fNIRS 2014

October 10-12 Montreal • Quebec • Canada

POSTER SESSIONS

There are 6 poster sessions

Note that the posters are coded as follows:

• 2 •

Poster Session I • (Fr P1)

Friday Morning • Fr P1.01-55 odd

Hardware

Fr P1.01 (#184)

Imaging Brain Function in Children with Autism Spectrum Disorder with Diffuse Optical Tomography

Adam T. Eggebrecht¹*, John R. Pruett², John N. Constantino^{2,3}, Joseph P., Culver^{1,4,5}

1 Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63130.

2 Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, 63130.

3 Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, 63130.

4 Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, 63130.

5 Department of Physics, Washington University School of Medicine, St. Louis, Missouri, 63130.

Fr P1.03 (#026)

Long term Ambulatory Monitoring of Cerebral Hemodynamics, Systemic Hemodynamics, ECG and Acceleration: Technology Development and Pilot Applications

Quan Zhang^{*1,2}, Vladimir Ivkovic¹, Gang Hu¹, Gary E. Strangman^{1,2}

1 Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, 13th St., Bldg 149, Rm 2651, Charlestown, MA 02129 • 2 Center for Space Medicine, Baylor College of Medicine, Houston TX

Fr P1.05 (#199)

Evolution of temporal synchrony between functional brain networks during state transitions

Adam Q. Bauer¹*, Anne A. Bice¹, Ben J. Palanca², Joseph P. Culver^{1,3,4}

1 Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110

2 Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110

3 Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110

4 Department of Physics, Washington University School of Medicine, Saint Louis, MO 63110

Fr P1.07 (#091)

Co-registering fNIRS and MRI in infants

S. Lloyd-Fox¹, J.E. Richards², A. Blasi¹, D.G.M. Murphy³, C.E. Elwell⁴, and M.H. Johnson¹

1 Centre for Brain & Cognitive Development, Birkbeck, University of London, UK• 2 Department of Psychology & Institute for Mind and Brain, University of South Carolina, USA• 3 Sackler Institute for Translational Neurodevelopment, Kings College London, UK.• 4 Department of Medical Physics and Bioengineering, University College London, UK.

Fr P1.09 (#219)

A Silicon Integrated Sensor Interface for Portable FDNIRS

Chirag C. Sthalekar, Valencia Joyner Koomson

Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA

Multimodal

Fr P1.11 (#136)

Neurovascular coupling and Hemodynamic responses of the somatosensory and auditory rat cortex

M. Mahmoudzadeh¹, G. Dehaene-Lambertz², M. Fournier¹, G. Kongolo¹, S. Goudjil¹, R. Grebe¹, F. Wallois¹

1 Inserm U 1105, GRAMFC, Université de Picardie, CHU Nord, Amiens, France, 2 3IFR49, Neurospin, 9119¹Gif/Yvette, France

Fr P1.13 (#034)

Towards Affective Hybrid Brain-Computer Interfaces based on fNIRS, EEG and Peripheral Physiological Signals.

Andrea Clerico, Tiago H. Falk

Institut National de la Recherche Scientifique (INRS-EMT), University of Quebec, Canada

Fr P1.15 (#138)

Hemodynamic changes preceding interictal spike development in GABA disinhibition model of epilepsy in adult rat: electrocorticography and near-infrared spectroscopy study.

V. Osharina¹, A. Aarabi¹, M.Manoochehri², M. Mahmoudzadeh^{1,2}, F. Wallois^{1,2}

1 GRAMFC, Neurophysiology Lab, Faculty of Medicine, University of Picardy, Rue des Louvels, F-80036 Amiens, France 2 GRAMFC Pediatric Nervous System Functional Investigations Unit, Amiens University Medical Centre, North Hospital, Place V. Pauchet 80054 Amiens, France

Fr P1.17 (#170)

Investigation of the neurovascular coupling from simultaneous fNIRS-EEG system using the triplet holder

Hasan Onur Keles¹, Randall L. Barbour², Haleh Aghajani¹, Ahmet Omurtag¹

1 Department of Biomedical Engineering, University of Houston, 3605 Cullen Blv, Houston, TX, 77204 2 Department of Pathology, SUNY Downstate Medical Center, Brooklyn, NY, 11545

•4•

Fr P1.19 (#113)

EEG-NIRS based assessment of neurovascular effects during anodal transcranial direct current stimulation - a stroke case study

Anirban Dutta¹, Shubhajit Roy Chowdhury², Abhijit Das³

1 Charité - Universitätsmedizin Berlin, Germany & Institut national de recherche en informatique et en automatique (INRIA), Montpellier, France • 2 Centre for VLSI and Embedded Systems Technology, IIIT Hyderabad, India. • 3 Institute Of Neurosciences-Kolkata, India

Fr P1.21 (#092)

Robust pre-clinical software system for real time monitoring of NIRS and EEG

Mahya Dehbozorgi, Philippe Pouliot, and Mohamad Sawan

Department of Electrical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada

Analysis

Fr P1.23 (#204)

Modeling specific hemodynamic response function in fNIRS

Ke Peng¹, Dang Khoa Nguyen², Jérôme Le Lan¹, Olivier Dupuy^{3,5}, Amal Kassab¹, Sarah Fraser⁴, Louis Bherer^{3,4}, Mohamad Sawan¹, Frédéric Lesage^{1,6}, Philippe Pouliot^{1,6}

1 Département de génie Électrique, Institut de génie biomédical, École Polytechnique de Montréal, Montréal, Canada •2 Service de neurologie, Hôpital Notre-Dame du CHUM •3 PERFORM Center, Concordia University • 4 Laboratory LESCA, Institut de gériatrie de Montréal • 5 Laboratory MOVE, Faculty of Sport Sciences, Université de Poitiers, France• 6 Institut de cardiologie de Montréal, Centre de recherche

Fr P1.25 (#163)

Biomarkers for Breast Cancer Detection in the Resting-State Dynamics of the Hemoglobin Signal

Harry L. Graber¹, Rabah M. Alabdi ³, Yong Xu², and Randall L. Barbour^{1,2}

1 NIRx Medical Technologies LLC, 15 Cherry Lane, Glen Head, NY 11545, USA • 2 Jordan University of Science and Technology, Irbid 22110, Jordan • 3 SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA

Fr P1.27 (#140)

Thermal Impact of Functional Near Infrared Optical Brain Imaging

Mina Nourhashemi, Mahdi Mahmoudzadeh, Fabrice Wallois

Inserm U 1105, GRAMFC, Université de Picardie, CHU Nord, Amiens, France

Fr P1.29 (#052)

SPM toolbox to analyse and visualise fNIRS data (NIRSHSJ)

Julie Tremblay^{1,2}, Phetsamone Vannasing^{1,2}, Olivia Florea^{1,2}, Hubert Jacob Banville^{1,3}, Philippe Pouliot³, Frédéric Lesage³, Maryse Lassonde^{1,2}, Franco Lepore^{1,2}, Anne Gallagher^{1,2}

1 Centre de recherche du CHU Sainte-Justine, Montréal 2 CERNEC, Département de Psychologie, Université de Montréal 3 LIOM, Polytechnique, Université de Montréal

Fr P1.31 (#185)

Optimizing factors to achieve high quality infant fNIRS time-course data

J.R.Goodwin^{1,3},*, A.E.Cannaday¹,*, A.J.Berger^{1,2},*

1 The Institute of Optics, University of Rochester, NY14627, USA 2 Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA 3 School of Chemistry, Physics & Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia

Fr P1.33 (#110)

Evaluation of semi-subject-specific head model for fNIRS based on MR images of Japanese human head

Kotaro Nakamura¹, Kazuki Kurihara¹, Shunsuke Ichimura¹, Hiroshi Kawaguchi², Takayuki Obata², Hiroshi Ito² and Eiji Okada¹

1 Department of Electronics and Electrical Engineering, Keio University, • 2 National Institute of Radiological Sciences, Japan

Neurodevelopment

Fr P1.35 (#074)

Processing time-compressed speech in the newborn brain: the role of scale-invariant statistics

Cécile Issard^{1,2} and Judit Gervain^{1,2}

1 Laboratoire Psychologie de la Perception, Université Paris Descartes, Paris Sorbonne Cité, Paris, France 2 Laboratoire Psychologie de la Perception, Centre National de la Recherche Scientifique UMR 8242, Paris, France

Fr P1.37 (#159)

Developmental and Condition-related Changes in the Prefrontal Cortex Activity during Rest

Ling-Yin Liang¹, Jia-Jin Jason Chen², Patricia A. Shewokis³, Nancy Getchell^{1,4}

1 Biomechanics and Movement Science Program, University of Delaware, Newark, USA

2 Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan

3 Nutrition Sciences Department, Drexel University, Philadelphia, USA

4 Kinesiology & Applied Physiology, University of Delaware, Newark, USA

•6•

Fr P1.39 (#046)

The processing of faces across non-rigid facial transformation develops at 7 month of age: A fNIRS adaptation study

Megumi Kobayashi¹, Yumiko Otsuka², So Kanazawa³, Masami K Yamaguchi⁴, Ryusuke Kakigi⁵

