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ABSTRACT
DIFFUSE PHOTON PROBES OF STRUCTURAL AND DYNAMICAL
PROPERTIES OF TURBID MEDIA:
THEORY AND BIOMEDICAL APPLICATIONS
David A. Boas
Arjun G. Yodh

Diffusing photons can be used to detect, localize, and characterize optical and
dynamical spatial inhomogeneities embedded in turbid media. Measurements of the
intensity of diffuse photons reveal information about the optical properties of a system.
Speckle fluctuations carry information about the dynamical and optical properties.
This dissertation shows that simple diffusion theories accurately model the intensity
and speckle correlation signals that diffuse through turbid media with spatially varying
properties and discusses possible biomedical applications.

We first look at the intensity of diffuse photons provided by a light source that is
intensity modulated. This generates diffuse photon density waves (DPDW’s) which
exhibit classical wave behavior. We demonstrate experimentally and theoretically the
refraction, diffraction, and scattering of DPDW’s. Using accurate signal and noise
models, we then present a detailed analysis which shows that DPDW’s can be used
to detect and locate objects larger than 3 mm and to characterize objects larger than
1 em which are embedded inside turbid media with biologically relevant parameters.
This diffuse photon probe should may find applications in medicine as a bed-side
brain hematoma monitor, or for screening breast cancer, or other functional imaging
applications.

We then consider the coherence properties of the diffuse photons as revealed by
speckle intensity fluctuations and show that the temporal autocorrelation function of
these fluctuations is accurately modeled by a correlation diffusion equation. Because
the correlation diffusion equation is analogous to the photon diffusion equation, all
concepts and ideas developed for DPDW’s can be directly applied to the diffusion of

correlation. We show experimentally and with Monte Carlo simulations that the dif-

i
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fusion of correlation can be viewed as a correlation wave that propagates spherically
outwards from the source and scatters from macroscopic spatial variations in dynam-
ical and/or optical properties. We also demonstrate the utility of inverse scattering
algorithms for reconstructing images of the spatially varying dynamical properties of
turbid media. The biomedical applicability of this diffuse probe is illustrated with

examples of monitoring blood flow and probing the depth of burned tissue.
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