
 1

HomER
Hemodynamic Evoked Response

NIRS data analysis GUI

Program User’s Guide
Stand-alone executable version

(Version 4.0.0)

Release July 28th, 2005

Written by:

Theodore Huppert, M.Sc.
David A. Boas, Ph.D.

Photon Migration Imaging Lab
Massachusetts General Hospital/CNY

Charlestown, MA 02139

 2

Copyright 2005: Massachusetts General Hospital

End-User Licensing Agreement ("EULA") for HomER:

IMPORTANT- READ CAREFULLY:

1. GRANT OF LICENSE. This EULA grants the licensee the following rights: Software. The licensee may
install one copy of HomER on a single computer. Network Use. The licensee may use HomER over an
internal network, and the licensee may distribute HomER to other computers over an internal network.
Documentation. The licensee may make a copy of the documentation for internal use only. This EULA
grants the licensee a nonexclusive, nontransferable, no-cost, royalty free right to use the HomER for
licensee's internal, non-commercial, non-clinical, academic research purposes only, under the terms of this
agreement.

2. LIMITATIONS Academic Version.

HomER can only be used by Colleges, Universities, and other Non-Profit Research Organizations for
research only. Colleges, Universities, and other Non-Profit Research Organizations may not use HomER in
any commercial arrangement to any third-parties when payments are made for services rendered, either
directly, or indirectly, when the functionality contained within HomER has been used.

For-profit organizations and companies are explicitly prohibited from using this software for any purposes.

Rental. The licensee may not rent or lease HomER.

Commercial Use. The licensee may not charge anyone for any activity that uses HomER. For example, the
licensee may not charge for segmentation, quantification, and/or corticalsurface reconstruction using
HomER. The licensee cannot charge others for installation of the software, nor can they pay any entity,
other than a full-time employee, to install and operate the software. The licensee may not incorporate
HomER or any of its parts into any commercial code or product of any kind.

Software Transfer. The licensee may not transfer HomER to any third party.

Clinical Use: This software may not and should never be used for clinical purposes. Software used for
clinical purposes may require regulatory documentation and associated filings.

Termination.

3. COPYRIGHT and TRADEMARKS. HomER. All title and copyrights in and to HomER (including but
not limited to any code, documentation, images, text or data) are owned by The General Hospital
Corporation doing business as Massachusetts General Hospital. HomER is protected by copyright laws and
international copyright treaties, as well as other intellectual property laws and treaties. HomER is licensed,
not given away or sold.

PMI toolbox. Parts of this software are based on the PMI toolbox software copyrighted by The
Massachusetts General Hospital and John Stott. The original license terms of the PMI toolbox software
distribution is included in the file docs

4. NO SUPPORT OR WARRANTY. HomER is provided with no support whatsoever. The General
Hospital Corporation may, at their sole discretion, provide bug reports or upgrades at
www.nmr.mgh.harvard.edu/DOT, The General Hospital Corporation do not have any obligation to notify
users of this occurring. HomER may contain in whole or in part pre-release, untested, or not fully tested
works. HomER may contain errors that could cause failures or loss of data, and may be incomplete or
contain inaccuracies. LICENSEE expressly acknowledges and agrees that use of HomER, or any portion

 3

thereof, is at LICENSEE's sole and entire risk, and that HomER is an experimental program. HomER is
provided "AS IS" and without warranty, upgrades or support of any kind.

THE GENERAL HOSPITAL CORPORATION EXPRESSLY DISCLAIMS ALL WARRANTIES
AND/OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES AND/OR CONDITIONS OF MERCHANTABILITY OR SATISFACTORY
QUALITY AND FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. THE GENERAL HOSPITAL CORPORATION DOES NOT WARRANT THAT THE
FUNCTIONS CONTAINED IN HOMER WILL MEET LICENSEE'S REQUIREMENTS, OR THAT
THE OPERATION OF HOMER WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT
DEFECTS IN HOMER WILL BE CORRECTED. NO ORAL OR WRITTEN INFORMATION OR
ADVICE GIVEN BY THE GENERAL HOSPITAL CORPORATION OR A CORTECHS LABS, INC.
AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE
THE SCOPE OF THIS WARRANTY. LICENSEE ACKNOWLEDGES THAT HOMER IS NOT
INTENDED FOR CLINICAL USE AND SHOULD NOT BE USED FOR DIAGNOSIS, TREATMENT
PLANNING, OR ANY OTHER CLINICAL PURPOSE.

5. LIMITATION OF LIABILITY. UNDER NO CIRCUMSTANCES SHALL THE GENERAL
HSOPITAL CORPORATION BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO THIS LICENSE OR
LICENSEE'S USE OR INABILITY TO USE HOMER, OR ANY PORTION THEREOF, whether under a
theory of contract, warranty, tort (including negligence), products liability or otherwise.

6. MISCELLANEOUS. U.S. Government End Users. The Covered Code is a "commercial item" as
defined in FAR 2.101. Government software and technical data rights in the Covered Code include only
those rights customarily provided to the public as defined in this License. This customary commercial
license in technical data and software is provided in accordance with FAR 12.211 (Technical Data) and
12.212 (Computer Software) and, for Department of Defense purchases, DFAR 252.227-7015 (Technical
Data -- Commercial Items) and 227.7202-3 (Rights in Commercial Computer Software or Computer
Software Documentation). Accordingly, all U.S. Government End Users acquire Covered Code with only
those rights set forth herein. Waiver; Construction. Any law or regulation which provides that the language
of a contract shall be construed against the drafter will not apply to this License.

Quebec. Where LICENSEEs are located in the province of Quebec, Canada, the following clause applies:
The parties hereby confirm that they have requested that this License and all related documents be drafted
in English. Les parties ont exigé que le présent contrat et tous les documents connexes soient rédigés en
anglais. Authority. The person submitting this registration warrants that he/she has the authority to bind to
this Agreement the party which he/she represents.

Table of Contents:

Overview of features:

 4

Appendix: Quick overview of functions - - - - - - - - - - - - - - - - 5

Chapter 1: Download and Installation - - - - - - - - - - - - - - - - 21

Chapter 2: Data format and Preprocessing - - - - - - - - - - - - - - - - 24

Chapter 3: Starting an analysis session - - - - - - - - - - - - - - - - 28

Chapter 4: Filtering the data - - - - - - - - - - - - - - - - 31

Chapter 5: Averaging the stimulus response - - - - - - - - - - - - - - - - 39

Chapter 6: Image reconstructions - - - - - - - - - - - - - - - - 45

Chapter 7: Data display and Export - - - - - - - - - - - - - - - - 49

Chapter 8: Statistical Analysis - - - - - - - - - - - - - - - - 52

Chapter 9: Region-of-interest Analysis - - - - - - - - - - - - - - - - 53

Chapter 10: Sample Data - - - - - - - - - - - - - - - - 54
 Simple_probe.nirs - - - - - - - - - - - - - - - - 54

 OverlappingProbe.nirs - - - - - - - - - - - - - - - - 59

 Physiology_Probe.nirs - - - - - - - - - - - - - - - - 65

Appendix I: HomER data structure - - - - - - - - - - - - - - - - 69

Appendix II: Technical reports - - - - - - - - - - - - - - - - 72

 Filtering Code:
 DOTFilter - - - - - - - - - - - - - - - - 72
 HomERFilt - - - - - - - - - - - - - - - - 79
 PCAFilter - - - - - - - - - - - - - - - - 83
 PCA_Filter_dConc - - - - - - - - - - - - - - - - 86

 Averaging Code:
 AverageHRF - - - - - - - - - - - - - - - - 90
 DeconvolveHRF - - - - - - - - - - - - - - - - 95
 HRFStatistics - - - - - - - - - - - - - - - - 100

Overview of HomER features:

 5

HomER is a data analysis program written by the PMI lab at MGH for the purpose of
quick, reliable, and user-friendly analysis of near-infrared spectroscopy. Comments and
suggestions are always welcome and should be sent to T. Huppert
(thuppert@nmr.mgh.harvard.edu).

Acknowledgements:

 HomER is developed under funds from the National Institute of Health (R01-
EB002482, P41-RR14075), NCRR, and the MIND institute. T. J. H. is funded by the
Howard Hughes Medical Institute Pre-Doctorial program.

Quick Overview of Features:

 6

Filtering

Filtering tab features:

1) Main Data display window.
This window displays the data for the entire experimental time course.
Display type is set by items 10) and 11). This window is cleared when
multi-file averages are being displayed.

Right clicking on this window allows export of the data displayed. Data
can also be copied to the clipboard by right-clicking on a displayed data
line. The colors of displayed data correspond to the color of the source-
detector pair highlighted in window 2 (item 2).

2) Probe Geometry display
This window displays the loaded probe geometry. Clicking on the probe
positions changes the displayed source-detectors in window 1). The probe
is specified by the “SD” variable and loaded with the *.nirs file. Clicking

1 2

3
4
5
6 7

8
9

10
11

12
13
14

15

16

17

18
19 20 21

1 2

3
4
5
6 7

8
9

10
11

12
13
14

15

16

17

18
19 20 21

 7

near an optode position will move display to the nearest optode. Clicking
on a line will toggle the display of the corresponding source-detector pair.
X/Y labels are in centimeters. When lines are toggled off (displayed as
dotted lines), they will be discluded from filtering (i.e. PCA analysis)
averaging, and image reconstruction. This can be used to remove “noisy”
data channels.

3) LP/HP filter settings
These fields set the Low and High pass filtering parameters. Values are
given in hertz. Invalid cut-off frequencies are skipped with a warning. To
skip either filtering step, the filter cut-off should be set to “[]” (empty set).
Filter parameters (inc. order, type etc) are specified under item 14).
See section 4.2

4) Motion correction PCA filter settings
This field specifies the number of principle components (singular values)
filtered from the data. This uses a trunctated SVD filter. Eigen-values are
displayed by item 9). If only one (1) value is specified, then all
wavelengths are filtered together (i.e. both wavelengths are used in same
SVD). To filter each wavelength separately, multiple values should be
specified. This function operates on the normalized intensity.
See section 4.3

5) dOD PCA filter settings
This field specifies the number of baseline principle components filtered
from the data. Only available if baseline data is present.
See section 4.4

6) dConc PCA filter settings
This field specifies the number of principle components of concentration
filtered from the data. Principle components taken from current file OR
baseline (if loaded). Selected by item 8) A value should be specified for
each hemoglobin species [oxy-hemoglobin deoxy-hemoglobin] (in that
order).
See section 4.5

7) Component selection Menu
Selects whether the priniple components removed by item 6) are taken
from the current file OR baseline file. Only available if baseline data is
specified. This also changes the display on item 9) to reflect this selection.
See section 4.5.

8) Prune Source-detector list menu
Launches measurement list pruning window. See items 72-82).
See items 72-82

 8

9) View Single-value spectrum
Plots the single-value spectrum in a new window.
See Section 4.6.

10) Data display choice menu
Select which data type to display in window 1). Only raw data is
avalaible until filtering is preformed.

11) Wavelength display choice menu
Select which wavelength

12) Toggle Zoom control
Toggles on/off the zoom control

13) Launch new window display

Launches window with data and average time traces.

14) Filtering Options menu
Launches filtering options menu (items 59-71).

15) Show power spectral density
Launches new window with plot of the power spectrum of the currently
displayed data. Same section 7.5.

16) Display all data
Displays color-scale plot of intensity verses channel number in window 1)

17) Probe geometry file
Name of probe geometry file if loaded separately from *.nirs file

18) Select Session/Subject

Select the current session(or subject) to analyze (if multiple are open)

19) Select data file
Switch between open data files.

20) Mark as Baseline data
Mark the current data file (item 19) as a baseline measurement

21) Filtering Menu Tab

Displays filtering options

Averaging Tab Features:

 9

22) Average data display window
Window for display of average data. Data type is specified by items 33-
35.

23) HRF pretime edit field
Specifies the hemodynamic response pretime (time prior to stimulus) to
use in averaging/deconvolution. Specified for currently selcted regressor
(item 33).
See section 5.5.

24) HRF post-stimulus edit field
Specifies the hemodynamic response post-time (time following stimulus) to
use in averaging/deconvolution. Specified for currently selcted regressor
(item 33).
See section 5.5.

25) Calculate Average
Preforms calculation of average response.
See section 5.7 & 5.8.

26) Preform deconvolution of data

22
23
24

25

26

27

28
29

30
31 32

33
34
35

36 3738
39

40
41

42

43

22
23
24

25

26

27

28
29

30
31 32

33
34
35

36 3738
39

40
41

42

43

 10

Preforms a deconvolution (rather then a block average) with item 25)
See section 5.8.