1 Department of Integrative Physiology, National Institute for Physiological Sciences & Japan Soc. for the Promotion of Science 2 School of Psychology, The University of New South Wales • 3 Department of Psychology, Japan Women's University • 4 Department of Psychology, Chuo University • 5 Department of Integr. Physiology, National Institute for Physiological Sciences

Fr P1.41 (#182)

Developmental changes in executive functions during the first years of primary school - a longitudinal study using functional near-infrared spectroscopy

Karl-Heinz Untch^{1,2}, Caterina Gawrilow^{1,3}, Christian Fiebach^{1,2}

1 Center for Individual Development and Adaptive Education of Children at Risk (IDeA), 2 Department of Psychology, Goethe University, Frankfurt/Main, Germany; 3 Department of Psychology, Eberhard Karls University Tübingen, Germany

Fr P1.43 (#217)

Using fNIRS and preferential looking to examine the early development of visual working memory

Lourdes Delgado Reyes, John P. Spencer

DELTA Center and Department of Psychology, University of Iowa, Iowa City, U.S.A

Neurocognition

Fr P1.45 (#191)

fNIRS imaging of motor learning during upright stepping

TJ Huppert¹, P. Sparto², J. VanSwearingen²

1 University of Pittsburgh, Dept of Radiology •2 University of Pittsburgh, Dept of Physical Therapy

Fr P1.47 (#047)

The right encoding strategy: a near-infrared spectroscopy study on the lateralized activation for own and other race faces.

Susanna Timeo¹, Sabrina Brigadoi² and Teresa Farroni¹

1 Department of Developmental and Social Psychology, University of Padova, Italy 2 Biomedical Optics Research Laboratory, Department of Medical Physics and Bioengineering, University College London, U.K.

Neonatal and Pediatrics

Fr P1.49 (#078)

Are babies born with left-hemisphere language dominance? An fNIRS study

Phetsamone Vannasing¹, Berta Gonzalez-Frankenberger^{1,2,3}, Natacha Paquette^{1,2}, Julie Tremblay¹, Olivia Florea^{1,2}, Dima Safi¹, Renée Béland¹, Franco Lepore^{1,2}, Anne Gallagher^{1,2}, and Maryse Lassonde¹

1 Sainte-Justine University Hospital Research Centre, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, H3T 1C5, QC, Canada. 2 Neuropsychology and Cognition Research Center, Montreal University, CP 6128, Montreal, H3C 3J7, QC, Canada. 3 Instituto de Neurobiología, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, CP 76230, Juriquilla, Querétaro, México.

Clinical

Fr P1.51 (#072)

Active vs. assisted vs. passive finger movements - a hemodynamic comparison of premotor and motor cortex activity

R. Labruyère, M. Pfeifer, M. Crameri, H. van Hedel

Pediatric Rehab Research Group, Rehabilitation Center for Children and Adolescents, Affoltern am Albis and Children's Research Center, University Children's Hospital, Zurich

Fr P1.53 (#067)

The effect of obstructive sleep apnoea syndrome on the microvascular cerebral blood flow response to orthostatic stress

Igor Blanco¹, Peyman Zirak¹, Ana Fortuna ^{3,2}, Gianluca Cotta ³, Mercedes Mayos ^{3,2}, Anna Mola ³, Turgut Durduran¹

1 ICFO- Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) 2 Internal Medicine Department. Universitat Autònoma de Barcelona, Barcelona, Spain 3 Sleep Unit. Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain,

Fr P1.55 (#175)

Bioadequate electromagnetic therapy efficiency estimation using tissue oximetry

L.P. Safonova¹, P.V.Luzhnov¹, L.A. Shamkina¹, V.M. Koshkin², D.A. Mashkov¹

1 Biomedical Techniques Department, Bauman Moscow State Technical University, Russia 2 Pirogov Russian National Research Medical University, Russia

Poster Session II • (Fr P2)

Friday Afternoon • Fr P2.02-54 even

Hardware

Fr P2.02 (#022)

Time Resolved Whole-Head Diffuse Optical Tomography: How Fast Can We Go?

Robert J Cooper¹*, Samuel Powell², Simon R. Arridge² and Jeremy C. Hebden¹

1 Biomedical Optics Research Laboratory, Dept. of Medical Physics and Bioengineering, University College London, London UK 2 Department of Computer Science, University College London, London UK

Fr P2.04 (#122)

Application of time-resolved near infrared spectroscopy in assessment of response to headof-bed positioning in healthy subjects

Michal Kacprzak¹*, Piotr Sawosz¹, Anna Gerega¹, Wojciech Weigl^{2,3}, Adam Liebert¹

1 Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland 2 Department of Intensive Care and Anesthesiology, Warsaw Praski Hospital, Poland

3 Department of Surgical Sciences/Anaesthesiology and Intensive Care, Uppsala University Hospital, Sweden

Fr P2.06 (#014)

New algorithm for real-time scalp signal separation using multi-distance optodes

Masashi Kiguchi and Tsukasa Funane

Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395, Japan

Fr P2.08 (#186)

NIRS Probe Construction Accuracy and Inter-subject Variability

Christopher M. Aasted¹, Meryem A. Yücel⁴, Mike P. Petkov¹, David Borsook^{1,2,3}, Lino Becerra^{1,2,3}, David Boas⁴

Center for Pain and the Brain, Harvard Medical School,

1 Departments of Anaesthesia

- 2 Radiology, Boston Children's Hospital, Boston, MA
- 3 Department of Psychiatry, McLean Hospital, Belmont, MA

4 Department of Radiology, Athinoula Martinos Center for Bioengineering, Charlestown, MA

Multimodal

Fr P2.10 (#177)

Diffuse optical tomography using optimal optode montage dedicated to study epileptic discharges

Alexis Machado¹, Odile Marcotte⁴, Giovanni Pellegrino¹, Jean-Marc Lina³, Eliane Kobayashi², Christophe Grova^{1,2}

1 McGill University, Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, Québec, Canada 2 McGill University, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Québec, Canada 3 École de Technologie Supérieure de l'Université du Québec, Québec, Canada 4 Université du Québec Montréal, Département d'informatique, Québec, Canada.

Fr P2.12 (#075)

Cortical temporal response to surface lightness change

Jan Mehnert^{1,2,3,4}, Hongfan Shen², Seong-Whan Lee², Huseyin Boyaci⁵, Klaus-Robert Müller^{1,2}, Daniel Kersten^{6,2}

1 Berlin Institute of Technology, Berlin, Germany • 2 Korea University, Seoul, Republic of Korea • 3 Charité University Medicine, Berlin, Germany • 4 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany • 5 Bilkent University, Ankara, Turkey • 6 University of Minnesota, Minneapolis, United States of America

Fr P2.14 withdrawn

Fr P2.16 (#016)

Investigation of prefrontal NIRS signals during a working memory task by simultaneous NIRSfMRI measurements

Hiroki Sato¹,Noriaki Yahata², Tsukasa Funane¹, Ryu Takizawa³, Takusige Katura¹, Hirokazu Atsumori¹, Yukika Nishimura³, Akihide Kinoshita c, Masashi Kiguchi¹, Hideaki Koizumi¹, Masato Fukuda⁴, and Kiyoto Kasai³

1 Hitachi, Ltd., Central Research Laboratory

2 Department of Youth Mental Health, Graduate School of Medicine, The University of Tokyo

3 Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo

4 Department of Psychiatry and Neuroscience, Gunma University

Fr P2.18 (#134)

Functional Imaging of Preterms Neuronal and Hemodynamic Syllabic Responses by Using high density EEG and NIRS

M. Mahmoudzadeh¹, G. Dehaene-Lambertz², M. Fournier¹, ,G. Kongolo¹, S. Goudjil¹, R. Grebe¹, F. Wallois¹

1 Inserm U 1105, GRAMFC, Université de Picardie, CHU Nord, Amiens, France, •2 3IFR49, Neurospin, 91191 Gif/Yvette, France

• 10 •

Fr P2.20 (#112)

A New Framework for fNIRS-EEG Fusion in Network Space

Zhen Yuan

Bioimaging Core, Faculty of Health Sciences, University of Macau; Taipa, Macau SAR, China

Analysis

Fr P2.22 (#146)

FC-NIRS: A Functional Connectivity Analysis Tool for near-infrared spectroscopy data

Jingping Xu^{1,2}, Zhen Li^{1,2}, Xindi Wang^{1,2}, Yong He^{1,2}, Haijing Niu^{1,2}

1 State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing,¹00875 China 2 Conter for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875 China

2 Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875 China

Fr P2.24 (#173)

Examining the Effectiveness of Sliding-window Motion Artifact Rejection (SMAR) Algorithm in Detecting Head Motion Artifacts

Achala H. Rodrigo¹, Adrian Curtin², Anthony C. Ruocco¹, Hasan Ayaz²

1 Department of Psychology, University of Toronto Scarborough, Toronto, Canada 2 School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, USA

Fr P2.26 (#156)

