Evidence of neural reserve
While there is accumulating evidence that AD pathology may account for cognitive and
motor symptoms during preclinical AD, post-mortem studies suggest that the extent of AD
histopathologic changes at autopsy do not always correlate with the degree of clinical
impairment. This suggests that there are factors, such as experiential and psychosocial
factors, that may increase the brain’s ability to tolerate the pathology of AD without
manifesting functional impairment [9]. Further work is needed to clarify which risk factors
may serve as buffers and counter the contribution of AD pathology to the loss of cognitive
and motor function [161].
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Five-year view
The phenotype of AD will continue to expand beyond its traditional characterization as a
cognitive disorder. As more sophisticated clinical testing of a broader array of clinical
behaviors, including not only cognitive function, but also motor, olfaction and psychosocial
factors, are integrated and combined with post-mortem indices of AD pathology obtained
from cognitive and noncognitive brain regions in research studies, the full characterization
of the diverse cognitive and noncognitive symptoms manifested by individuals with the
earliest stages of AD will become apparent. Efforts will continue to explicate the
neurobiology of AD and to develop testing that can identify individuals with AD (defined by
its pathology) without any clinical symptoms. Technological advances for the ante-mortem
imaging of AD pathology and the processes that lead to its accumulation, along with efforts
to identify new biomarkers, are likely to lead to further successes in identifying individuals
at risk for AD with minimal clinical symptoms. These studies are likely to benefit from
concomitant advances in rapidly expanding disciplines, including genomics and proteomics.
Current epigenetic and proteomic studies are likely to identify a host of new potential
biologic pathways and factors that may provide neural reserve and counter the effects of
accumulating AD pathology.

Key issues

• Motor and cognitive function in older persons are related.

• Motor function predicts incident mild cognitive impairment and Alzheimer’s
disease (AD) and is related to both the level and rate of cognitive decline.

• Age-related motor and cognitive decline share common risk factors.

• Motor function and cognition prior to death are both related to post-mortem
indices of AD pathology.

• Together, these data suggest that age-related motor and cognitive decline may
share a common causation that may be exemplified by AD neuropathology.

• Individuals with a clinical diagnosis of AD may only represent the ‘tip of the
iceberg’, since accumulation of AD pathology during preclinical AD may
account for a substantial proportion of cognitive and motor dysfunction
currently considered ‘normal aging’ in older persons without dementia and who
may also benefit from future interventions to treat AD.
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Figure 1. Loss of cognitive and motor function during preclinical Alzheimer’s disease
The figure shows the hypothesized relationship between accumulating AD pathology and
declining cognitive and motor function before and after the clinical diagnosis of AD.
Accumulation of AD pathology during preclinical AD may account for a substantial
proportion of cognitive and motor dysfunction currently considered ‘normal aging’ in older
persons without dementia.
AD: Alzheimer’s disease.
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Figure 2. Model summarizing possible links between risk factors and neuropathology with motor
and cognitive function prior to death
Prior studies suggest that: motor and cognitive function in older persons are related; motor
function predicts incident mild cognitive impairment and AD and is related to both the level
and rate of cognitive decline; age-related motor and cognitive decline share common risk
factors; motor function and cognition prior to death are related to post-mortem indices of
AD and other common neuropathologies. Together, these data suggest that age-related
motor and cognitive decline may share a common causation.
AD: Alzheimer’s disease.
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