27) Show stimulus points
Displays stimulus points on window 1)
See section 5.3.

28) Stimulus thresh-hold
Threshold value for pruning “raw” stimulus data.
See section 5.1.

29) Minimum ISI
Minimum inter-stimulus interval value for pruning “raw” stimulus data.
See section 5.1.

30) View original stimulus
Plots raw stimulus data on window 1).
See section 5.1.

31) Use User-defined stimulus
Toggle button to use User-defined stimulus (item 32).
See section 5.2.

32) Edit User-defined stimulus
Edit field to enter User-defined stimulus points.
See section 5.2.

33) Which regressor to display
Select which regressor to display data for (if multiple regressors were
used).
See section 5.6.

34) Select type of data display
Select which data trace to display (dOD or dConc).

35) Select Wavelength
Select which wavelength to display

36) Display All data

Display all data traces

37) Edit min/max scale
Edit the max/min values to scale the display in window 2

38) Set minimum scale

 11

Apply minimum scaling to window 2

39) Set Maximum scale
Apply maximum scaling to window 2

40) Toggle Zoom on

41) Averaging Options

Launch averaging options window

42) Averaging Tab
Display averaging buttons

43) Reset measurement list

Resets measurement list of which source-detectors to include in analysis

 12

Imaging Tab Features:

44) Image rconstruction window
Displays the reconstructed images.

45) Make imaging forward matrix
Makes forward matrix for image reconstruction using the PMI toolbox
and the settings fromitems 47-49).
See section 6.2.1.

46) Invert forward matrix
Applies inversion of forward matrix
See section 6.2.2 & 6.6.

47) Reconstruct image
Reconstructs image using inverted forward matrix. Image contrast is
taken from average of time specified by item 57.
See chapter 6.

48) Edit absorption coefficient(s)

44

45
46
47

48
49

50

52
53

51

5455

56
57

58

44

45
46
47

48
49

50

52
53

51

5455

56
57

58

 13

Specify the baseline absorption coefficient for calculating the forward
matrix. If only one value is specified, the same value is used for all
wavelengths.
See section 6.1.

49) Edit scattering coefficient(s)
Specify the baseline reduced scattering coefficient for calculating the
forward matrix. If only one value is specified, the same value is used for
all wavelengths.
See section 6.1

50) Image voxel dimensions
These fields allow the user to specify the volume dimensions for image
reconstruction. The default settings are based on the probe dimensions.
Each direction is specified as [Start Coordinate: step size: End
Coordinate]. All values are in centemeters.

51) Imaging options
This launches a window with the options for image reconstrunction and
display

52) Select which regressor
In the case of multiple regressors in the linear regression model, this
popup-menu selects which regressor is used in the image reconstruction.

53) Select image display type

Choice between reconstruction a delta-OD, concentration, or contrast-to-
noise ratio image.
See section 6.3.2.

54) Edit max/min image scale
These fields set the maximum/minimum scales for image display. The
effects are toggled on/off by item 54).

55) Use image scaling
These buttons toggle whether to autoscale or use the image scaling
properties specified by 53).

56) Redisplay image
If an image has already been reconstructed, this will replot the image in a
new window.

57) Select image time window
This red bar is used to specify the time window over which to average
when displaying an image. This is also used when specifying the t-

 14

statistics value(s) for the response. Clicking above the red bar will
change its length, while clicking below it will move the initial position.
See section 6.3.1.

58) Imaging Tab
This selects the imaging options window

Filtering Options menu Measurement Pruning menu

59) Current Absroption spectrum used
This displays the partial citation for the currently selcted hemoglobin
absorption spectrum.

60) View current absorption spectrum
This plots the absoroption spectrum for oxy/deoxy-hemoglobin in a new
window according to which absorption spectrum was selected in ite, 60)
See section 4.8.

61) Change absorption spectrum
This allows one to select which absorption spectrum for hemoglobin is
used for the modified Beer-Lambert Law. A user-defined spectrum can
also be loaded.

59
60 61

62 63
64

65
66 67

6869
7071

59
60 61

62 63
64

65
66 67

6869
7071

7 2 7 3
7 4 7 5

7 6

7 7 7 8
7 9 8 0

8 1

8 2

7 2 7 3
7 4 7 5

7 6

7 7 7 8
7 9 8 0

8 1

8 2

 15

See section 4.8

62) Select type of iirfilter design
This allows the user to specify the irrfilter design applied during signal
processing. For the Chebshev or elptic filter designs, the tolerances for
the pass-band and stop-band are also specified.
See section 4.8.

63) Edit filter order
This allows the user to specify a higher filter order (default 5) for the
signal processing.
See section 4.11.

64) View filter charectoristics
This create a new window displaying the filter design charectoristics for
the signal processing filters. See items 61 & 62.
See section 4.11.

65) Add custom filtering step
Check this box to include the custom filter step (if loaded).
Note: This feature is not available in the stand-alone version.
See section 4.10.

66) Load custom filtering function

This allows the user to specify a custom script that gets executed within
the signal processing.
Note: This feature is not available in the stand-alone version.
See section 4.10

67) Name of custom file

This displays the name of the custom filter loaded by 64).
Note: This feature is not available in the stand-alone version.
See section 4.10

68) DPF correction factor
Differential path-length factor to be included in the modified Beer-
Lambert law. Defined separately for each wavelength.
See section 4.9

69) Include DPF in calculations
Check box to include DPF (item 68) in MBBL calculation of hemoglobin
Default setting does NOT include this factor.
See section 4.9

70) Partial volume corrections

 16

Partial volume correction to be included on concentration calculations.
Defined separately for each wavelength.
See section 4.9.

71) Include partial volume correction to DPF
Check box to include partial volume correction (item 70) in MBBL
calculation of hemoglobin
Default setting does NOT include this factor.
See section 4.9

72) Use min intensity criterian in prune
If checked, measurements will be excluded if below intensity (set by item
73).
See section 4.12.

73) Set minimum intensity
Sets minimum intensity for pruning.
See section 4.12.

74) Use max intensity criterian in prune
If checked, measurements will be excluded if below intensity (set by item
75).
See section 4.12.

75) Set maximum intensity
Sets maximum intensity for pruning.
See section 4.12.

76) View histogram of intensities
Displays a histogram of the mean (D.C.) intensities for the data. Useful
for desciding the level of pruning.

77) Set maximum source-detector seperation
Sets maximum source-detector distance (in cm) for pruning.
See section 4.12.

78) Use max SD seperation in prune
If checked, measurements will be excluded if the source-detector
seperation if greater then this distance [in cm] (set by item 77).
See section 4.12.

79) Set minimum source-detector seperation
Sets minimum source-detector distance (in cm) for pruning.
See section 4.12.

80) Use min SD seperation in prune

 17

83
84
85

8687

88
89
90 91

83
84
85

8687

88
89
90 91

92 93

94
95

96
97

92 93

94
95

96
97

If checked, measurements will be excluded if the source-detector
seperation if less then this distance [in cm] (set by item 77).
See section 4.12.

81) View histogram of separations
Displays a histogram of the source-detector distances for the data. Useful
for desciding the level of pruning.
See section 4.12.

82) Apply pruning to data
This button applies the settings of 72-81) to the data. Measurements
pruned from the dataset appear as dotted lines on the probe geometry
(item 2).

 See section 4.12.

Averaging Options menu Imaging Options menu

83) Display of currently used regressors
This is a list of the currently used regressors for the multiple regressor
deconvilution or the list of stimulus variables used for averaging. The
default value is StimOn, which is the first column of the “s” variable
loaded with the *.nirs dtata file.
See section 5.6

84) Add a regressor
This button will bring up a list box, where one can select from the choices
of regressors available
See section 5.6

 18

85) Remove selected regressor
This button will remove the currently highlighted regressor (in item 83)
from the list. If all regressors are removed, the value will default to
StimOn.
See section 5.6.

86) View colinearity of design matrix
This displays the covariance of the design matrix (i.e. XTX). Off diagonals
of this matrix indicate collinear variables in the least-squares design.
This will plot in a new window.
See section 5.6

87) View design matrix
This button will plot (spy) the design matrix in a new window. All
regressors will be shown and any filtering will be applied to the design
matrices.
See section 5.6

88) Calculate statistics when averaging
This check box will perform response statistics everytime the
average/deconvolution is preformed. This will slow down this calculation.

89) Add detrending step to averages
When this box is checked, a linear trend will be removed from the
response functions.

90) Calculate statistics on average data
This button will calculate the statistics for the reponse functions. This
should be applied after the data average is calculated.
See chapter 8.

91) Calculate average of auxillary data

This button will perform averaging on the auxillary data (if present).
See section 5.9

92) Calculate image statistics

Ths button will calculate the statistics for a reconstructed image. Once
calculated, the effects (t-stastics) can be displayed by item 93.
See chapter 8.

93) Show Effects map for time window
This images the effects map in a new figure.
See chapter 8.

94) Set movie frame rate

 19

This field changes the movie frame rate for the exported movie. The movie
will be saved at a frame rate of the original sample frequency of the data
resampled by this value. This value must be an interger.

95) Set movie avi file compression level
This sets the compression level for the exported movie.

96) Display probe on image
When this box is checked, the image will be displayed with the probe
geometry overlain on top.

97)

Pull-down Menus:

98) File pulldown menu
99) Import data

Loads a save *.nirs data file

Import to current session- loads the data to the currently open session
Import new session- loads the data into a new session

100) Import Session
Loads a saved *.hmr file.

101) Save data

Saves the wotking data as a *.hmr file

Save session- saves only the currently selected session’s data
Save all- saves every session’s data

98
99

100
101

102
103

98
99

100
101

102
103

104
105

106
107

108
109

104
105

106
107

108
109

 20

102) Close data

Closes the data files or figures.

Close current file- closes the currently selected data file
Close session- closes the current sessions
Close All- closes everything and provides a blank HomER
Close all figures- closes all the open figures (except for HomER).

103) Clear memory

This removes all unneccasary data from the program, cleaning up
memory.

104) Figures pull-down menu
105) Display data in new window

Ceates a summary plot of the current data.

106) Plot single-value spectrum
Plots the eigen-value spectrum of the current file in a new window

 See section 4.6.

107) Plot data power spectrum
Plots the Fouier transfrom of the currently selected data.

108) Plot HRF for all source-detectors

Plots the hemodynamic reponse of every source-detector pair in a new
window arranged according to the geometry.

109) Display options

Options for displaying hemoglobin concentrations and standard deviation.

 21

Chapter 1: Downloading and Installation

 The HomER program is distributed as a self-extracting zip file and is available for
download at http://www.nmr.mgh.harvard.edu/PMI/resources/.

Registration, including name, email and institutional information is required to
download HomER. This information is gathered for annual reporting reasons to the
National Institutes of Health. This program was developed under NIH grants (R01-
EB002482, P41-RR14075) and is distributed as a shared resource under that grant.
Registration information IS NOT distributed for any private or commercial use. We
appreciate that registrats be as accurate as possible in filling out this form, for these NIH
reporting issues.

Homer-users list server:

Registratants are also automatically signed up to be on the homer-
users@nmr.mgh.harvard.edu email server. This email list is used to communicate
changes/fixes to the HomER program. Questions or comments can be sent between all
registered users through to this email server.

Information about how to be remove your email address from this list or change email
settings can be found at http://mail.nmr.mgh.harvard.edu/mailman/listinfo/homer-users

 Previous questions and answers are archived and can be viewed by registered users at
http://mail.nmr.mgh.harvard.edu/mailman/listinfo/homer-users

1.1 Unpacking program:

 After downloading the HomER setup file, windows should guide you through the
installation process. A shortcut icon (of Homer Simpson) will be put on the computer
desktop following installation.

 Following selecting the root directory, the HomER program will unpack into a
number of directories including:

Documentation -- Contains the documentation support guides and setup
information

Sample Data ----- Contains a sample set of data as well as sample code to

generate the *.nirs files which HomER accepts. See chapter 10 for a walk
through using these sample files.

 22

Open Source ---- Contains a limited number of the Matlab *.m scripts which are
being run by HomER.

HomER.exe --- The actual binary executable file

HomER.ctf --- The configuration file required by the Matlab Runtime Component

to execute HomER.

MRCINSTALLER.exe --- This is the setup program for the Matlab Runtime

Component.

1.2: MRC Installer:

HomER.exe requires the Matlab Runtime Component to execute. Information
about the MRC deployment process can be found on the Matlab website
(www.mathworks.com). Additional information installing the MRC can be found at:
(http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/deployment_process
6.html). In most cases, no additional setup changes (other then those automatically
installed by the HomER setup code) should be required.