Identification of biomarkers suitable for predicting cognitive decline in patients undergoing cardiac surgery

Douglas S. Pfeil¹, Harry L. Graber², Jeremy D. Coplan³, Yong Xu², Randall L. Barbour^{1,2}, Daniel C. Lee⁴

1 Dept. of Pathology, SUNY Downstate Medical Center, Brooklyn, NY \bullet 2 NIRx Medical Technologies, Glen Head, NY \bullet 3 Dept. of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY \bullet 4 Dept. of Surgery, U. of Oklahoma, Oklahoma City, OK ; USA

Fr P2.28 (#106)

Adaptability of MR head image using new pulse sequences for fast segmentation algorithms to construct subject-specific head models

Kazuki Kurihara¹, Hiroshi Kawaguchi², Takayuki Obata², Hiroshi Ito² and Eiji Okada¹

1 Department of Electronics and Electrical Engineering, Keio University, Japan

Fr P2.30 (#050)

Functional connectivity analysis in patients with dysfunction of the corpus callosum: A preliminary study

Masahiro Hirai¹, Naoki Kaneko², Takeshi Nakajima², Tsutomu Mizutani², Eiju Watanabe^{1,2}

1 Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan 2 Department of Neurosurgery, Jichi Medical University, Tochigi, Japan

Fr P2.32 (#098)

A comparison of procedures for co-registering scalp-recording locations to anatomical MRI images

Antonio M. Chiarelli², Edward L. Maclin², Kathy A. Low², Monica Fabiani^{1,2} & Gabriele Gratton^{1,2}

1 Psychology Department, University of Illinois at Urbana Champaign 2 Beckman Institute, University of Illinois at Urbana Champaign

Fr P2.34 (#109)

Evaluation of relationship between density of measurement points and point spread function of diffuse optical imaging

Yusuke Sakakibara, Kazuki Kurihara and Eiji Okada

Department of Electronics and Electrical Engineering, Keio University, Japan

Neurodevelopment

Fr P2.36 (#143)

Brain Response to Reading Tasks and Reading Training in Dyslexia as Measured by fNIRS

Olga Chuntonov¹, Meltem Izzetoglu¹, Itamar Sela², Banu Onaral¹

1 Drexel University, Sch. of Biomedical Eng. Philadelphia, PA, 2 Haifa University, Haifa, Israel

Fr P2.38 (#154)

Using fNIRS to study the effects of nutrition on cognitive development in infants: A pilot study on working memory in infants in rural Africa and UK

K. Begus¹, S. Lloyd-Fox¹, D. Halliday², H. Maris¹, M. Papademetriou², M. K. Darboe³, A. M. Prentice^{3,4}, S. E. Moore^{3,4} and C. E. Elwell²

1 Centre for Brain and Cognitive Development, Birkbeck, University of London, UK

² Department of Medical Physics and Bioengineering, University College London, UK

³ MRC International Nutrition Group, Keneba Field Station, The Gambia

⁴ MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, UK

Fr P2.40 (#107)

The neural basis of speech and reading in developing readers: an fNIRS study

M.R. van den Bunt¹, M.A. Groen¹, L.T.W. Verhoeven¹

Behavioural Science Institute, Radboud University Nijmegen, The Netherlands

Fr P2.42 (#029)

Prefrontal Cortex Hemodynamics and Age: A Pilot Study Using Functional Near Infrared Spectroscopy in Children

Afrouz A. Anderson¹, Victor Chernomordik¹, Fatima Chowdhry¹, Audrey Thurm², Elizabeth Smith², David Black², Dennis Matthews³, Owen Rennert¹, Amir. H. Gandjbakhche¹

1 Eunice Kennedy Shriver National Institute of Child Health and Human Development, USA 2 National Institute of Mental Health, USA 3 Department of Neurological Surgery, School of Medicine, UC Davis, USA

Neurocognition

Fr P2.44 (#035)

Hemodynamic response in primary sensorimotor cortex to different mechanical stimulations of the lower back as measured by fNIRS

A. Vrana^{1,2}, M. Meier¹, K. Humphreys¹, J. Forster¹, S. Hotz-Boendermaker¹

1 Department of Chiropractic Medicine, Interdisciplinary Spinal Research (ISR), University Hospital Balgrist, Zurich, Switzerland 2 Department of Health Sciences and Technology, Human Movement Sciences, ETH Zurich, Zurich, Switzerland

Fr P2.46 (#194)

Functional NIRS imaging during vestibular balance prosthesis

TJ Huppert¹, P. Sparto², P. Loughlin³

1 University of Pittsburgh, Dept of Radiology
2 University of Pittsburgh, Dept of Physical Therapy
3 University of Pittsburgh, Dept of Biomedical Engineering

Fr P2.48 (#054)

Test-Retest Reliability of fNIRS: Evidence from a Cognitive Working Memory Task

Amanda Kelly¹, Jodie Gawryluk¹ & Scott M. Hofer¹

1 Department of Psychology, University of Victoria

Neonatal and Pediatrics

Fr P2.50 (#123)

Neonates hemodynamic responses to linguistic phonetic differences as a predictor of later language development

Yasuyo Minagawa¹, Takeshi Arimitsu², Atsuko Matsuzaki³, Tatsuhiko Yagihashi⁴, Kazushige Ikeda², Takao Takahashi²

1 Department of Psychology, Keio University

- 2 Department of Pediatrics, Keio University School of Medicine
- 3 Graduate School of Human Relations, Keio University
- 4 Department of Child Psychiatry, Komagino Hospital

Clinical

Fr P2.52 (#209)

Functional connectivity of the occipital region based on recurrence plot

Masako Sugai, Masaharu Adachi

Laboratory for Learning Systems, Tokyo Denki University, Tokyo, Japan

Fr P2.54 (#147)

Human auditory and adjacent non-auditory cortical areas are hypermetabolic in tinnitus patients as measured by fNIRS.

Silvia Bisconti¹, Mohamad Issa², Paul Kileny^{1,2}, Gregory Basura^{1,2}

1 Center for Human Growth and Development; 2 Department of Otolaryngology, Head and Neck Surgery; University of Michigan, Ann Arbor, MI 48109.

Other

Fr P2.56 (#090)

Temporal-spatial distribution of skin hemoglobin signals on the foreheard during a verbal fluency task

Satoru Kohno, Yoshinobu Iguchi and Yoko Hoshi

Integrated Neuroscience Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

Poster Session III • (Sa P3)

Saturday Morning • Sa P3.01-57 odd

Hardware

Sa P3.01 (#214)

Development of NIRS system for translational studies of subcortical regions using implanted optical fibers

Blaise deB. Frederick^{1,3}, Yunjie Tong^{1,3}, Susan Andersen^{2,3}

1 Brain Imaging Center, McLean Hospital, Belmont, MA 02478, USA 2 Laboratory of Developmental Neuropharmacology, McLean Hospital, Belmont, MA 02478, USA 3 Department of Psychiatry, Harvard University Medical School, Boston, MA 02115, USA

Sa P3.03 (#013)

A Novel Optical Signaling Method for fNIRS Measurements

Chester Wildey

Founder and CEO, MRRA Inc.

Sa P3.05 (#077)

Towards fast optical signal detection through optical gating

Karla J. Sánchez-Pérez¹, Miguel Ánge I González-Galicia¹, Misael Nava-Bautista¹, Javier Herrera-Vega¹, Luis Enrique Sucar¹, Felipe Orihuela-Espina¹, Carlos G. Treviño-Palacios¹

1 Instituto Nacional de Astrofísica, Óptica y Electrónica

Sa P3.07 (#089)

A multi-channel fNIRS brain imager based on Arduino microcontroller

Nima Hemmati Berivanlou, Seyed Kamaledin Setarehdan, Hossein Ahmadi Noubari

Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

Multimodal

Sa P3.09 (#137)

Fast Optical Signal Changes in Penicillin-Induced Generalized Spikes in Animal Model

M. Manoochehri¹, M. Mahmoudzadeh¹, V. Osharina¹, F. Wallois¹

1 Inserm U 1105, GRAMFC, Université de Picardie, CHU Nord, Amiens, France

Sa P3.11 (#017)

Autonomic correlates of prefrontal cortex activity during cognitive task

Paola Pinti, Daniela Cardone, Arcangelo Merla

Infrared Imaging Lab, ITAB Institute for Advanced Biomedical Technologies, University G. d'Annunzio, Chieti, Italy Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti-Pescara, Italy

Sa P3.13 (#128)

A multimodal approach to calibrating age-related neurophysiology in a fNIRS study of the semantic words processing

M. Amiri^{1,2}, P. Pouliot^{1,3}, F. Lesage^{1,3} and Y. Joanette^{2,4,5}

1 Polytechnique Montreal • 2 Institut universitaire de Gériatrie de Montréal • 3 Heart institute of Montreal 4 Faculty of Medicine, University of Montreal • 5 CIHR Institute of Aging, International Collaborative Research Strategy for Alzheimer's Disease

Sa P3.15 (#135)

Neurovascular coupling in preterm neonates with Intra-Ventricular Hemorrhage: Combined high density EEG-NIRS study

M. Mahmoudzadeh¹, G. Dehaene-Lambertz², M. Fournier¹, G. Kongolo¹, S. Goudjil¹, R. Grebe¹, F. Wallois¹

1 Inserm U 1105, GRAMFC, Université de Picardie, CHU Nord, Amiens, France, 2 3IFR49, Neurospin, 91191 Gif/Yvette, France

Sa P3.17 (#021)

Improving motor performance by personalizing non-invasive cortical stimulation with perturbation transcranial direct current stimulation (ptDCS)

Bilal Khan¹, Nathan Hervey¹, George Kondraske³, Ann M. Stowe², Timea Hodics²*, and George Alexandrakis¹*

1 Department of Biomedical Engineering, University of Texas at Arlington, Arlington, TX

2 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX

3 Human Performance Institute, University of Texas at Arlington, Arlington, TX

• 16 •

Analysis

Sa P3.21 (#174)

Evaluation of Functional Near Infrared Spectroscopy (fNIRS) for Assessment of the Visual and Motor Cortices in Adults

Brenna M. Giacherio¹ and Nasser H. Kashou¹

1 Wright State University, Dayton, OH, Biomedical, Industrial & Human Factors Engineering

Sa P3.23 (#161)

nirsLAB: A Problem Solving Environment for fNIRS Neuroimaging Data Analysis

Yong Xu¹, Harry L. Graber¹, and Randall L. Barbour^{1,2}

1 NIRx Medical Technologies LLC,15 Cherry Lane, Glen Head, NY 11545, USA 2 SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA

Sa P3.25 (#151)

Optimization of the general linear model for fNIRS with an adaptive hemodynamic response function

Minako Uga^{1,2}, Ippeita Dan^{1,2}, Toshifumi Sano^{1,2}, Haruka Dan^{1,2}, Eiju Watanabe³

1 Appl. Cognitive Neuroscience Laboratory, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo, • 2 Center for Development of Advanced Medical Technology, •3 Department of Neurosurgery, Jichi Medical University Yakushiji, Shimotsuke, Tochigi, Japan,

Sa P3.27 (#012)

Supplementary use of fNIRS data in psycholinguistic research: A Japanese-English bilingual case study

Hideyuki Taura¹, Amanda Taura²

1 Ritsumeikan University, Japan • 2 Setsunan University, Japan

Sa P3.29 (#195)

Recording auditory cortex responses using NIRS

Pierre Jolicoeur^{1,2,3,4}, ftienne Bisaillon-Sicotte^{1,2,3,4}, Manon Maheux^{1,2,3,4}, Shirin Tabrizi^{4,6}, Jorge L. Armony^{4,5,6}

1 Universite de Montreal (UdeM) • 2 Centre de recherche en neuropsychologie et cognition (CERNEC) • 3 Centre de recherche de l'Institut universitaire de geriatrie de Montreal (CRIUGM)

4 International Laboratory for Brain, Music, and Sound Research (BRAMS) • 5 Douglas Mental Health University Institute and

Dept. of Psychiatry, McGill University McGill • 6 Department of Psychology, McGill University **Sa P3.31** (#100)

Near-Infrared Spectroscopy of Image Clarity Perception in the Human Brain

J. Eduardo Lugo, Claudine Habak, Rafael Doti, and Jocelyn Faubert

Visual Psychophysics and Perception Laboratory, School of Optometry, University of Montreal, C.P. 6128 succ. Centre Ville, Montreal, Quebec, Canada

Sa P3.33 (#117)

Analytical Characterization of the In0.53Ga0.47As n+nn+ Infrared photodetectors

F. Z. Mahi¹, and L. Varani²

1 Institute of Science and Technology, University of Bechar, Algeria 2 Institute of Electronics of the South (IES - CNRS UMR 5214), University of Montpellier, France

Neurodevelopment

Sa P3.35 (#086)

Syllable Processing in Infants: Uncovering the Temporal Organization of Perisylvian Brain Regions

Kathy A. Low, Monica Fabiani, Daniel C. Hyde, Renee Baillargeon, Cynthia Fisher, and Gabriele Gratton

University of Illinois, Urbana-Champaign

Sa P3.37 (#155)

Cerebral Hemodynamics and Metabolism Responses to Somatosensory Stimulations in Premature Neonates by Near-infrared Spectroscopy

Pei-Yi Lin¹, Katherine Hagan¹, Yvonne Sheldon², P. Ellen Grant³, Maria Angela Franceschini¹

1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital / Harvard Medical School 2 Newborn Medicine, Brigham and Women's Hospital

3 Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital/Harvard Medical School

Sa P3.39 (#039)

Left-lateralized responses correlate with familiarization to novel phonotactic regularities in 12 months old infants

Micol Vignotto^{1,2}, Maria Richter^{1,2}, Hellmuth Obrig^{1,2}, Sonja Rossi^{1,2,3}

1 University Hospital and Medical Faculty, University of Leipzig, Germany

2 Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany

3 Dept. of Medical Psychology, Medical University Innsbruck, Austria

• 18 •

Sa P3.41 (#033)

Influence of early language experience on brain activation to language: A study of hearing infants with Deaf mothers

Evelyne Mercure¹, Sarah Lloyd-Fox², Mark H Johnson², Mairéad MacSweeney¹

1 University College London 2 Birkbeck College, University of London

Neurocognition

Sa P3.43 (#190)

Inter-personal functional connectivity during interaction tasks

TJ Huppert¹, JW. Barker¹, S. Perlman²

1 University of Pittsburgh, Dept of Radiology 2 University of Pittsburgh, Dept of Psychiatry

Sa P3.45 (#025)

Can you hear me? An fNIRS study on the auditory recovery after cochlear implantation

S. Bisconti, M. Shulkin, G.J. Basura, P.R., Kileny, I. Kovelman,

Center for Human Growth and Development, University of Michigan

Sa P3.47 (#059)

Neural correlates of processing elastic moving faces: A functional near-infrared spectroscopy (fNIRS) study

Naiqi G. Xiao¹, Qiandong Wang², Guowei Chen², Genyue Fu², & Kang Lee^{1,2}

1 University of Toronto 2 Zhejiang Normal University

Neonatal and Pediatrics

Sa P3.49 (#171)

Bedside functional connectivity mapping of the developing brain

Silvina L. Ferradal^{1,2}, Steve M. Liao³, Adam T. Eggebrecht², Joshua S. Shimony⁴, Terrie E. Inder⁵, Joseph P. Culver^{1,2} and Christopher D. Smyser^{3,4}

1 Departments of Biomedical Engineering, • 2 Radiology, • 3 Pediatrics, and • 4 Neurology, Washington University, St. Louis, MO,

5 Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA.

Clinical

Sa P3.51 (#166)

Coherent Hemodynamics Spectroscopy - Advances in Methodology and Clinical Applications

Jana M. Kainerstorfer*, Angelo Sassaroli, Kristen T. Tgavalekos, and Sergio Fantini

Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA

Sa P3.53 (#043)

Diuse optical characterization of the microvascular cerebral blood flow during obstructive sleep apnea events

P. Zirak¹, I. Blanco¹, P. Bramon¹, C. Gregori¹, A. Fortuna², G. Cotta², M. Mayos², A. Mola², and Turgut Durduran¹

1 ICFO- The Institute of Photonic Sciences, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) 2 Department of Pneumology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

Sa P3.55 (#168)

Cortical mechanisms underlying sensorimotor enhancement induced by light haptic touch during locomotion

Samir Sangani^{1,2}, Anouk Lamontagne^{1,2}, Joyce Fung^{1,2}

1 School of Physical and Occupational Therapy, McGill University, Montreal, Quebec 2 Feil/Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital, Laval, Quebec

Other

Sa P3.57 (#048)

Combined EEG-fNIRS investigation of hierarchical rule learning in 5-months old infants

Marina Winkler^{1,2}, Jutta L. Mueller^{2,3}, Angela D. Friederici², Stefan P. Koch^{4,5}, Claudia Männel²

1 International Max Planck Research School on Neuroscience of Communication, Leipzig

2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig

3 Institute of Cognitive Science, Osnabrück

4 Charité Universitätsmedizin, Berlin

5 Berlin Neuroimaging Center (BNIC), Berlin

Poster Session IV • (Sa P4)

Saturday Afternoon • Sa P4.02-56 even

Hardware

Sa P4.02 (#001)

Analytical Characterization of the In0.53Ga0.47As n+nn+ Infrared Detectors

F. Z. Mahi¹ and L. Varani²

1 Institute of Science and Technology, University of Bechar, Algeria 2 Institute of Electronics of the South (IES - CNRS UMR 5214), University of Montpellier, France

Sa P4.04 (#032)

Evaluation of Spatial Resolved Spectroscopy (SRS) for use in monitoring Traumatic Brain Injury (TBI) patients

Michael Clancy¹, Anthony Belli², David Davies², Sam Lucas³ and Hamid Dehghani¹

1 School of Computer Science 2 Clinical and Experimental Medicine 3 School of Sport, Exercise and Rehabilitation Science, University of Birmingham, United Kingdom

Sa P4.06 (#081)

Investigation of time gated methods to control depth sensitivity in fNIRS time resolved data

Luke Dunne¹, Sonny Gunadi¹, Terence S. Leung¹, Clare E. Elwell¹, Ilias Tachtsidis¹

1 Dept. Medical Physics & Bioengineering, UCL, London

Sa P4.08 (#126)

Development of compact continuous wave NIRS instrument based on small size spectrometers for assessment of brain hemodynamics

Anna Gerega¹, Daniel Milej¹, Wojciech Weigl², Michal Kacprzak¹, Adam Liebert¹

1 Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland 2 Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Sweden

Multimodal

Sa P4.10 (#152)

Hemodynamic response patterns during sleep- a concurrent time-domain fNIRS/EEG study in adults.