 The MRC MUST be installed the first time HomER is setup. Subsequent
installations, including future updates and new releases to the program do not require the
MRC to be reinstalled.

1.3: Running HomER for the first time:

 The first time HomER is run, the MRC must generate several files. These files
are created into a folder entitled HomER_MCR. This folder contains the hundreds of
binary codes that are part of the HomER program. The process of generating these files
may take several minutes. This means that the FIRST time HomER is executed, the
program may be unresponsive while these files get generated. Subsequent times HomER
is run, the program should launch almost immediately.

 1.4: Updating future releases:

 Future releases of the HomER program will be available distributed containing
only the HomER.exe and HomER.cfg files. These files will be signifigantly smaller in
size, since they will not include the MCR installer. To update the HomER program,
simply replace the original (older) copies of these two files. The HomER_MCR folder
should also be erased. This folder will be recreated the first time the new release is run.

 23

 24

Chapter 2: Data format and Preprocessing

2.1: NIRS file format:

 HomER accepts files with the extension *.nirs. These are simplily the standard
Matlab format files, renamed with the .nirs extension.

--
Note on saving/reading files in Matlab:

 Although the .nirs files are standard Matlab format, certain steps must be taken to

read or save Matlab files with extensions other then *.mat. The following code is
an exsample of how to save a file with the .nirs extension. More information
about this issue can be found in the files distributed in the Sample Data folder.

 >> sampleData= rand(30,1); %create some variable to save

 >> save(‘MySampleData.nirs’,’sampleData’,’-MAT’); %the save step

The –MAT flag allows files to be saved with
extensions other then .mat

 >> clear sampleData

>> load(‘MySampleData.nirs’,’-MAT’); %Reloads the file. Again, the -

MAT flag is required to load the
.nirs ext.

More information about saving in Matlab with various extensions can be found
at:

 (http://www.mathworks.com/access/helpdesk/help/techdoc/ref/save.html?cmdname=save).

 And Loading at:
 (http://www.mathworks.com/access/helpdesk/help/techdoc/ref/load.html)

--

2.2: Data Format:

Several sample nirs data files are included in the download of this program.
Sample scripts used to generate these files are also included as templates for creating
*.nirs data files.

The structure of each data file has a mimimum of 5 basic (required) fields. There are a
number of additional, optional fields that can open additional features of HomER.

 25

d - This is the actual raw data variable. This variable has dimensions of <number of

measurements> x <number of time points>. Rows in d are mapped by the
measurement list (ml variable described below). The d variable can be complex
(as in the case of sine-cosine demodulation for the laser carrier frequencies).

ml - The measurement list. This variable serves to map the data arrays onto the probe

geometry. This variable has the size <number of measurements> x <4>.
 Each row of this matrix describes the corresponding column in the data matrix.

For example, the third row in ml (i.e. ml(3,:) in Matlab) describes the third
column of the data matrix (i.e. d(:,3)).

 Each row of the ml variable has four columns, which describe the measurement

conditions for this data. This has the format.

ml(#,:) = [source index, detector index, frequency, wavelength index]

For example, ml(5,:) = [2 3 1 1]; would imply that the data in the 5th column of
the d variable was measured between source position #2 to detector position #3.
The frequency index is 1, impling that it was a continious wave measurement.
Finally, the 4th column describes the wavelength. In this case, the 1 informs us
that this measurement was taken at the first wavelength. Wavelengths (in
nanometers) are described in the SD.Lambda variable (described later).

Note: The source and detector indices refer to the optode naming (probe
positions) and not the physical laser numbers on the instrument. Each source
optode should have 2 or more wavelengths (hence lasers) plugged into it in order
to calculate deoxy and oxy-hemoglobin concentrations. The data from these two
wavelengths will be indexed by the same source, detector, and frequency values,
but have different wavelength indices.

t- The time variable. This maps the aquisition time to index of the measurment. This

will almost always be a straight line with slope equal to the acquisition frequency.
The size of this variable is <number of time points> x 1.

s- This is the stimulus variable. This variable is used to determine the impulse train

for averaging and deconvultion. Although this variable should (ideally) be a
binary (zeros and ones) variable, with ones representing the starts of each
stimulus epoch, HomER has stimulus pruning features that allow edge detection
of raw stimulus data (i.e. a voltage line from a presentation computer).

 HomER allows for parametric stimulus experiements. To provide the timing for

multiple conditions the s variable should have dimensions of <number of time

 26

points> x <number of stimulus conditions>. Multiple condition averaging is
described in section 5.6.

SD- This is a structured variable that describes the probe (source-detector) geometry.

This variable has a number of required fields.

SD.Lambda- This field described the wavelengths used. The indexing of this
variable is the same as that used in the ml variable.

 For example, SD.Lambda = [690 780 830]; implies that the

measurements were taken at three wavelengths (690nm,780nm,
and 830nm). The wavelength index in the 4th column of the ml
variable refers to this field. ml =[<> <> <> 2] means this data was
at 780nm and ml =[<> <> <> 1] means 690nm (in the example
above).

 The number of wavelengths is not limited (except that at least two

are needed to calculate the two forms of hemoglobin). Each
source-detector pair MUST have measurements at all wavelengths.

SD.SrcPos- This field describes the position (in cm) of each source optode.

This field has size <number of sources> x 3. For example,
SD.SrcPos(1,:) = [1.4 1 0]; places source number 1 at x=1.4cm and
y=0cm.

 Dimensions are relative coordinates (i.e. to some aribitrary defined

zero point). Although the probe dimensions can be three
dimensional, display and image reconstructions are currently only
allowed in two dimensional (i.e. z=constant).

 SD.DetPos- Same as SD.SrcPos, but decribing the detector positions.

Note: In older versions of HomER, the SD variable was stored in a separate *.m script

file. This new SD variable provides IDENTICAL information to that script. The
SD variable can be created by evaluating the lines in these script files. Since
HomER is compable with the older versions of the data file format, the *.m
(probe) file can still be loaded separately. If the SD variable does not exist in the
*.nirs file, HomER will prompt you to select this probe script.

Optional variables:

 These variables are not required for basic functions, but might be usefull to get

more out of your data sets.

 27

aux- This variable specifies the recorded auxillary data. These could be physiology
measures (respiration, heart rate etc), that were recorded during the experimental
run. This data can be used to model out systemic physiology changes through
linear regression (see section 5.6) . These can also be averaged to determine the
degree of systemic response to stimuli.

 This variable has dimensions of <number of time points> x <number of

channels>.

 This variable can also be labeled “aux10” as per backward compatibility.

2.3: Version Compatibility:

 The stand-alone version of HomER is fully compatible with the older Matlab
versions of the program.

To load raw data stored in the older format, first select to load the data (see
section 3.1). Select the *.* (all file types) and select the raw data (*.mat) file(s). HomER
will then load these files. Since the older file format did not include the probe geometry
in the file (it was contained in a *.m script), HomER will ask you to select this script file.

 To load previously processed and saved files, choice to load session and select the
. file type option to find the previously saved files. Older files may need to be re-
updated since a number of fields have changed. Saved settings should be imported
properly.

2.4: Preprocessing of Data:

 HomER is written to take data from virtually any existing NIRS instrument. The
only requirement is for the data to be arranged into the signal intensity (i.e. voltage or
light intensity) verses time for each source-detector pair of interest. Since optical density
is a relative quantity (i.e. ∆OD = –log(Intenstity(time) / Intensityo)), the units or scale on
the input raw data do not matter. HomER does not reconstruct absolute changes, only
relative ones. HomER can take any combination of probe geometry and/or wavelength
selection.

 Although HomER will take any length of file (in terms of number of source-
detector pairs, length of time, or sample frequency), it is recommended that data be
preprocessed (down-sampled and/or remove source-detector pairs that are physically too
far apart to expect signal) to reduce the size of this file as much as possible. This will
make the processing within HomER much faster. For example, principle component
analysis, whether it is used or not, requires the calculation and single-value
decomposition of covariance matrices (meaning that the time required for this calculation
can be considerable for long files).

 28

Chapter 3: Starting an analysis session

 Data processing within HomER takes place on three levels:

1. Data file- This is the data at the individual experimental run level.

2. Session- This is a collection of data files that make up the data for a

single subject. For example, a single session of experimental runs.

3. Multiple Session- This a collection of multiple subjects (or the same
subject at multiple times). Only region-of-interest analysis is
preformed between sessions, since probe positioning and registration
between sessions is not prefromed.

3.1: Loading data to a session:

 Raw data is loaded into HomER by selecting the “Import Data” command (item
99) from the Files pull-down menu. Here, the user has the option to import data to a new
session or to the current session. Adding data to the current session will add data files to
the list of currently open data files. Importing data to a new session, will open a new
(blank) session for these files. If this is the first data to be loaded into a session, HomER
will prompt you to enter a session ID (i.e. a subject number etc) to identify this session.

If a data file is loaded that matches the name of an already existing one, a number index
is added to the end of the file name.

Multiple files can be selected and loaded simultaneously through import data. These are
loaded into the same session.

All files loaded within a single
session, must have the same probe
geometry (i.e. source and detector
positions and wavelengths).
Individual files within the same
session can have different
measurement lists (ml). This means
that large probes and number of
source-detector pairs can be divided
into separate files, which makes
processing faster. These
measurements will be concattinated in the averaging allowing image reconstruction (etc)
to be preformed with the full set of source-detector pairs. This is also useful for
combining overlapping measurements taken between source-detector pairs of different
distances, where the dynamic range of the detectors may force these measurements to be
split into multiple recordings.

 29

Note: Older versions of HomER accepted data files with the extension *.mat. In
addition, these files did not contain the source-detector geometry (but was stored in a
separate *.m script). The newest version of HomER is fully compatable with these older
version files. To load these files, select the *.* file type when loading files. Once loaded,
HomER will prompt you to select the probe script.

3.2: Importing a saved session:

 In addition to loading individual data files, entire saved sessions can be loaded
through the Import Session (item 100) command. Imported sessions are always added to
any currently existing open sessions. Saved sessions are given the extension *.hmr. Like
the *.nirs files, these are Matlab format files with a different extension.

In previous versions of HomER, saved sessions
were given the *.mat extension. These can be
loaded in the same way as the new format by
selecting to the *.* file type from the load window.

3.3: Closing Files/Sessions:

 Data files as well as entire
sessions can be closed by the File pull-
down menu (item 102). In both cases,
this command will close the currently
selected file or session.

3.4: Clean Memory:

 The clean memory command (item 103) removes all the non-essential fields from
memory, such as the intermediate processing steps. This will lessen the memory load and
speed up the display of data. Re-updating the data (see section 4.1),will recreate these
erased fields.

 30

3.5: Saving Data:

 Data processed with HomER can be saved for later use. Data can be saved by an
individual session (saving only the currently selected session) or by saving all sessions
(which saves all open sessions).

There are several saving options, which can affect the size of the resulting saved files.

Save minimum: This saves only the most important fields. For example, the end
filtered optical density and concentration, as well as the averaged
data.

Save in 7.0 format: One of the upgrades from earlier versions to Matlab 7.0 was

a change in the compression of the files and figures. While this
made the files more compressed, they no longer worked in older
versions of Matlab. By default, HomER will save files such that
they maintain backwards compatibility with older Matlab versions,
however, this option will save smaller *.hmr files.

 31

Chapter 4: Filtering Data

 The first step in analyzing data within HomER is to filter or update the data. This
is a required first step even if no signal processing is desired since updating creates a
number of fields that are required for averaging and eventual image reconstruction.

Updating the data should always be done as a first step to analysis.

Updating consists of a number of calculations including low and high pass filtering of the
data, principle component analysis based filtering, and calculation of concentration
changes by the Modified Beer-Lambert law.

4.1: Steps involved in updating:

 Its informative to understand the steps that are taken in updating, since it helps to
understand the amount of processing done up to each level of the analysis. For more
information, the updating/filtering code is provided in the appendix of this manual.

1. Intensity normalization. The raw intensity data is first normalized to
provide a relative (percent) change by dividing by the mean of the data.

The intensity normalized data is then low-pass and/or high pass filtered.
After high-pass filtering, unity again added to bring the data back to unity
mean.

2. Delta-optical density. The change in optical density is then calculated
for each wavelength. This is equal to:

3. Covariance Reduced dOD. Following calculation of delta-optical
density, up to two different principle component analysis (PCA) filters are
applied to the data. The first PCA filter corrects for motion in the data
(i.e. subject head movement). The second PCA filter uses the principle
components of the baseline data attempt to project out systemic
physiology.