Stefan P. Koch¹, Alexander Jelzow^{2,3}, Sophie K. Piper¹*, Hellmuth Obrig ⁵, Renate Wehrle ⁶, Micahel Czisch ⁶, Heidrun Wabnitz², Jens Steinbrink^{1,4}

1 Charité, Department of Neurology, Berlin • 2 Physikalisch-Technische Bundesanstalt (PTB), Berlin, • 3 Becker & Hickl GmbH, Berlin • 4 Charité, Center for Stroke Research, Berlin • 5 MPI for Human Cognitive and Brain Sciences and University Hospital, Leipzig • 6 MPI Psychiatry Munich, Germany

Sa P4.12 (#037)

The effect of colored light on human cerebral hemodynamics and oxygenation, end-tidal CO2 and skin conductance - A multimodal fNIRS study

Felix Scholkmann^{1,2}, Sabine D. Klein¹, Martin Wolf² & Ursula Wolf¹*

1 Institute of Complementary Medicine IKOM, University of Bern • 2 Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, Switzerland

Sa P4.14 (#005)

Validation of the hypercapnic calibrated fMRI method using DOT-fMRI fusion imaging.

Meryem A. Yücel¹*, Karleyton C. Evans², Juliette Selb¹, Theodore J. Huppert³, David A. Boas¹ and Louis Gagnon¹

1 MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, • 2 Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, MA, USA •3 Department of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, 15261, PA, USA

Sa P4.16 (#206)

How does fNIRS compare with fMRI to study cognitive tasks?

Mich•le Desjardins^{1,3},*, Philippe Pouliot^{1,2}, Laurence Desjardins-Crépeau³, Claudine J. Gauthier³, Habib Benali⁴, Rick D. Hoge³, Louis Bherer³, Frédéric Lesage^{1,2}

1 Institut de Génie Biomédical, École Polytechnique de Montréal • 2 Montreal Heart Institute • 3 Centre de recherche de l'Institut universitaire de gériatrie de Montréal • 4 Inserm, UPMC Univ. Paris 6, UMR S_678, Laboratoire d'Imagerie Fonctionnelle

Sa P4.18 (#042)

Correspondence of EEG and NIRS sensitivity to the cerebral cortex using a high-density layout

Paolo Giacometti, Solomon G. Diamond

Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, USA

• 22 •

Analysis

Sa P4.20 (#061)

Effective functional connectivity of own- and other-race face processing in children: A Granger Causality Analysis

Guifei Zhou¹, Jiangang Liu¹, Xiao Pan Ding^{2,3}, Genyue Fu³, Kang Lee^{2,3}

1 Beijing Jiaotong University • 2 University of Toronto • 3 Zhejiang Normal University

Sa P4.22 (#108)

Analysis of time-resolved spatial sensitivity of NIRS using null source-detector separation

Kohsuke Takai, Kazuki Kurihara and Eiji Okada

Department of Electronics and Electrical Engineering, Keio University, Japan

Sa P4.24 (#056)

Semi-virtual registration and virtual channel synthetization in fNIRS imaging

Felipe Orihuela-Espina^{1,2}, Daniel R. Leff¹, Javier Herrera-Vega², Kunal Shetty¹, David R. C. James¹, Ara W. Darzi¹, Guang-Zhong Yang¹

1 Hamlyn Centre for Robotic Surgery, Imperial College London, United Kingdom • 2 National Institute for Astrophysics, Optics and Electronics (INAOE), Mexico

Sa P4.26 (#188)

Understanding Signal-to-Noise ratio for image reconstruction in optical topography

Javier Herrera-Vega¹, Felipe Orihuela-Espina¹, Karla Janeth Sanchez-Pérez¹, Luis Enrique Sucar¹, Carlos G. Trevi–o-Palacios¹

1 National Institute for Astrophysics, Optics and Electronics (INAOE), Mexico

Sa P4.28 (#197)

Optimization of the NIRS technique as a way to measure latency differences in the onset of the haemodynamic response: A comparison of single-subject and jackknife approaches

Manon Maheux^{1,2,3,4}, Étienne Bisaillon-Sicotte^{1,2,3,4}, Shirin Tabrizi^{4,6}, Jorge L. Armony^{4,5,6}, Jean-Marc Lina⁷, Pierre Jolicoeur^{1,2,3,4}

1 Université de Montréal (UdeM) • 2 Centre de recherche en neuropsychologie et cognition (CERNEC) • 3 Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM) • 4 International Laboratory for Brain, Music, and Sound Research (BRAMS) • 5 Douglas Mental Health University Institute and Dept. of Psychiatry, McGill University McGill • 6 Department. of Psychology, McGill University • 7 Ecole de technologies superieures (ETS)

Sa P4.30 (#118)

Total Variation Based Reconstruction for Diffuse Optical Tomography

Xin Zhang

National Laboratory of Pattern Recognition, Chinese Academy of Science

Sa P4.32 (#218)

Quantification of head motion during infant near-infrared spectroscopy sessions for motion correction strategy selection

Katherine L. Perdue¹, ², Alissa Westerlund¹, Julia Cataldo¹, Charles A. Nelson^{1,2}

1 Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA 2 Harvard Medical School, Boston, MA, USA

Neurodevelopment

Sa P4.34 (#114)

Distinct temporal properties of cortical hubs in the language network of infants

Fumitaka Homae¹, Hama Watanabe², Gentaro Taga²

1 Department of Language Sciences, Tokyo Metropolitan University • 2 Graduate School of Education, The University of Tokyo

Sa P4.36 (#088)

fNIRS in Rural Gambia: Studies of Cognitive Function from Birth to 24 Months of Age

D. W. R. Halliday¹, S. Lloyd-Fox², K. Begus², H. Maris², M. Papademetriou¹, N. Everdell¹, M. K. Darboe³, A. M. Prentice^{3,4}, S. E. Moore^{3,4}, C. E. Elwell¹

1 Department of Medical Physics and Bioengineering, University College London, UK

2 Centre for Brain and Cognitive Development, Birkbeck, University of London, UK

3 MRC International Nutrition Group, Keneba Field Station, The Gambia

4 MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, UK

Sa P4.38 (#149)

Development of phase difference between cerebral oxy- and deoxy-hemoglobin fluctuations during the first half year of life

Gentaro Taga¹, Fumitaka Homae², Hama Watanabe¹

1 Graduate School of Education, The University of Tokyo 2 Department of Language Sciences, Tokyo Metropolitan University

• 24 •

Sa P4.40 (#031)

Brain activation to human vocalisations and environmental sounds in infancy and its association with later language development

Evelyne Mercure¹, Sarah Lloyd-Fox², Anna Blasi², Clare E Elwell¹, Mark H Johnson², The BASIS Team³

1 University College London 2 Birkbeck College, University of London 3 The BASIS Team : Helena Ribeiro, Kim Davies, Helen Maris, Leslie Tucker

Sa P4.42 (#062)

The Neural Development of Childrens' Spontaneous Deception: A Functional Near-infrared Spectoscopy (fNIRS) Study

Xiao Pan Ding^{1,2}, John E. Richards³, Wanze Xie³, Genyue Fu², Kang Lee^{1,2}

1 University of Toronto 2 Zhejiang Normal University 3 University of South Carolina

Neurocognition

Sa P4.44 (#051)

Frontal brain activation during emotional Stroop task in individuals at risk for schizophrenia and bipolar disorder

Aleksandra Aleksandrowicz^{1,2}, Florence Hagenmuller^{1,2}, Helene Haker Rössler^{1,4}, Karsten Heekeren^{1,2}, Anastasia Theodoridou^{1,2}, Susanne Walitza^{1,3}, Wulf Rössler^{1,5}, Wolfram Kawohl^{1,2}

1 The Zurich Program f. Sustainable Developt. of Mental Health Services (ZInEP), Univ. Hospital of Psychiatry, Zurich, Switzerland 2 Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, Zurich, Switzerland

3 Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland

4 Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland 5 Institute of Psychiatry, Laboratory of Neuroscience (LIM 27), University of Sao Paulo, Brazil

Sa P4.46 (#055)

A Problem-Solving Task Specialized for Functional Neuroimaging: Validation of the Scarborough Adaptation of the Tower of London (S-TOL) Using Near-Infrared Spectroscopy

Anthony C. Ruocco¹, Achala H. Rodrigo¹, Jaeger Lam¹, Stefano I. Di Domenico¹, Bryanna Graves¹ and Hasan Ayaz²

1 Clinical Neurosciences Laboratory, Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada 2 School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA

Sa P4.48 (#181)

Speaker-listener persuasion: an fNIRS study of message propagation

Kristin Shumaker, Matthew Brook O'Donnell, Nicolette Gregor, Lynda Lin and Emily B. Falk

Communication Neuroscience Lab, University of Pennsylvania

Neonatal and Pediatrics

Sa P4.50 (#019)

A novel 4D neonatal head model for diffuse optical imaging of preterm to term newborns: where to find it and how to use it?

Sabrina Brigadoi¹* , Paul Aljabar², Maria Kuklisova-Murgasova², Simon R. Arridge³, Robert J. Cooper¹

1 Biomedical Optics Research Laboratory, Department of Medical Physics and Bioengineering, University College London, U.K. 2 Centre for the Developing Brain & Dept. of Biomedical Engineering, Division of Imaging Sciences, King's College London, U.K. 3 Department of Computer Science, University College London, U.K.

Clinical

Sa P4.52 (#076)

Real-time mapping of optode-scalp optical coupling for optimized placement of fNIRS headgear

Luca Pollonini¹*, C. Olds², H. Abaya², H. Bortfeld³, M.S. Beauchamp⁴ and J. S. Oghalai²

1 Abramson Center for the Future of Health and Department of Engineering Technology, University of Houston, TX 2 Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA • 3 Department of Psychology, University of Connecticut, Storrs, CT • 4 Department of Neurobiology and Anatomy, UT Health, Houston, TX

Sa P4.54 (#066)

Usefulness of double density fNIRS (DD-fNIRS) for the diagnosis of neocortical epilepsy focus

Hidenori Yokota¹, Keiji Ogruro¹, Takehiko Konno¹, Masahiro Hirai², Eiju Watanabe¹

1 Dept. of Neurosurgery 2 Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan

Sa P4.56 (#216)

Epileptic seizure detection in fNIRS signals using a supervised classifier

Edgar Guevara^{1,2},*, Ke Peng¹, Dang Khoa Nguyen³, Frédéric Lesage^{1,2} and Philippe Pouliot^{1,2}

1 Department of Electrical Engineering, École Polytechnique de Montréal, Canada • 2 Montreal Heart Institute 3 Service de neurologie, Hôpital Notre-Dame du CHUM; Universidad de las Américas Puebla, Mexico

• 26 •

Poster Session V • (Su P5)

Sunday Morning • Su P5.01-55 odd

Analysis

Su P5.01 (#215)

Effective superficial layer thickness recovery using simultaneous multi-distance fitting of diffuse correlation spectroscopy data using a realistic Monte Carlo forward model

Stefan A. Carp, David A. Boas, Juliette Selb

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA

Su P5.03 (#200)

Analysis of breath hold and hypercapnia in vivo DCS data using a layered slab Monte Carlo model

Juliette Selb, David A. Boas, Suk-Tak Chan, Karleyton C. Evans, and Stefan A. Carp

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA

Su P5.05 (#148)

Separation of superficial and cerebral hemodynamics based on time domain fNIRS and twolayer analysis

Alexander Jelzow¹, Heidrun Wabnitz¹*, Ilias Tachtsidis², Evgeniya Kirilina³, Rüdiger Brühl¹, Rainer Macdonald¹

1 Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587, Berlin, Germany 2 University College London, Dept. Med. Physics and Bioengineering, Gower Street, London WC1E 6BT, UK 3 Free University Berlin, Habelschwerdter Allee 45, 14195 Berlin, Germany

Su P5.07 (#127)

A new linear regression method for fNIRS data mapping

Viola Bonomini¹, Rebecca Re², Lucia Zucchelli², Francesca Ieva³, Lorenzo Spinelli⁴, Davide Contini², Anna Paganoni¹, Alessandro Torricelli²

1 MOX - Department of Mathematics, Politecnico di Milano, Milan, Italy

2 Dipartimento di Fisica, Politecnico di Milano, Milan, Italy

3 Department of Mathematics Federigo Enriques , Universita degli Studi di Milano, Milan, Italy

4 Istituto di Fotonica e Nanotecnologie, CNR, Milan, Italy

Su P5.09 (#082)

Benchmarking Algorithms for Image Reconstruction of Cerebral Diffuse Optical Tomography

Christina Habermehl^{1,2,3},*, Jens Steinbrink²,4, Klaus-Robert Mueller^{1,2,5,6}, and Stefan Haufe^{1,2}

1 Machine Learning Group, Department of Computer Science, Berlin Institute of Technology,

2 Bernstein Focus Neurotechnology, Berlin, Germany,

3 Charité University Medicine Berlin, Department of Neurology

4 Charité University Medicine Berlin, Center for Stroke Research Berlin,

5 Bernstein Center for Computational Neuroscience, Berlin, Germany,

6 Department of Brain and Cognitive Engineering, Korea University, Seoul

Su P5.11 (#085)

Evaluating motion processing algorithms for use with fNIRS data from young children

Kevin Bohache, Lourdes Delgado Reyes, Sobana Wijeakumar & John P. Spencer

DELTA Center and Department of Psychology, University of Iowa, Iowa City, U.S.A

Su P5.13 (#162)

Transient Artifact Reduction Algorithm (TARA) using Sparse Optimization and Filtering

Ivan W. Selesnick¹, Harry L. Graber², Yin Ding¹, Tong Zhang¹, Randall L. Barbour²

1 Dept. Electrical and Computer Engineering, New York University, Brooklyn, NY 11201, USA 2 NIRx Medical Technologies, Glen Head, NY 11545, USA

Neurodevelopment

Su P5.15 (#093)

Changes in motor cortex activity of infants - reaching and stepping patterns

Ryota Nishiyori^{1,2}, Silvia Bisonti², and Bev Ulrich^{1,2}

1 School of Kinesiology, University of Michigan 2 Center for Human Growth and Development, University of Michigan

Su P5.17 (#009)

Neural Responses to Affective Touch in Infants at Elevated Risk for ASD

Harlan M. Fichtenholtz^{1,2}, Nicole M. McDonald², Laura C. Anderson³, Jeffery A. Eilbott², Cara Keifer², Hannah Friedman², & Kevin A. Pelpherey²

1 Psychiatry, Yale School of Medicine, West Haven, CT

2 Child Study Center, Yale University, New Haven, CT

3 University of Maryland, College Park, MD

Su P5.19 (#030)

Developmental Changes in Visual Working Memory Revealed by Image-Based fNIRS Analyses

John P. Spencer¹, Sobanawartiny Wijeakumar¹, Lourdes Delgado Reyes¹, Kevin Bohache 1 & Vincent Magnotta²

1 Delta Center and Department of Psychology, University of Iowa, Iowa City, U.S.A 2 Delta Center and Department of Radiology, University of Iowa, Iowa City, U.S.A

Su P5.21 (#071)

What is that baby thinking? The development of an fNIRS measure of live parent-infant interaction

Nicole McDonald, Harlan Fichtenholtz, Cara Keifer, Hannah Friedman, Frederick Shic, and Kevin Pelphrey

Yale School of Medicine, Child Study Center

Neurocognition

Su P5.23 (#196)

Temporal lobe responses to auditory expressions: An fNIRS study of music and voice processing

Shirin Tabrizi^{4,6}, Étienne Bisaillon-Sicotte^{1,2,3,4}, Manon Maheux^{1,2,3,4}, Pierre Jolicoeur^{1,2,3,4}, Jorge L. Armony^{4,5,6}

1 Université de Montréal (UdeM)

2 Centre de recherche en neuropsychologie et cognition (CERNEC)

3 Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM)

4 International Laboratory for Brain, Music, and Sound Research (BRAMS)

5 Douglas Mental Health University Institute and Dept. of Psychiatry, McGill University McGill

6 Department. of Psychology, McGill University

Su P5.25 (#103)

Language and Categorization in Monolingual and Bilingual Mandarin Speakers' Brains

Yanni Liu^{1,2}, Jie Chen¹, Daniel Kessler², Chao Liu^{3,4}, Niko Kaciroti^{1,5}, Ka I Ip^{1,6}, Twila Tardif^{1,6}

1 Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, 48109-5406, USA

2 Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA

3 State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China

4 Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China

5 Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA

6 Department of Psychology, University of Michigan, Ann Arbor, MI, 48109-1109, USA

Su P5.27 (#104)

Auditory Processing in the Cerebellum: An Examination Using fNIRS

```
Dwayne Paschall<sup>1</sup>, Selen Gunduz<sup>1</sup>, Shennon Rinaldo<sup>2</sup>
```

1 Texas Tech University Health Sciences Center, Speech, Language and Hearing Sciences 2 Texas Tech University Rawls Collage of Business

Su P5.29 (#045)

Influence of Reading Habits on Brain Plasticity for Discourse Comprehension in Aging: NIRS contribution

Charles-Olivier Martin^{1,2}, Bernadette Ska^{1,2}

1 Research Center of the Institut Universitaire de Gériatrie de Montréal 2 Université de Montréal

Su P5.31 (#160)

Prefrontal Activation during Tower of Hanoi in Healthy Participants.