4. delta-Concentration. The covariance reduced dOD data is then

used to calculate delta-concentration from the Modified Beer-Lambert
law. This step uses the differential-pathlength and partial volume
information set in the advanced filtering options.

() () / ONormInten t Inten t Inten=

(())OD Log NormInten tΔ = −

2

2

#1 #1
#1 2

#2 #2
#2 2

* *[] * *[]

* *[] * *[]

Lambda Lambda
Lambda Hb HbO

Lambda Lambda
Lambda Hb HbO

OD L Hb L HbO

OD L Hb L HbO

ε ε

ε ε

Δ = +

Δ = +

 32

1() []T THbX e e e OD−Δ = Δ

5. Covariance reduced dConc. Following the MBLL, a third (potential)

PCA filter is applied to the concentration data (separately for the deoxy
and oxy-hemoglobin components).

Note: The display of the data, controlled by
the menu (item 10) is listed in order in order
of increasing processing (i.e. following the
steps just outlined).

4.2: Low/High Pass filtering:

 Low and high pass filtering of the
normalized data is preformed according to
the filter cutoffs given by the edit fields
(item 3). By default, the filtering step uses
the Matlab command filtfilt, which performs

a forward and reverse (zero-phase) iir-filtering. Low-pass and High-pass filtering is done
as two separate steps.

More information about filtfilt can be found at:
(http://www.mathworks.com/access/helpdesk/help/toolbox/signal/filtfilt.html)

The default irrfilter design is a 3rd order Butterworth filter. The filter design can be
changes in the Advanced Filtering Options menu. (items 62 and 63) More information
about these filter designs can be found at the Matlab home-page. Currently, HomER
requires that both the Low and High-pass filters have the same design. The filter design
can be shown by item 64. This uses the freqz command.
(http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/freqz.html).

4.3: Motion Correction (PCA filter #1):

 This is the first of three principle component analyisis (PCA) filtering steps that

are allowed by HomER. The purpose of this step is to attempt to remove the large
motion artifacts in the data. This is done by projecting those components (eigen-
vectors) that covary between all the source-detector channels. For example, a
motion artifact will show as a large change of signal in all source-detector
channels. In a PCA analysis, the first (strongest) couple of components calculated
from the data will capture most of this motion artifact. Therefore, projecting

 33

these first components from the data, will remove these artifacts. The edit field
(item 4) sets the number of Singular-vectors that are removed.

 There are two modes for this filtering step:

1) If a single value is given in the field (i.e. nSV = 1), then the principle
components are calculated from the entire data file (i.e. all wavelengths as
one). This is most appropriate for motion correction, since motion of an
optode should affect all wavelengths).

2) If two or more values are given (i.e. nSV = [0 1]), then the principle

components are calculated independently for each wavelength. If more
wavelengths are present then values provided, the remaining are assumed to
be zero. The PCA filter then acts on each wavelength independently.

Equation:

Note on PCA filtering: The prinicple components of a data set do not equate to any one

feature of the data (for example, systemic physiology or motion (etc)). The
principle components are simpily a set of basis functions describing the data.
PCA filtering attempts to remove features of the data by determining this set of
basis functions and then rewriting the data in terms of a limited subset of them.
For example, by leaving out the first (strongest) basis function (principle
component), the “most dominant features” which covary between all source-
detector channels is removed.

 Caution should be exercised when using
PCA filtering since too much filtering (which
may mean any at all) will likely remove
components of the desired signal, since the
components of the hemodynamic response will
not in general be orthogonal to the first nth
priniple components of the data.

4.4: Systemic Filtering (PCA filter #2):

1

'
[, ,] ()

(:,1:) (1: ,1:) (:,1:) '

BaseLine BaseLine

Data

Filtered Data

C dOD dOD
v s u svd C

EigVects dOD v s
dOD dOD EigVects nSV s nSV nSV v nSV

−

=
=

=
= −

g

g g
g g

 34

 The second PCA filter uses baseline data to derive the principle components and
then projects them from the functional run data. The motivation for this is that the
principle components of the baseline data should capture the features of the systemic
physiology (blood pressure, respiration, cardiac cycle etc). Projecting these components
from the functional run, attempts to filter out these systemic fluctuations from the data.
This filter requires multiple values (one for each wavelength) to be entered into item 5.

 This Filtering step is ONLY available if baseline data is specified.

More information about this filter can be found in:

Zhang Y. et al. (2005). Eigenvector-based spatial filtering for
reduction of physiological interference in diffuse optical imaging.
Journal of Biomedical Optics 10(1).

4.5: dConc. Filtering (PCA filter #3):

 While the last two PCA filters acted on delta-Optical Density, the last PCA filter
acts on the concentration of oxy and deoxy-hemoglobin. This allows one to further filter
out systemic physisiology (which affects the venous and arterial compartments
differently). This filter requires two values (one for oxy and deoxy hemoglobin- in that
order) to be entered into item 6.

 There are two modes for this filter, which are set by item 7

1) Calculate components from data.
In this mode, the filter works the same as PCA filter #1, but acts on
concentration.

2) Calculate components from baseline

Here, the filter works the same as PCA filter #2. Baseline data
must be specified to use the filter in this manner.

4.6: Displaying the SV-spectrum:

 In deciding to use the PCA filters above, it is important to remove an appropriate
number of singular values. Removing too many will compromise the hemodynamic
response. The Singular value spectrum can be displayed (Item 9). This will display a
window showing the eigen-values for each of the principle components. This represents
the “power” in each of the components.

 35

4.7: Modified Beer-Lambert Law:

 Changes in hemoglobin concentrations are related to changes in optical density by
the modified Beer-Lambert Law (MBLL).

4.8: Absorption Spectra:
 There are several choices for the absorption of hemoglobin available. These are

selected in the Advanced Filtering Options menu (item 61). The citation of the
currently selected spectrum is given in item 59. The spectrum can be displayed
by clicking item 60.

() ()A dpfdOD L lλ μ λ λ= Δ g g

[] ()HbO HbR dpfdOD HbO HbR L lλ λ
λ ε ε λ= Δ + Δg g g g

1(') * '
HbO

E E E dOD
HbR

−⎡ ⎤
=⎢ ⎥

⎣ ⎦
g g

 36

All spectra were taken from the Oregon Medical Laser Center
(http://omlc.ogi.edu/spectra/)

 The full citations for the available spectra are:

1) (Default)

• W. B. Gratzer, Med. Res. Council Labs,
Holly Hill, London

• N. Kollias, Wellman Laboratories,
Harvard Medical School, Boston

 2)

• J.M. Schmitt, "Optical Measurement of Blood Oxygenation by
Implantable Telemetry," Technical Report G558-15, Stanford."

• M.K. Moaveni, "A Multiple Scattering Field Theory Applied to Whole
Blood," Ph.D. dissertation, Dept. of Electrical Engineering, University of
Washington, 1970.

3)

 37

• S. Takatani and M. D. Graham, "Theoretical analysis of diffuse
reflectance from a two-layer tissue model," IEEE Trans. Biomed. Eng.,
BME-26, 656--664, (1987).

The option to load a custom spectrum is a feature that is under
construction for future releases of HomER.

Multiple wavelengths: When more the two wavelengths are present, concentration is

calculated from the least-squares fit of the hemoglobin spectrum to the data.

4.9: Differential Path-length corrections:
 A DPF correction can be included in the
caluculation of concentration. This will
depend on the geometry and subject anatomy
(skull thickness etc). This can be specified for
all wavelengths together (in which case it is a
scaling factor) or individually per wavelength.

Note: Unless the option to include the DPF is
checked, neither the DPF nor the source-
detector distances are taken into account
when calculating concentration. This makes
the units on concentration, somewhat
arbitrary (i.e. Moles * cm / Liter). This is
because without the DPF correction, the
pathlength is simplily a scaling factor and is
inaccurate without this correction… meaning
that without DPF correction, one shouldn’t
trust the absolute quantity of concentration.

Partial-volume Correction: A partial volume correction to the DPF can also be
included. This correction only applies to concentration (i.e. no partial volume corrections
are ever added to dOD).

4.10: Custom Filtering:

 This feature is not allowed in the stand-alone version of HomER. In the Matlab
7.0 version, this allows for additional Matlab function calls to be added at the end of the
updating step.

 38

4.11: Filtering Options:

To be written…

4.12: Measurement List Pruning:

Pruning provides a way to remove unwanted source-
detector pairs from being included in filtering, averaging
and/or imaging (for example noisy or low signal channels).
This can be done on the basis of source-detector seperation
distances, min/max raw data intensities, or manually by
clicking on the SD-geometry (item 2). Removed
measurements will appear as dotted lines on the probe.
The entire measurement list can be reset by the button
above the probe geometry.

Removed measurements are NOT included in the PCA
analysis. These means that the principle components are
calculated from only the remaining (active) measurements.
Leaving noisy measurements in will create unwanted

results in the PCA analysis.

 39

Chapter 5: Averaging the stimulus response

5.1: Pre-conditioning the stimulus:

The stimulus train is calculated from the “s” variable. To determine the timing of
the stimulus, an edge detection can be preformed on this data. This will find the rising
edge of each stimulus block. This is designed for dealing with finding the edge of (for
example) voltage signals recorded from presentation computer.

Stimulus Threshold- The relative change in signal above which the point is

assumed a stimulus.

Tsep- The minimum time seperation between stimuli.

The Reset Stim button recalculates the stimulus train from the “s” variable.

The stimulus points are displayed on the data by the Stimulus toggle button. The View
Original Stim button will display the original s variable (in blue) on the graph as well.

5.2: User-Defined Stimuli:

 In addition to supplying the stimulus timing in the s variable with the file, the
stimulus timing can be manually entered.

 Stimuli timing is entered by either listing the times (in seconds) for the start of
epoch or (for periodic timing) the stimuli can be specified by:

[Start time: step: Stop time]

 For example, a stimulus that occurred every 20 seconds, starting at 10 sec for the
entire 6 minutes of the run would be specified by:

[10:20:360]

This would put stimulus points at 10,30,50,70… seconds.

To specify HomER to use the user-defined stimulus
timing, the user-defined stimulus timing field must be
filled (item 32) and the toggle button (item 31) must be
down.

 40

5.3: Removing individual stimulus points.

 HomER allows you to remove individual stimulus points from the analysis (for
example, those points that occurred during a motion artifact etc). This is done by
clicking on the green stimulus lines, which turn to red, dotted lines when inactive.

Clicking on the line again
will restore the point.
The Reset Stim button
will restore all stimulus
points.

5.4: Removing blocks of
data.

 A second feature
that allows stimulus
points to be removed
from the analysis is to

remove entire blocks of time. This is more appropriate when dealing with deconvolution
against the stimulus timing, since the removal of a line would result in the linear
regression model considering that epoch as baseline, when in fact it is a noisy activation.
Removing blocks of data is done by
first RIGHT-clicking on the plot
window (item 1). This brings up the
context-menu for the window, with a
number of other features on it.
Chosing to Remove Data, you can
select a region of time with a drag-
window (click once and then drag
the rectangle around the area to
remove). This period of time will be
highlighted in red.

To reset the data, choice the Reset
Data feature in the same menu. Choicing not to OverLay TDML (for time-domain
measurement list) will make the red area disappear, but the data is still removed.

 Upon averaging or deconvolution, this data block will be masked out of the
analysis.

Note: Removing data will have an effect on the efficiency of the deconvolution (stimulus
design matrix). This should be used carefully. The features to display the residual (and
studentized residuals) should serve to help recognize outliers (artifacts) in the data.

 41

5.5: Setting the time of the HRF:

 The pre and post-stimulus times over which the hemodynamic response function
(HRF) is calculated are set by items 23 and 24. This is set for each regressor (stimulus
condition) individually.

In the case of averaging, sufficient time (before and after) the
stimulus point must exist to include a stimulus epoch in the
average.

5.6: Multiple Conditions/Regressors:

 One of the new features of HomER is that it now has
the ability to analyze data from parametric studies (i.e. multiple types of stimilus
conditions mixed in the same file). The term “Regressor” is used here because of its
meaning in the context of the linear regression analysis that is being applied. The
regressors that are allowed can be not only multiple condition types, but “nuesience”
regressors as well. For example, a systemic phyisiology recording (i.e. blood pressure)
can be used as a regressor to filter out the blood pressure contibution of the signal (or to
find the blood-pressure response
function).
 Regressors are added or removed
under the Advanced Averaging Options
menu. Allowed regressors include any
stimulus conditions contained within the
s variable or any of the auxiliary
measurements (aux variable) if present.
The default regressor is the StimOn
regressor, which is the first column of
the s variable.

 After selecting which regressors
to use, the timing for each regressor can
be independently set. All files for that
session automatically get the same set of
regressors and pre/post timing. The
different regressors are selected by the popup menu that appears if multiple regressors are
loaded. When importing new files to a session, the option is given to carry these settings

over as well.

 The stimulus condition regressors (i.e.
those in the s variable) can be displayed and
stimulus points removed as described in the

 42

previous sections. Those from the auxillary variable cannot be pruned.

In addition the design matrix (item 87) and the covariance of the design matrix (which
tests multi-colinearity of the regressors) (item 86) can be displayed for the choice of
regressors. These should be used to judge the efficiency of the design.

Equation:

Note: Colinearity between regressors can cause the design matrix to be ill-conditioned.
This will result in warning messages, but more importantly, will create undesired (and
often horribly misleading) results. This can be avoided by carefull planning of the
stimulus timing when creating parametric stimulus experiments.

5.7: Averaging:

 Block averaging of the data can be preformed once the response pre/post timings
have been set and the stimulus is in order. Block averaging is preformed by averaging all
active data blocks (i.e. those shown as green active stimulus points). Averaging is first
preformed within a single run and then averaged across data files. Data files marked as
baseline data are ignored (even if they might look to have stimulus points in them).

Averaging is also preformed separately between the even and odd stimulus points before
being averaged together. This allows the results from the even and odd stimuli to be
displayed independently, a feature, which helps identify artifacts that can arise from a
single bad data epoch.

 If multiple regressors (conditions) are selected, HomER averages only those
which have binary data (i.e. distinct stimulus points, such as those loaded in the s
variable). Regressors such as systemic physiology are ignored (and a warning message is
given as such).

More detailed information about averaging is found in the appendix to this user’s guide.

i i
i

dConc IRF Regressor=∑ g

1_
(') '

_
Stimulus IRF

X X X Conc
Physiol IRF

−⎡ ⎤
= Δ⎢ ⎥

⎣ ⎦
g g g

 43

Note: The response functions for delta-optical density and delta-concentration are
preformed separately. Optical density responses are calculated from the covariance-
reduced optical density. Concentration responses are calculated from the covariance-
reduced oxy and deoxy-hemoglobin concentrations. These two averages may not be
completely consistent with each other, since the cov-reduced concentration data has an
additional PCA filtering step.

5.8: Deconvolution:

 The check box (item 26) determines whether a block averaging or linear
regression (deconvolution) is performed. In the case of deconvolution, a linear regression
of the data against all of the selected regressors is performed.

There are several good resources on linear regression to which the user is referred
for a more detailed description. Linear regression attempts to model the data as a linear
superposition of the contribution of all the regressors used. In other words, the
contribution from the stimulus (functional response) is the stimulus timing convoluted by
the hemodynamic response function (impulse response). Similarly, the contribution from
(for example) the cardiac cycle could be modeled as an EKG recording convoluted with a
cardiac impulse response function. Linear regression (as used in HomER) attempts to
calculate these various impulse response functions.

 A more detailed description of the linear regression calculations used in HomER
are included in the appendix.

Note: The use of systemic regressors (such as blood pressure and cardiac cycle) can
allow for the calculation of a “cleaner” functional hemodynamic response. This should
be used carefully since systemic changes may often be stimulus correlated (i.e. heart rate
changes as the subject performs the task).

Note: The response functions for delta-optical density and delta-concentration are
preformed separately. Optical density responses are calculated from the covariance-
reduced optical density. Concentration responses are calculated from the covariance-
reduced oxy and deoxy-hemoglobin concentrations. These two averages may not be
completely consistent with each other, since the cov-reduced concentration data has an
additional PCA filtering step.

5.9: Auxillary Average:

 HomER also allows for the averaging or deconvolution of the auxillary channels
(if present). This is done by item #91 on the Advanced Averaging Menu. This is done
exactly the same as with the data.

 44

The auxillary averages do NOT automatically update if the averaging conditions change.
The average auxillaries button must be pressed each time to reflect the changed
parameters.

 45

Chapter 6: Image reconstructions

 Following averaging, image reconstructions can be created for any of the
regressor variables (stimulus conditions).

 Calculation of the forward solutions (i.e. 3pt Green’s functions) and inversion
techniques use functions from the PMI Toolbox (also separately available for download
at http://www.nmr.mgh.harvard.edu/PMI/). Additional documentation related to these
functions is included with this package.

 Image reconstruction in HomER currently only supports back-projection methods
and linear forward models created from semi-infinite (homogeneous) slab geometries.

6.1: Medium Properties:

 The medium properties, including the absorption and reduced scattering
coefficients, as well as the voxel dimensions and reconstruction depth are set by items
48-50 on the imaging tab menu.

 The absorption and reduced scattering coefficients are defined sepreately for each
wavelength. If less values are provided then wavelengths, the remaining wavelengths are
assumed to have the properties of the last index.

Note: Although the forward matrixes are computed to project changes in optical density,
HomER allows image reconstruction of concentration changes using the same forward
matrices. In the case of concentration image reconstruction, a spectrally weighted
forward matrix is used (the average of all the wavelengths weighted by the extinction
coefficients).

6.2: Image Reconstruction:

 There are three steps to the reconstruction of images:

1. Make Forward Matrix:
This function generates the forward models for image reconstruction using
the PMI toolbox function genBornMat. This step must be repeated each
time the measurement list (see section ??) changes or when switching
image types (dOD, concentration, or Contrast/Noise images).

2. Invert Matrix:
This function inverts the forward matrix using a back-projection
technique. This function uses the inversion technique selected under the
Tomography Options menu (see section ??). The default is a back-
projection method.

 46

3. Make Image:
This final command generates and displays the reconstructed image in a
new window.

6.3: Image Display:

 The displayed image is controlled by a number of additional fields on the HomER
interface. These control the time range that the image is derived from as well as what
type of image is displayed.

6.3.1: Controling the image timing:

 The image displayed is the average change over a period of time. This timing is
controlled by the positioning of the red control bar (item 57) which appears at the bottom
of the averaging window. Clicking above this line moves the length of the time range,
while clicking below it controls the start time.

Note: Item 57 is also used in some of the statistics menus. To move the time range
without changing the image timing, toggle the Display Image button to the off position
(item 56).

Note: Multiple images (with different timings) can be opened at once. This is achieved
by clicking the Make Image button again. A new window will appear. The timing and
scaling controls now ONLY affect the newest window.

6.3.2: Controling the image scale:

Image types:

 Images are reconstructed for the currently selected regressor. There are three
choices for image types:

1. delta-Optical density
This will display an image reconstructed from the cov-
reduced dOD average response. Each wavelength will be
displayed.

2. Contrast-to-noise ratio:
This will display an image of the contrast-to-noise ratio of
dOD. The noise is taken as either the standard error of the
the (cov-reduced) baseline dOD (if baseline is available) or
as the standard error of the pre-time (up until the zero-
point) for the average response.

3. delta-concentration:

 47

This will display images reconstructed from the cov-
reduced oxy and deoxy-hemoglobin (with total hemoglobin
being the sum of the two). The forward matrices used top
generate these images use the spectrally weighted average
of the wavelength specific forward models.

6.3.3: Overlaying the probe geometry:

 The Advanced Imaging Menu provides the option to overlay the probe geometry
on each image.

6.4: Movies:

 Once images are reconstructed, movies of the entire response can be created and
saved as AVI files (which can be viewed in most media views or inserted into
PowerPoint presentations). All movie commands are found on the processing pull-down
menu under imaging.

Make Movie: This command generates the movie from the collection of images.
Only one set (i.e. wavelength or hemoglobin species) is generated at a
time (all are processed sequentially).

Note: Make Movie uses the Matlab function getframe. Because of this the movie

must be displayed to the screen as it is generated. Do NOT close this
window until the movie has been fully created (the window will
automatically close).

Play Movie: This command plays the movie in a new window. The Matlab
movie function first plays the movie quickly (which is Matlab loading it
into memory) and then it plays it again at normal speed.

Save Movie: This command allows you to save a movie once created (movies

do not need to be played before being saved). HomER will prompt for a
directory and file name for the *.avi file.

Each wavelength (or concentration) will be saved with the suffix
‘_###nm.avi’ or ‘_HbX.avi’ added to the file name. A separate file is
generated for each movie type.

Delete Movie: Movie variables are rather large and tend to really slow the

HomER program when in memory. Deleting movies removes them from
the memory.

6.5: Movie Options:

 48

 The Advanced Imaging Menu allows one to control the display speed and *.avi
compression level (type) of the movie file.

Tomography Options:

 This menu allows the user to chose from a selection of inversion techniques.

This section of the user’s guide is not yet written

 49

Chapter 7: Data display and Export

 The data processing in HomER is probably just the beginning of the processing
needed to turn an experiment into a proper publication, therefore HomER allows several
ways to display or export the data so it can be used in other processing.

7.1: Data Export Options:

Saving data fields: By Right-clicking on any of the display windows, the option
to save data will be provided. This will allow the user to export the data
type that is currently being displayed (i.e. that entire variable) to either a
Matlab file (*.mat) or as an ASCII file (which can be read by Excel or
other programs). This is done by selecting the save type on the put-file
menu (either *.mat or *.dat).

 The saved date file will be organized into a column vector for each

measurement. The ml variable refrences each column. This variable is
saved along with the data with the *.mat option (but not in ASCII files).

 Note: Certain fields are not allowed to be saved as ASCII files. These

include delta-concentration (since it is a three-dimensional array
[measurements x time x {HbO2, HbR, HbT}] and would need to be saved
as three separate files) and the SD geometry (right-clicking the probe
geometry-item 2).

Copy data: This feature copies the data to the Windows clipboard. This is

done by right-clicking on a displayed data line.

Saving session data: Anouther option for exporting the data is to interface

directly with the .hmr format by saving the entire session. This format is
described in the appendix to this guide.

7.2: Data Display:

Note: Since HomER is being run as a Matlab 7.0 program, all figures saved as .fig
files will be compressed in the 7.0 format. This format will not be readable from older
Matlab versions (in other words, the figure files will not be able to be re-opened!!!).
To get around this problem, when saving figures, one should choice to Save As into a
format which will be readable (for example as a tiff or jpeg image). All other data
saving (.mat) is done in backward compatible format by default (but I never figured out
how to change the menu defaults on the figures in a stand-alone program)

 50

 There are a number of options for the display of data. Most of these are context
specific, meaning that the options available depend on the processing (i.e. whether
a block averaging or deconvolution was preformed etc).

 Most of these options require no additional explanation. Here, however, are a few

of the finer points to these controls.

7.2.1: Displaying Error-bars:

 Data that has been block averaged will have error-bars (both standard deviation

and standard error) associated with it. Which of these the error-bars reflect is
determined by right-clicking on the average display window and selecting the
choice under plot options.

7.2.2: Confidence-bounds:

 Data that has been processed by linear regression will have confidence bounds

associated with it. This is accessed by right-clicking on the average display
window under plot options. This will over-lay the 95% confidence bounds on the
average response.

 Note: The option to display confidence bounds is only available AFTER statistics

(see section 8.x) have been calculated on the data and only for the linear
regression model.

7.2.3: Residuals:

 The residuals of the data that has been processed by linear regression

(deconvolution) can be displayed by right-clicking on the main display window
(item 1) and selecting plot residuals under plot options. These will be plotted in a
new window. This is only available for cov-reduced dOD or dConc.

 Note: The option to display residuals is only available AFTER statistics (see

section 8.x) have been calculated on the data and only for the linear regression
model.

7.2.4 Model Fit:

 The modeled response of the data that has been processed by linear regression

(deconvolution) can be displayed by right-clicking on the main display window
(item 1) and selecting plot model under plot options. The model is the regressor
data convoluted by the impulse response function(s). (i.e. Data – Model =
Residuals). The model is plotted as dotted lines over the cov-reduced dOD or
dConc. data

 51

 Note: The option to display model is only available AFTER statistics (see chapter
8) have been calculated on the data and only for the linear regression model.

7.3: Plot in new window

All display windows can be replotted in new windows by right-clicking on the
original display and selecting New Figure.

7.4: Plot All:

The command to Plot All (item 108) will open a new window and plot the average
response for each (active) source-detector pair as they are spatially distributed.
This will plot the data as either dOD or dConc according to the display controls.

Although this feature works well for simple probe geometries, complex or
overlapping probes may not be displayed properly with this option.

7.5: Plot PSD:

This will display the power-spectrum density (i.e. Fourier Transform) of the data.
This will not be available for concentration data.