Ling-Yin Liang¹, Nancy Getchell^{1,2}

1 Biomechanics and Movement Science Program, University of Delaware, Newark, USA 2 Kinesiology & Applied Physiology, University of Delaware, Newark, USA

Su P5.33 (#028)

Using fNIRS to Characterize of Human Influential Factors: Towards Models of Quality of Experience Perception for Text-to-Speech Systems

Rishabh Gupta, Hubert J. Banville, Isabela Albuquerque and Tiago H. Falk

INRS-EMT, University of Quebec, Montreal, Canada

Neonatal and Pediatrics

Su P5.35 (#015)

fNIRS-based Evaluation of Cortical Plasticity in Children with Cerebral Palsy Undergoing Constraint-Induced Movement Therapy

Jianwei Cao¹, Bilal Khan¹, Nathan Hervey¹, Fenghua Tian¹, Hanli Liu¹, George Alexandrakis¹, Linsley Smith², Nancy J. Clegg², Mauricio R. Delgado², Laura Shagman³ and Duncan L. MacFarlane³

1 Bioengineering Department, University of Texas at Arlington, 500 UTA Boulevard, Arlington, TX, 76010 2 Texas Scottish Rite Hospital for Children, Department of Neurology, 2222 Welborn Street, Dallas, Texas, 75219 3 The University of Texas at Dallas, Department of Electrical Engineering, Richardson, TX 75080

Su P5.37 (#193)

Accuracy of slab model recovery of StO2 and HbT values in neonates with frequency modulated (FM-) NIRS

Jeffrey W. Barker and Theodore J. Huppert

Depts. of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Clinical

Su P5.39 (#150)

Cortical Contributions to Gait Control in Freely Moving Humans.

Manuel König^{1,2}, Jan Mehnert^{1,2}, Christoph Schmitz^{3,4}, Jens Steinbrink³, Hellmuth Obrig^{1,2}

1 Clinic for Cognitive Neurology and Medical Faculty, University of Leipzig, Germany; 2 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; 3 Charité University Medicine, Berlin, Germany;

4 NIRx Medizintechnik GmbH, Berlin, Germany

Su P5.41 (#139)

Subthalamic nucleus high frequency stimulation reduces -almost immediately - primary sensorimotor and prefrontal dorsolateral cortical activity whatever the patient is at rest or performing a motor task: a fNIRS study

M Lefranc^{1,2}, M Mahmoudzadeh², M Tir³, P Krystowiak^{3,4}, F Wallois²

1 Service de neurochirurgie, CHU d'Amiens,

2 Inserm U1105, GRAMFC laboratoire de neurophysiologie UFR médecine Université Picardie Jules Vernes

3 Service de neurologie, CHU d'Amiens,

4 EA 4559 Laboratoire de Neurosciences Fonctionnelles et pathologie (LNFP) Université de Picardie Jules Vernes

Su P5.43 (#120)

Brain perfusion assessment by time-resolved monitoring of inflow and washout of ICG in patients with disorders of cerebral circulation

Adam Liebert¹*, Daniel Milej¹, Wojciech Weigl^{2,3}, Anna Gerega¹, Michal Kacprzak¹, Piotr Sawosz¹, Beata Toczylowska¹, Roman Maniewski¹

1 Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland

2 Department of Intensive Care and Anesthesiology, Warsaw Praski Hospital, Poland

3 Department of Surgical Sciences/Anaesthesiology and Intensive Care, Uppsala University Hospital, Sweden

Diagnosis of focus side in intractable mesial temporal lobe epilepsy by fNIRS during spontaneous seizure

Keiji Oguro¹, Hidenori Yokota¹, Tsutomu Mizutani¹, Rizki Edmi Edison¹, Masahiro Hirai², Ippeita Dan², Eiju Watanabe¹

1 Dep. of Neurosurgery, Jichi Medical University 2 Div. of Human Brain Function Research, Jichi Medical University

Su P5.47 (#003)

Persistent post-concussive symptoms are accompanied by decreased functional brain oxygenation

I Helmich¹, RS Saluja², H Lausberg¹, M Kempe^{3,4}, P Furley⁴, A Berger¹, J-K Chen², A Ptito^{3,5}

1 Department of Neurology, Psychosomatic Medicine and Psychiatry, Institute of Health Promotion and Clinical Movement Science, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany 2 Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

2 Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

3 Institute of Physiology and Anatomy, German Sport University Cologne, Germany

4 Institute of Cognitive and Team/Racket Sport Research, German Sport University Cologne, Germany

5 Department of Psychology, McGill University Health Centre, Montreal, Quebec, Canada

Su P5.49 (#220)

Exploration of the Potential Clinical Applications of Near Infrared Spectroscopy (NIRS) in the Area of Pain Management

Kambiz Pourrezaei, Ahmad Pourshoghi. Zeinab Barati, Issa Zakeri, Daryl Omire-Mayor, Ardy Wong, Minakshi Mohanty, Kanghee Lee

Biomedical Engineering Department, Drexel University, Philadelphia, PA 19104

Other

Su P5.51 (#202)

Assessing Cerebral Hemodynamics by Dynamic Contrast-Enhanced Near-Infrared Spectroscopy

K St. Lawrence^{1,2}, A Lee¹, K Verdecchia^{1,2}, JT Elliott³, M Diop^{1,2}

1 Department of Medical Biophysics, Western University, London, ON, Canada

2 Lawson Health Research Institute, London, ON, Canada

3 Thayer School of Engineering at Dartmouth, Hanover, NH, USA

Su P5.53 (#049)

Does Driver Age, Experience and Gender Affect Overtaking Behaviour and Prefrontal Cortex (PFC) Activity?

Hannah Foy¹, Peter Chapman¹ & Patrick Runham¹

1 University of Nottingham, United Kingdom

Su P5.55 (#131)

Issues in Functional Near Infrared Spectroscopy

Christina Salnaitis

College of Arts & Science, University of South Florida Saint Petersburg, Saint Petersburg, FL, USA

Poster Session VI

Sunday Afternoon • Su P6.02-54 even

Analysis

Su P6.02 (#179)

Comparison of motion artifact correction algorithms for resting state NIRS

Juliette Selb¹, Meryem Yücel¹, Dorte Phillip², Henrik W. Schytz², Helle K. Iversen², Messoud Ashina², David A. Boas¹

1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 2 Danish Headache Center, Dept. Neurology, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, , Denmark

Su P6.04 (#007)

Targeted Principle Component Analysis: A new motion artifact correction approach for Near-Infrared Spectroscopy

Meryem A. Yücel¹*, Juliette Selb¹, Robert J. Cooper², David A. Boas¹

1 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA • 2 Dept. of Medical Physics and Bioengineering, University College London, London, UK

Su P6.06 (#178)

Removal of Motion Artifacts from Recorded NIRS Data During Walking

Nadia Arfaoui¹,*, Philippe Pouliot^{1,2}, Jérôme Le Lan¹, Vanessa Simard³, Elisabeth Charlebois-Cloutier³, Sarah Fraser^{3,4}, Louis Bherer^{3,5}, Frédéric Lesage^{1,2}, and Mohamad Sawan¹

1 Department of electrical engineering, Ecole Polytechnique, • 2 Montreal Heart Institute, Montreal, Quebec, Canada 3 Centre de recherche de l'institut universitaire de gériatrie de Montréal, • 4 McGill University, 5 Perform Centre, Concordia University, Montreal, Quebec, Canada

Su P6.08 (#132)

Non-linear Kalman filtering-based approach for physiological noise reduction in HRF estimation using SS-channel signals

Pietro Dal Bianco¹, Sabrina Brigadoi^{2,3}*, Simone Cutini³, Robert J. Cooper², Juliette Selb⁴, Giovanni Sparacino¹

1 Department of Information Engineering, University of Padova, Italy •2 Biomedical Optics Research Laboratory, Dpt. Medical Physics and Bioengineering, University College London, U.K. •3 Department of Developmental Psychology, University of Padova, Italy •4 Optics Division, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA

Su P6.10 (#157)

Fractal structure of cerebral hemodynamics reflects structure of auditory input and motor output variability

Michael L. Hough¹, Steven J. Harrison¹, Nicholas Stergiou^{1,2}

1 University of Nebraska at Omaha, Omaha, NE; • 2 University of Nebraska Medical Center, Omaha, NE

Su P6.12 (#164)

Phenotype-Motivated Strategies for Optical Detection of Breast Cancer

Randall L. Barbour^{1,2}, Rabah M. Al abdi³, Yong Xu¹, and Harry L. Graber¹

1 NIRx Medical Technologies LLC, 15 Cherry Lane, Glen Head, NY 11545, USA 2 SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA 3 Jordan University of Science and Technology, Irbid 22110, Jordan

Neurodevelopment

Su P6.14 (#069)

Bilingualism alters children's prefrontal activation during a non-verbal attention task

Maria M. Arredondo¹*, Xiaosu Hu¹, Teresa Satterfield¹ & Ioulia Kovelman¹

1 University of Michigan

Su P6.16 (#192)

fNIRS imaging of pediatric spatial working memory

TJ Huppert¹, S. Perlman²

1 University of Pittsburgh, Dept of Radiology 2 University of Pittsburgh, Dept of Psychiatry

Su P6.18 (#023)

Shining light on neural dynamics of cognitive flexibility in early childhood.