7.6: Display All:

This option will display the data as a psuedo-colored image of <measurement
channel> verses <time>. The measurement channels are referenced by the ml
variable.

 52

Chapter 8: Statistical Analysis

HomER can perform a number of statistical tests on the data, which can help
determine the proper way to process the data. These use many functions from the
Matlab Statistics toolbox. These are built into the stand-alone version, but are
required for the full function of the code under Matlab.

8.1 Processing Statistics:

 Statistics are calculated by the (Re)Calculate Statistics command (item 90) on the
Advanced Averaging Menu. This command will perform an ANOVA analysis for the
model fit on the entire time course. This also performs an effects analysis on the
functional responses.

 If the Display Avg. All toggle button is down (i.e. the session average is being
displayed), then the Calculate Statistics button will calculate the statistics for the session
average. If this button is up, then only the currently displayed data file is processed.

ANOVA analysis:

 An analysis of variance (ANOVA) analysis is preformed on the model fit

This section of the user’s guide is not yet written

 53

Chapter 9: Region-of-interest Analysis

This section of the user’s guide is not yet written

 54

Chapter 10: Sample Data walk-through:

Example 1:
Simple_Probe.Nirs

This example data file is the simplest probe, with onle a single source and 4 detectors.
This tutorial will walk you through how to load, filter, average, and finally save data
using this data set.

1) The first step is to load the data. This can be done by selecting the “Import Data”

command on the Files pull-down menu (item 99). You can select to either import
to current session of new session (for now it doesn’t matter). This will launch a
window allowing you to select the (*.nirs) data file to load. Select the one called
“Simple_Probe.nirs” from the Sample Data folder downloaded with the HomER
package. You will then be prompted to enter the session ID (i.e. a name to
identify this session).

 55

2) After selecting the file, HomER should appear as shown to the left. The probe
geometry is shown in window 2. Clicking on this window will select different
source-detectors to display. You can select which wavelength is displayed by
item 11. There are 2 wavelengths in this file. Only “Raw Data” is avalaible until
the data has been updated.

3) The next step is to UPDATE the data. First, enter the filter parameters into the

edit fields (item 3). The first field sets the low-pass filter (LPF) and the second
sets the high-pass filter (HPF). To ignore one or both of these filters, the fields
can be entered as “[]” (empty set). Once one of these fields has changed, HomER
will make visible the “Update buttons”. Click here to update the files. This will
apply the filter settings and (since this is the first time through), this will create
the delta-optical density (etc) fields.

4) Once updated, you can now change the view to display processed data traces (as
shown to the left). Concentration data is additionally displayed by the
Figures>>Display Options>>Concentrations pull-down menu. This lets you
select to display HbO2, HbR, or total-Hb species.

You can display the data in a new window by right-clicking with the mouse on
the window. The data can also be copied to the clipboard by right-clicking on a
data line. Data can also be exported to file (either ASCII or Matlab) in this way
as well.

The choices for displaying data are given in order of increasing processing (for
example, raw data is the least processed, while Covarience reduced
dConcentration has the most filtering/processing applied to it).

 56

5) You can now calculate the average response. Switch to the averaging menu by
selecting the averaging tab on the bottom of the screen. This will bring up
options for displaying the stimulus.

To display the stimulus, click on the toggle-button called “Show Stim”. This will
plot green lines showing the start of each epoch. This was taken from the “s”
variable that is part of the nirs file structure. This variable may need to be
manually pruned slightly to make it correct (for example, if the s variable was
recorded from a stimulus computer and may need edge detection applied to it to
determine the start times). The Stim Thresh variable controls the minimum
amplitude of an edge (in normalized units of the derivative of the s-variable). The
Stim Tsep sets the minimum time seperation between stim events. Reset Stim
(available after one of these fields has changed) applies the changes and replots
the epochs.

Stimulus epochs can be removed by mouse clicking on the green lines. This will
change the line color to red, indicating that the epoch is inactive. This can be
used to manually remove epochs that have too much noise (i.e. motion artifacts).

 57

The timing for the response is set by the PreTime and PostTime fields. This is the
time before and after the stimulus start (green line) to calculate the response.

Once the stimulus has been satisfactorally modified, you can click the button
called “Calculate Average”. This will perform a block average of the epochs. In
the case shown the the left, since the last stimulus was removed (i.e. a red line),
the average is calculated from only the first two epochs. The response is now
plotted in window 3.

6) You can now add statistics to the response. First open the Advanced Averaging
Options menu. Now click the “Calculate Statistics” button. (The option to always
calculate stats is given above this… this will automatically perform this analysis
everytime the average button is clicked, but this can become computationally expensive
for larger data sets).

 58

Once the statsistics have been calculated, you can view them by using the mouse to right-
click on the red bar on the plot window. This red bar selects the contrast timing for the
statistics (also for image reconstruction). This will bring up a menu with information
about the effects analysis of the hemodynamic model.

If you right-click on a data trace in the window, you can display the ANOVA information
about the individual source-detector data.

Lastly, we can save our analysis for loading again in the future. This is done under the
pull-down menu FILES>>Save Data. In this case, (since we only have a single session)
we want to save session. This will bring up the window prompting us to select a file
name and directory. Saved data will be given the extension *.hmr.

If we had multiple sessions open, “save all sessions” saves everything, while “save
current session” only save the currently selected session.

 59

Example 2: Image Reconstruction

 This next example uses the OverLapping_Probe.nirs sample data file to
demonstrate some of HomER’s image reconstruction features.

1) First, load the sample file named “OverLapping_Probe.nirs” following the steps
outlined in the previous example.

2) Filter

(Update) and average the data as done in example 1. The result should be similar
to the figure below. Once the data has been averaged, we can now reconstruct
images. This sample data has overlapping measurements, which allows us to
perform tomographic reconstructions (rather then simple back-projections)

3) Go to the Imaging window by clicking on the imaging tab on the lower right.

You can specify the dimensions of the reconstructed image as well as the
absorption/scattering coeffiecients for each wavelength. The default depth for the
image is 1cm deep.

 60

4) Make the forward matrix by clicking the “Make Matrix” button.

5) Invert this matrix using the “Invert” button. Since we haven’t changed any of the

settings yet, this will use the default, which is to perform a back-projection of the
data.

6) Click “Make Image” to make the final image. A new window should pop-up with

the dOD images in it. These images are the average HRF contrast over the time
window defined by the red bar in window 3. Clicking on this bar (and dragging
it) will move the contrast window and update the image.

You can change the scaling of the image by manually changing the Max/Min edit
fields (type 999 to use autoscaling).

7) You can change the appearance of the images by clicking the button called
“Display options”. This will bring up a new window as shown to the left. The
check boxes for showing probe on image or colorbar will add these to the image
as shown. The images may need to be redisplayed (i.e. click display image or the
red bar) before these changes take effect

8) We can also perform tomographic reconstructions of images. To demonstrate
this, first change the data type from dOD to dConc (item 53). Now, click the
button marked “DOT options”. It will pop-up a new window as shown to the left.

 61

Since we are now reconstructing dConc, we will be using spectral priors in the image
reconstruction (i.e. see: Li et al. 2004. Optics Letters 29(3): 256-259). You can
adjust the regularization amount through the “a” edit field and also the type of noise
term that is used. This probe will still require quite a bit of regularization. The “Make
Image” button applies these settings (this is the same as the “Make Image” button on
the main page).

9) We will now reconstruct a movie of the activation and export it to a avi file so

that we can use it later. First select Processing >> Imaging >> Movies from the
top pull-down menu.

Now, chose the function to make movie. This will start forming the movie in a
new window. This function uses the matlab function getframe, which means that
it must plot each image before adding it to the movie. During this process, DO
NOT close the window (this could result in an error). The window will
automatically close when finished.

 62

10) After creating the movie, the “Save Movie” button will allow you to export
the movie(s) to avi files, which can be viewed in Windows Media player.

11) Now, let’s play with some statistics. To calculate the statistics of an image,
click the “calculate statistics” button under the Adv Imaging Options menu
(shown below). This will calculate the effects and standard deviation maps for
the stimulus response.
This process can be rather time consuming since it needs to loop over all files
(especially if there is multiple regressors).

Once the statistics have been calculated, you can display an effects map (T-statics
map). The “Show T-map” button will plot these images in a new window. The
value displayed is the –Log(P) [negative log of the p-value] (i.e. the probability
that the stimulus response is signifigantly different from baseline over the contrast
range). As with the image display, the contrast range used to calculate effects is
defined by red bar in window 3.

12) We can also perform some region of interest analysis. First click the ROI tab
to the right of HomER.

We can choice to calculate an ROI based using all channels, only those in our
active measurement list, or defined by T or F-statistics.

Here, let’s find the ROI defined by the statistics we just calculated.

First, select to “Use Image” to define the ROI (the other choice is to do this in
source-detector space).

 63

Clicking the button “Define Threshhold” will open a window
with the image. The slider bar to the right is used to set the
thresh-hold. Pixels included in the ROI will be shown in red
(see below).

We have now defined the ROI, to calculate the average, first select
whether you want this ROI calculated from the first, second, or union of
wavelengths (union means the pixel must be active in all wavelengths to be
included).

Since we want to use the statistics to define the ROI, we must also select

the “Use statistical ROI” option.

Click the calculate ROI button.

 The ROI time course will now be shown in the window.

 64

 13) Under the Figures pull-down menu at the top of HomER, the option to Plot
All will display an image of the probe showing the time-course for each source detector
pair. This is displayed as dOD or dConc (Red-HbO2; Blue-rHb; Green- total-Hb).

 65

Example 3: Multiple Regression.

This section has yet to be written…

 66

 67

 68

 69

Appendix I: HomER data format

 This section describes the format of the HomER variable (DOT).

The DOT variable is a structured cell array. Each session is indexed to a cell in this
array. For example, DOT{1} returns the fields for the first session (cells are indexed
with curly {} brackets).

Session Fields:

 DOT.subjectNum ------------ Session (Subject) Name
 DOT.SDGfilenm ------------ Source-Detector file Name
 DOT.SDGpathnm ------------ Path to Source-Detector file

 DOT.SD ------------ Source-Detector Variable

 DOT.SD.Lambda ------------ Wavelength List
 DOT.SD.SrcPos ------------ Source Positions
 DOT.SD.SrcAmp ------------ Source Amplitude (Gains)
 DOT.SD.DetPos ------------ Detector Positions
 DOT.SD.DetAmp ------------ Detector Amplitudes (Gains)
 DOT.SD.nSrcs ------------ Number of Sources
 DOT.SD.nDets ------------ Number of Detectors

 SD.color ------------ Colors used in displays
 SD.currentFile ------------ Index to currently selected file
 SD.plotLst ------------ Indices to currently plotted data
 SD.SrcPicked ------------ Source position currently picked
 SD.ImgAvgStart ------------ Start timing for contrast timing
 SD.ImgAvgLen ------------ Length of timing for contrast

 SD.data ------------ Data file structure- see below
 SD.dataAvg ------------Averaged file structure- see below
 SD.img ------------ Recon Image structure- see below
 SD.roi ------------ ROI structure- see below
 SD.roiAvg ------------ ROI (multi-session)- see below

 70

Data Fields:

The data (raw through processed) for each data file within a session is contained within
the DOT.data(file) variable. This is a structured arrary, indexed by the file number.

%File descriptors

DOT.data.FILEpathnm ------------ Path to the file
DOT.data.filenm ------------ Name of the data file
DOT.data.BaselineData ------------ {Flag} – is file baseline data

% Filtering parameters

DOT.data.lpf ------------ Low pass filter value
DOT.data.nSV ------------ # of SV to remove by PCA #1
DOT.data.hpf ------------ High pass filter value
DOT.data.nSV_dOD ------------ # of SV to remove by PCA #2
DOT.data.nSV_dConc ------------ # of SV to remove by PCA #3
DOT.data.dOD_UpToDate ------------ {Flag} – is filtered?
DOT.data.avgUpToDate ------------ {Flag} – is averaged?

% Data fields

DOT.data.MeasList ------------The ml variable
DOT.data.MeasListAct ------------ Active measurements (binary)
DOT.data.nMeas ------------Number of Measurements
DOT.data.Sact
DOT.data.Dact

DOT.data.raw ------------The orignal (d variable) data
DOT.data.norm ------------Intensity Normalized, LPF
DOT.data.norm_cov ------------Cov Reduced (PCA #1)
DOT.data. Intens_hpf ------------The high-pass filter correction
DOT.data.dOD ------------delta-optical density
DOT.data.dODc ------------Cov-reduced dOD (PCA #2)
DOT.data.dConc ------------delta-concentration
DOT.data.dConcc ------------ Cov-reduced dConc (PCA #3)

DOT.data.t ------------ The time (t) variable
DOT.data.svs ------------ Single-value spectrum (PCA #1)
DOT.data.svsConc ------------ Single-value spectrum (PCA #3)

DOT.data.Aux ------------The auxillary data

 71

% Data Averaged fields

DOT.data.HRF ------------Hemodynamic response-see below
DOT.data.AuxAvg ------------Auxillary response-see below
DOT.data.TDML ------------Block removal matrix

DataAvg Fields:

DOT.dataAvg.MeasList ------------The ml variable for combined files
DOT.dataAvg.MeasListAct ------------ Active measurements (binary)
DOT.dataAvg.HRF ------------Hemodynamic response-see below
DOT.dataAvg.HRF_stats ------------Response statistics-see below

HRF Fields:

The hemodynamic response variable (under either DOT.data.HRF, DOT.DataAvg.HRF,
DOT.ROI.HRF, or DOT.ROIavg.HRF) describes the averaged data from the individual
file, average of all files in a session, region-of-interest average within a session, or
region-of-interest average between sessions. This structure is indexed by regressor (i.e.
HRF(1) first regressor).

DOT.[].HRF.type ------------Regressor name
DOT.[].HRF.regdata ------------Regressor data variable
DOT.[].HRF.StimOn ------------Stimulus variable (if binary)
DOT.[].HRF.numStim ------------Number of epochs (if app)
DOT.[].HRF.pretime ------------Pretime of impulse response
DOT.[].HRF.posttime ------------Posttime of impulse response
DOT.[].HRF.lpf ------------Low-pass value (if used)
DOT.[].HRF.hpf ------------High-pass value (if used)
DOT.[].HRF.UseFilter ------------Flag- pre-filter regressor?

Response data:

DOT.[].HRF.tHRF ------------Response timing
DOT.[].HRF.nHRF ------------Number of degrees of freedom

DOT.[].HRF.Avg ------------dOD (covariance reduced) average
DOT.[].HRF.AvgC ------------dConcentraion average
DOT.[].HRF.AvgOdd ------------dOD (odd epochs only)
DOT.[].HRF.AvgEven ------------dOD (even epochs only)

 72

DOT.[].HRF.AvgStdErr ------------Standard Error dOD
DOT.[].HRF.AvgStd ------------Standard Deviation dOD
DOT.[].HRF.AvgCStdErr ------------Standard Error dConcentration
DOT.[].HRF.AvgCStd ------------Standard Dev. dConcentration

HRF statistics (regressor specific):

DOT.[].HRF.to ------------dOD T-statistics
DOT.[].HRF.P ------------dOD T-statistics (p-value)
DOT.[].HRF.Conf_High ------------dOD 90% upper bound
DOT.[].HRF.Conf_Low ------------dOD 90% lower bound

HRF_Stats Fields (ANOVA):

DOT.dataAvg.HRF_Stats.Fo ------------Model F-Statistic
DOT.dataAvg.HRF_Stats.P ------------Model F-Statistic (p-value)
DOT.dataAvg.HRF_Stats.StdRes ------------Studentized residual
DOT.dataAvg.HRF_Stats.PRESS ------------PRESS statistic
DOT.dataAvg.HRF_Stats.R2Adj ------------R^2 (adjusted) statistic

Img Fields:

DOT.IMG.A ------------Forward Model
DOT.IMG.Ainv ------------Inverse Model
DOT.IMG.Medium ------------Forward Model Medium

DOT.IMG.Medium.idxRefr ------------Index of refraction
DOT.IMG.Medium.Muao ------------Absorption coefficient
DOT.IMG.Medium.Muso ------------Reduced Scattering coefffienct
DOT.IMG.Medium.g ------------Anisotopic factor
DOT.IMG.Medium.Geometry ------------Semi infinite
DOT.IMG.Medium.Slab_Thickness ------------Slab thickness (cm)

DOT.IMG.Medium.CompVol
DOT.IMG.Medium.CompVol .Type ------------“Homogenous”
DOT.IMG.Medium.CompVol .X ------------X coordinates (cm)
DOT.IMG.Medium.CompVol Xstep
DOT.IMG.Medium.CompVol Y ------------Y coordinates (cm)
DOT.IMG.Medium.CompVol Ystep
DOT.IMG.Medium.CompVol Z ------------Z coordinates (cm)
DOT.IMG.Medium.CompVol ZStep

DOT.IMG.img ------------Reconstructed Image

 73

DOT.IMG.tHRF ------------Image response timing
DOT.IMG.Movie ------------Stored Movie

 74

Appendix II: Technical Reports

DOTFilter:

This function performs the filtering step on the current session. This function is
included in its entirety in the Open Source folder with this download.

function DOT = DOTFilter(DOT, varargin)
%This function applies all the filtering to the raw data
%
%Written by T. Huppert and D. Boas
%Copyright 2004 MGH
%
%Flags:
% -waitbar if flagged will display waitbar to show progress
% -detend will do final detrending of the HRF
%
%
%Required Fields:
%DOT.data(files).raw
%DOT.data(files).hpf
%DOT.data(files).lpf
%DOT.data(files).nSV
%DOT.data(files).nSV_dOD
%
%
% Output variables:
% DOT.data(cf).Inten_Filt
% DOT.data(cf).norm
% DOT.data(cf).norm_cov
% DOT.data(cf).dOD
% DOT.data(cf).dOD_UpToDate

%Set the default flags
useWaitbar=0;

%Default Filter parameters
AdvOptions.FiltOptions.FilterType=1; %Default Butterworth
AdvOptions.FiltOptions.FilterOrder=3; %Default 3rd order

%Read in any flags
%This is a varargin switch-yard. Flags are passed into the program and
%sorted.
if nargin>1
 for flag=1:nargin-1
 try
 switch(varargin{flag})
 case '-waitbar'
 useWaitbar=1;
 h=waitbar(0,'Updating...');
 figure(h);
 drawnow

 75

 case '-AdvOptions'
 AdvOptions=varargin{flag+1};
 end
 end
 end
end

%%%
cf = DOT.currentFile; %Grab the current file being used in this

session

Intens = DOT.data(cf).raw; %set d1 to the raw data then find the mean
of the raw data
fs = 1/(DOT.data(cf).t(2)-DOT.data(cf).t(1)); % sampling frequency

[timepts,measurements]=size(Intens);

lpf = DOT.data(cf).lpf; %Hz, low pass frequency
hpf = DOT.data(cf).hpf; %high pass frequency

%do the LPF

Note: The MakeFilter program takes in the filter type {1= Butterworth,
2= Chebyshev type I, 3= Chebyshev type II, 4 = Elipic} and the Filter
parameters {cut-off freq, sample freq, high/low, stop-band, ripple} and
outputs the correct filter paraters (for example [fb,fa]
=butter(order,[wn]*2/fs));

%This section of code returns the filter parameters and then applies
them using filtfilt to the Intens variable. The new variable
Intens_LPF is now low-pass filtered.

if lpf>0 & lpf<fs/2;
 if AdvOptions.FiltOptions.FilterType==1
 [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,…

AdvOptions.FiltOptions.FilterOrder,fs,lpf,'low');

 elseif AdvOptions.FiltOptions.FilterType==4
 [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,…

AdvOptions.FiltOptions.FilterOrder,fs,lpf,'low',…
AdvOptions.FiltOptions.Filter_Rp,…
AdvOptions.FiltOptions.Filter_Rs);

 else
 [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,…

AdvOptions.FiltOptions.FilterOrder,fs,lpf,'low',…
AdvOptions.FiltOptions.Filter_Rp);

 end

 %[fa,fb]=butter(FilterOrder,lpf*2/fs);
 Intens_LPF=filtfilt(fb,fa,Intens);
else
 if lpf>fs/2;

 h=warndlg('Low pass filter frequency exceeds Nyquist
frequency');

 figure(h);

 76

 uiwait(h);
 end
 %do nothing (If didn’t LPF, then Intens_LPF is the same as Intens)
 Intens_LPF=Intens;
end

%Update the Waitbar (if usewaitbar flag was active)
if useWaitbar
 h=waitbar(1/3,h);
 figure(h);
end

%Normalize data and convert to dOD
meanIntens = mean(abs(Intens_LPF),1);
 %Take abs() to change from I/Q to reals
Intens_Norm = abs(Intens_LPF./(ones(timepts,1)*meanIntens)); %set dm1
to the normalized data list

The variable Intens_Norm (processed up untill this
point) is the one displayed to the screen when the
choice of Normalized Intensity is selected

%Do the motion correction PCA filter (PCA filter #1)

 nSV = DOT.data(cf).nSV; %Number of Singular vectors to remove
 Intens_Norm_zM=Intens_Norm -1; %zero mean the data

if length(nSV)<2

%If only one value was provided then preform the PCA analysis on
both wavelengths together…

lst=find(DOT.data(cf).MeasListAct); %The active measuyrements

only
c = Intens_Norm_zM(:,lst).' * Intens_Norm_zM(:,lst); %covarience
matrix
[v,s,foo] = svd(c); %single value decomposition and store
as v,s,foo
DOT.data(cf).svs = diag(s); %Store the variable for display by

SV-Spectrum

 if nSV>0
 %If the nSV is a valid number, the perform the PCA filter

 u = Intens_Norm_zM(:,lst)*v*inv(s);
 lstSV = 1:nSV;
 Norm_Cov = Intens_Norm_zM;

 Norm_Cov(:,lst) = Intens_Norm_zM(:,lst) -
u(:,lstSV)*s(lstSV,lstSV)*v(:,lstSV)';

 else
 Norm_Cov = Intens_Norm_zM;

 77

 end
else

%This is the case when more then one value was provided. Do the PCA
per wavelength. This means we loop over the number of wavelengths

Norm_Cov = Intens_Norm_zM; %So those measurements which don’t get
updated (i.e. not on the active ML) carry
through

%If the number of values provided is less then the number of
wavelengths, then zero-fill the rest

 if length(nSV)<length(DOT.SD.Lambda)
 nSV(end:length(DOT.SD.Lambda))=0;
 end

 DOT.data(cf).svs=[];

 %Loop over the number of wavelengths

 for idxLambda=1:length(DOT.SD.Lambda)
 if size(DOT.data(cf).MeasListAct,1)<

size(DOT.data(cf).MeasListAct,2)

 DOT.data(cf).MeasListAct=DOT.data(cf).MeasListAct';
 end

lst=find(DOT.data(cf).MeasList(:,4)==idxLambda &…
DOT.data(cf).MeasListAct); %lst if the list of
measurements at THIS wavelength and on the active ML

 c = Intens_Norm_zM(:,lst).' * Intens_Norm_zM(:,lst);
%covarience matrix
[v,s,foo] = svd(c); %single value decomposition and

store as v,s,foo

DOT.data(cf).svs(:,idxLambda) = diag(s);

 if nSV(idxLambda)>0
 u = Intens_Norm_zM(:,lst)*v*inv(s);
 lstSV = 1:nSV(idxLambda);

Norm_Cov(:,lst) = Intens_Norm_zM(:,lst) -
u(:,lstSV)*s(lstSV,lstSV)*v(:,lstSV)';

 end

 end
end

Norm_Cov=Norm_Cov+1; %add one to undo the effect of zero-mean

%do the HPF

%This is the same basic process as the LPF
if hpf>0 & hpf<fs/2;

 78

 if AdvOptions.FiltOptions.FilterType==1
 [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,…

AdvOptions.FiltOptions.FilterOrder,fs,hpf,'high');
 elseif AdvOptions.FiltOptions.FilterType==4
 [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,…

AdvOptions.FiltOptions.FilterOrder,fs,hpf,'high',…
AdvOptions.FiltOptions.Filter_Rp,…
AdvOptions.FiltOptions.Filter_Rs);

 else
 [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,…

AdvOptions.FiltOptions.FilterOrder,fs,hpf,'high',…
AdvOptions.FiltOptions.Filter_Rp);

 end

 %[fa,fb]=butter(FilterOrder,hpf*2/fs);

 Norm_Cov_HPF =filtfilt(fb,fa,Norm_Cov)+1;
else
 if hpf>fs/2;
 h=warndlg('High pass filter frequency exceeds Nyquist
frequency');
 figure(h);
 uiwait(h);
 end
 %do nothing
 Norm_Cov_HPF =Norm_Cov;
end

dOD_Norm = -log(Norm_Cov_HPF); %delta-Optical Density is the negative

log of the normalized data

The variable dOD_Norm (processed up untill this
point) is the one displayed to the screen when the
choice of dOD is selected

if useWaitbar
 h=waitbar(2/3,h);
 figure(h);
end

%Put the variables into the DOT format.