Aaron T. Buss¹, John P. Spencer²

1 University of Tennessee, Department of Psychology 2 University of Iowa, Department of Psychology, Delta Center

Su P6.20 (#105)

Functional Organization of Object Processing Areas in the Infant Brain

Teresa Wilcox, Laura Hawkins, and Amy Hirshkowitz

Texas A&M University

Su P6.22 (#064)

Age-dependence of emotional face processing in infants as measured with near-infrared spectoscopy

Katherine L. Perdue^{1,2}, Alissa Westerlund¹, Miranda Ravicz¹, Charles A. Nelson^{1,2}

1 Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA 2 Harvard Medical School, Boston, MA, USA

Neurocognition

Su P6.24 (#087)

The strategy and motivational influences on the beneficial effect of neurostimulation: a tDCS and fNIRS study

Filiz Gözenman, Kevin Jones & Marian E. Berryhill

Department of Psychology, Program in Cognitive and Brain Sciences, University of Nevada, Reno

Su P6.26 (#213)

Cortical correlates of updating processes in working memory: a fNIRS investigation

Guerrero, Mario Borragan, Daphne Peigneux

UR2NF – Neuropsychology and Functional Neuroimaging Unit @ CRCN; UNI ULB Neuroscience Institute.

Su P6.28 (#002)

Activation of the prefrontal cortex while performing a task at Preferred Slow Pace and Metronome Slow Pace: A functional near-infrared spectroscopy study

Kaori Shimoda^{1,2}, Kenji Tsuchiya¹, Daichi Hara¹, Tatsuki Masuda¹, Kazuki Kitazawa¹, Shiori Katsuyama¹, Bumsuk Lee¹, Tsuneo Yamazaki¹, Takao Nakura², and Fusae Tozato¹

1 Gunma University Graduate School of Health Sciences, Department of Rehabilitation, Japan 2 Fuji Tachibana Clinic

Su P6.30 (#101)

Using fNIRS to compare immersion vs. translation approaches for second language learning

Ka I Ip^{1,2}, Silvia Bisconti², Jie Chen², Yanni Liu^{2,3}, Twila Tardif^{1,2}

1 Department of Psychology, University of Michigan, Ann Arbor, MI, 48109-1109, USA

2 Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, 48109-5406, USA

3 Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA

Su P6.32 (#189)

fNIRS study of numerical cognition in adults

Ellis, A., Ip, K., Hsu, L., Armstrong, M., Smith, C., Davis-Kean, P., & Kovelman, I.

University of Michigan, Ann Arbor, USA

Su P6.34 (#121)

Assessing emotions through Near Infrared Spectroscopy

Jose Leon-Carrion

Dept. of Experimental Psychology, University of Seville, Spain

Neonatal and Pediatrics

Su P6.36 (#142)

Pre-operative cerebral hemodynamics from birth until surgery in infants with critical congenital heart disease

Jennifer M. Lynch¹, Madeline Winters², David R. Busch^{1,2}, Tiffany Ko³, Ann L. McCarthy², Rui Xiao⁴, Susan C. Nicolson⁵, Lisa M. Montenegro⁵, Stephanie Fuller⁶, J. William Gaynor⁶, Thomas L. Spray⁶, Arjun G. Yodh¹, Daniel J. Licht², Maryam Y. Naim⁷

1 Department of Physics and Astronomy,

2 Divisions of Neurology,

3 Deparment of Bioengineering,

4 Deparment of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104

5 Cardiothoracic Anesthesia,

6 Cardiothoracic Surgery,

7 Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, PA 19104

Su P6.38 (#201)

Clinical Evidence of Ventricular Contamination in a NIRS Study of Post-Hemorrhagic Hydrocephalus in Preterm Infants

J Kishimoto^{1,2}, M Diop^{1,2}, P McLachlan^{1,2}, S de Ribaupierre^{1,3}, DS Lee⁴, K St Lawrence^{1,2}

1 Lawson Health Research Institute, Western University

2 Department of Medical Biophysics, Western University

3 Department of Clinical Neurological Sciences, Western University

4 Department of Neonatology LHSC: London, Ontario

Clinical

Su P6.40 (#041)

Hemodynamic changes in cortical sensorimotor systems following hand and orofacial motor tasks and pulsed cutaneous stimulation.

A. Oder^{1,2}, R. Custead^{1,2}, H. Oh^{1,2,3}, S.M. Barlow^{1,2,3}

1 University of Nebraska-Lincoln, Dept of Special Education & Communication Disorders 2 Center for Brain, Biology, and Behavior 3 Dept of Biological Systems Engineering

Su P6.42 (#176)

Investigation of Hemodynamic Changes during General Anesthesia via Functional Near Infrared Spectroscopy

Gabriela Hernandez Meza¹, Kurtulus Izzetoglu¹, Meltem Izzetoglu¹, Mary Osbakken^{1,2}, Michael Green^{3,4}, Ashish Sihna^{3,4}, Banu Onaral¹

1 School of Biomedical Engineering, Science & Health Systems,

2 Osbakken Consulting,

3 College of Medicine, Drexel University,

4 Dept. of Anesthesiology, Drexel University.

Su P6.44 (#027)

Semiautomatic application for task-related component analysis (TRCA) to extract task-related signal changes from fNIRS signal: Clinical applications.

Eiju Watanabe¹, Takushige Katsura², Hiroki Sato², Tsutomu Mizutani³, Ippeita Dan³

1 Department of Neurosurgery, Jichi Medical University

2 Central Research Laboratory, Hitachi Ltd.

3 Division of Human Brain Function Research, Jichi Medical University

Su P6.46 (#165)

Pre-surgical investigation of reading epilepsy using multimodal neuroimaging

Dima Safi *^{1,2}, Dang K. Nguyen ³, Renée Béland ⁴, Phetsamone Vannasing ², Julie Tremblay ², Ismail Mohammed ⁵, Philippe Pouliot ⁶, Maryse Lassonde^{1,2}, Anne Gallagher^{1,2}

1 Département de psychologie, Université de Montréal, Montréal, QC, Canada

2 Centre de Recherche de l'Hôpital Sainte-Justine, Hôpital Sainte-Justine, Montréal, QC, Canada

3 Service de Neurologie, Hôpital Notre-Dame du CHUM, Montréal, QC, Canada

4 Ecole d'orthophonie et d'audiologie, Université de Montréal, Montréal, QC, Canada

5 IWK Health Center, Dalhousie University, Halifax, NS, Canada

6 E'cole Polytechnique, Université de Montréal, Montréal, QC, Canada

Su P6.48 (#044)

• 38 •

Novel application of Support Vector Machines to classify hemodynamic response obtained by multi-channel NIRS measurement

Hiroko Ichikawa^{1,2}, Jun Kitazono^{3,4}, Kenji Nagata³, Akira Manda³, Keiichi Shimamura^{4,5}, Ryoichi Sakuta^{4,5}, Masato Okada^{3,6}, Masami K. Yamaguchi¹, So Kanazawa⁷, and Ryusuke Kakigi⁸

1 Department of Psychology, Chuo University

2 Japan Society for the Promotion of Sciences

3 Department of Complexity Science and Engineering, The University of Tokyo

4 Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital

6 RIKEN Brain Science Institute

7 Department of Psychology, Japan Women's University

8 Department of Integrative Physiology, National Institute for Physiological Sciences

Su P6.50 (#095)

Cortical Activation During Swallowing, Cortical Suppression During Vibrotactile Stimulation Alone

Rachel Mulheren, Christy Ludlow

James Madison University

Other

Su P6.52 (#038)

Reduced haemodynamic response in the ageing visual cortex

Laura Ward, Ross Aitchison, Melisa Tawse, Ana de Freitas, Anita Simmers and Uma Shahani

Glasgow Caledonian University, Department of Vision Sciences

Su P6.54 (#133)

The development of functional Near-infrared Cortical Imaging (fNCI): the direct cortical hemodynamic mapping of the miniature pig's somatosensory area.

Minako Uga^{1,4}*, Toshiyuki Saito³, Hidenori Yokota², Keiji Oguro², Edmi Edison Rizki², Tsutomu Mizutani^{1,4}, Ippeita Dan^{1,4}, and Eiju Watanabe^{1,2}

1 Center for Development of Advanced Medical Technology

2 Department of Neurosurgery, Jichi Medical University, Jichi Medical University, Tochigi, Japan

3 Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan

4 Research and Development Initiatives / Fuculty of Science and Engineering, Chuo University, Tokyo, Japan