DOT.data(cf).Intens_hpf = abs(Intens_HPF);
DOT.data(cf).norm = abs(Intens_Norm);
DOT.data(cf).norm_cov = abs(Norm_Cov);
DOT.data(cf).dOD = abs(dOD_Norm).*sign(real(dOD_Norm));

 79

if useWaitbar
 h=waitbar(3/3,h);
 figure(h);
end

DOT.data(cf).dOD_UpToDate = 1;

if useWaitbar
 close(h);
end
return

… The output of this function is the Optical Density variable (and all processing done up
until then). The second and third PCA filters and the MBLL are handled by a second
program.

 80

HomERFilt:

%This is the partial code from the filtering script. Each data file (for the current session)
is sequentially passed through this function.

%This first part, just makes the call to the DOTFilter program (see above) passing it the
correct flags (etc).

AdvOptions=get(handles.OptionsStore,'userdata');
if DOT{currentsub}.data(cf).dOD_UpToDate
 dd1 = DOT{currentsub}.data(cf).dOD;
 waitbarcount=waitbarcount+3;
else

if isfield(AdvOptions,'FiltOptions') &
isfield(AdvOptions.FiltOptions,'FilterType')
DOT{currentsub} = DOTFilter(DOT{currentsub},'-
AdvOptions',AdvOptions);

 else
 DOT{currentsub} = DOTFilter(DOT{currentsub});
 end
end

%This performs the second (dOD-with Baseline) PCA filtering step (see later
description)

DOT{currentsub}=PCAFilter(DOT{currentsub});

%This is now the cov-reduced dOD variable
dd1c = DOT{currentsub}.data(cf).dODc;
The variable dd1c (processed up untill this point)
is the one displayed to the screen when the choice
of dOD-cov.reduced is selected

%Now we start applying the MBLL law. We first do the partial volume/DPF corrections
(if indicated to do so by the Adv. Averaging Window)

%Do partial volume/pathlength correction if desired

if isfield(AdvOptions, 'FiltOptions') &…

AdvOptions.FiltOptions.UsePartialVolumeCorr==1
 partialVolCorr=AdvOptions.FiltOptions.PartialVolumeCorr;
else
 %Dummy settings
 partialVolCorr=ones(length(DOT{currentsub}.SD.Lambda),1);
end

if isfield(AdvOptions, 'FiltOptions') & …

AdvOptions.FiltOptions.UsePathLengthCorr==1

 81

 DPF=AdvOptions.FiltOptions.DPF;
 MeasList=DOT{currentsub}.data(cf).MeasList;
 Distances=((DOT{currentsub}.SD.SrcPos(MeasList(:,1),1)-

DOT{currentsub}.SD.DetPos(MeasList(:,2),1)).^2 +...
(DOT{currentsub}.SD.SrcPos(MeasList(:,1),2)-
DOT{currentsub}.SD.DetPos(MeasList(:,2),2)).^2 +...
(DOT{currentsub}.SD.SrcPos(MeasList(:,1),3)-
DOT{currentsub}.SD.DetPos(MeasList(:,2),3)).^2).^0.5;

else
%Dummy settings

 DPF=ones(nLambda,1);
 Distances=ones(size(DOT{currentsub}.data(cf).MeasList,1),1);
end

%Apply the corrections to the dOD variable (now has units of cm-1)
for idx=1:nLambda
 lst= find(DOT{currentsub}.data(cf).MeasList(:,4)==idx);
 for idx2=1:length(lst)

 dd1c(:,lst(idx2))=dd1c(:,lst(idx2))*partialVolCorr(idx)/…
(DPF(idx)*Distances(lst(idx2)));

 end
end

%Update the progress bar
waitbarcount=waitbarcount+1;
try
 updateWaitbar=waitbar(waitbarcount/waitbartotal,updateWaitbar,msg);
catch
 updateWaitbar=waitbar(waitbarcount/waitbartotal,msg);
end
 figure(updateWaitbar);

%Now we convert to concentrations. The GetExtinctions function returns the extinction
coefficients for the specified wavelengths. It uses a look-up table (roughly every 1-5nm
depending on spectra source) and uses a linear interp to determine intermediate
wavelengths (so any wavelength can be used)

%GetExtinctions(Wavelengths, AbsSprectum Type).
 AbsSprectum Type = 1 (Default/ if type not provided)

• W. B. Gratzer, Med. Res. Council Labs, Holly Hill, London

• N. Kollias, Wellman Laboratories, Harvard Medical School, Boston

AbsSprectum Type = 2

• J.M. Schmitt, "Optical Measurement of Blood Oxygenation by
Implantable Telemetry," Technical Report G558-15, Stanford."

 82

• M.K. Moaveni, "A Multiple Scattering Field Theory Applied to Whole
Blood," Ph.D. dissertation, Dept. of Electrical Engineering, University of
Washington, 1970.

AbsSprectum Type = 3

• S. Takatani and M. D. Graham, "Theoretical analysis of diffuse
reflectance from a two-layer tissue model," IEEE Trans. Biomed. Eng.,
BME-26, 656--664, (1987).

%convert to concentrations

if ~isfield(AdvOptions,'FiltOptions') |
~isfield(AdvOptions.FiltOptions,'AbsSpect')
 AdvOptions.FiltOptions.AbsSpect=1;
end

 e = GetExtinctions(…

DOT{currentsub}.SD.Lambda,AdvOptions.FiltOptions.AbsSpect);
 e = e(:,[1 2]);
 einv = inv(e'*e)*e'; %For Least-squares solution
 ml = DOT{currentsub}.data(cf).MeasList;
 lst = find(ml(:,4)==1);

 for idx=1:length(lst)
 ML_lst=find(ml(:,1)==ml(lst(idx),1) & ml(:,2)==ml(lst(idx),2));
 SD_lst=ml(ML_lst,:);
 [foo, ord]=sort(SD_lst(:,4));

 concs(:,:,idx) = (einv * dd1c(:,ML_lst(ord))')';

 end
 concs(:,3,:)=concs(:,1,:)+concs(:,2,:); %add total Hb =Oxy
+ deOxy concetration- stores to tensor of D x 3 x Ml
 concs = permute(concs, [1 3 2]);

%Update the progress bar
waitbarcount=waitbarcount+1;
updateWaitbar=waitbar(waitbarcount/waitbartotal,updateWaitbar,msg);
figure(updateWaitbar);

DOT{currentsub}.data(cf).dConc = concs;

The variable concs (processed up untill this point)
is the one displayed to the screen when the choice
of delta-Concentration is selected

 83

%The final step is to apply the PCA filter (#3) on the dConc data. See later description.

if get(handles.HomER_PCA_conc,'value')==2
 UseBaselinePCA=1;
else
 UseBaselinePCA=0;
end

%dConc PCA filtering step
DOT{currentsub}=PCAFilterConc(DOT{currentsub},UseBaselinePCA);

%The rest of this code deals with updating the displays to HomER etc…

 84

PCAFilter:

function DOT=PCAFilter(DOT)
%This function applies the PCA filter based on the components of the
%baseline
%
%Required Inputs:
%DOT.SD.Lambda
%DOT.data(cf).BaselineData
%DOT.data(cf).dOD
%DOT.data(cf).MeasList

%covariance of dOD on each wavelength <moved outside if/end block so
it is always preformed
cf = DOT.currentFile;
nLambda = length(DOT.SD.Lambda);

if DOT.data(cf).BaselineData
 mlAct=DOT.data(cf).MeasListAct';
 DOT.dataBaseCov.v = [];
 DOT.dataBaseCov.svs = [];
 DOT.dataBaseCov.s=[];
 for idxLambda = 1:nLambda
 lst = find(DOT.data(cf).MeasList(:,4)==idxLambda & mlAct);

 c = detrend(DOT.data(cf).dOD(:,lst))' *
detrend(DOT.data(cf).dOD(:,lst));
 [v,s,foo] = svd(c);
 DOT.dataBaseCov.v(:,:,idxLambda)=v;
 DOT.dataBaseCov.s(:,:,idxLambda)=s;
 DOT.dataBaseCov.svs(:,idxLambda) = squeeze(diag(s));
 end
 DOT.data(cf).dODc = DOT.data(cf).dOD;
 return
end

%covariance filter on dOD on each wavelength

nFiles = length(DOT.data);

idxBase = 0;
for idx=1:nFiles
 if DOT.data(idx).BaselineData
 idxBase = idx;
 idx = nFiles + 1;
 end
end

if idxBase > 0 & isfield(DOT,'dataBaseCov')
 nSV=[];
 nSV=DOT.data(cf).nSV_dOD;
 if length(nSV)~=nLambda
 nSV = nSV(1) * ones(1,nLambda);
 end

 85

 if ~any(nSV~=0)
 DOT.data(cf).dODc = DOT.data(cf).dOD;
 return
 end

 DOT.data(cf).dOD=detrend(DOT.data(cf).dOD);

 dataBaseCov=DOT.dataBaseCov;

 %Test to make sure the ML-active for the baseline and the data
are
 %the same. If not, issue a warning and use the ML-act for the
data
 %and recalculate the Cov from the new pruned baseline.

 mlAct=DOT.data(cf).MeasListAct';
 mlActBase=DOT.data(idxBase).MeasListAct';
 if any(mlAct ~= mlActBase)
 %Trouble... issue a warning/choice to proceed
 choice=menu('Warning: Measurement list for baseline and
data do not match. Do you wish to...',...
 'Use ML-active from data','Use ML-active from
baseline','Skip PCA filtering step');
 if choice==1
 %Proceed to recalculate the cov using the ML from data
 for idxLambda = 1:nLambda
 dataBaseCov.v=[];
 dataBaseCov.s=[];
 lst = find(
DOT.data(idxBase).MeasList(:,4)==idxLambda & mlAct);
 c = DOT.data(idxBase).dOD(:,lst)' *
DOT.data(idxBase).dOD(:,lst);

[dataBaseCov.v(:,:,idxLambda),dataBaseCov.s(:,:,idxLambda),foo] =
svd(c);
 end

 elseif choice==2
 %Use ML from baseline
 mlAct=mlActBase;
 else
 %cancel
 DOT.data(cf).dODc = DOT.data(cf).dOD;
 return
 end

 end

 DOT.data(cf).dODc = DOT.data(cf).dOD;
 for idxLambda = 1:nLambda
 lst = find(DOT.data(cf).MeasList(:,4)==idxLambda &
mlAct==1);

 dOD=DOT.data(cf).dOD(:,lst);
 v=dataBaseCov.v(:,:,idxLambda);
 s=dataBaseCov.s(:,:,idxLambda);

 86

 lstSV= 1:nSV(idxLambda);
 u = dOD*v*inv(s);

 if nSV(idxLambda)>0
 DOT.data(cf).dODc(:,lst) = dOD -
u(:,lstSV)*s(lstSV,lstSV)*v(:,lstSV)';
 else
 DOT.data(cf).dODc(:,lst) = dOD;
 end
 end
elseif idxBase == 0 & any(DOT.data(cf).nSV_dOD~=0) & cf==min([1
idxBase+1])
 %Only display once...
 DOT.data(cf).dODc = DOT.data(cf).dOD;
 h=warndlg('No Baseline data detected: Skipping Baseline PCA
filter');
 uiwait(h);
else

 DOT.data(cf).dODc = DOT.data(cf).dOD;
end

return

 87

PCA_Filter_dConc

function DOT=PCAFilterConc(DOT,UseBaseline)
%This function applies the PCA filter based on the components of the
%baseline
%
%Required Inputs:
%DOT.SD.Lambda
%DOT.data(cf).BaselineData
%DOT.data(cf).dOD
%DOT.data(cf).MeasList

%covariance of dOD on each wavelength <moved outside if/end block so
it is always preformed
cf = DOT.currentFile;

if UseBaseline
 if DOT.data(cf).BaselineData
 mlAct=DOT.data(cf).MeasListAct';
 DOT.dataBaseCovConc.v = [];
 DOT.dataBaseCovConc.svs = [];
 DOT.dataBaseCovConc.s=[];
 for idxLambda = 1:2
 lst = find(DOT.data(cf).MeasList(:,4)==1 & mlAct);

 c = detrend(DOT.data(cf).dConc(:,lst,idxLambda))' *
detrend(DOT.data(cf).dConc(:,lst,idxLambda));
 [v,s,foo] = svd(c);
 DOT.dataBaseCovConc.v(:,:,idxLambda)=v;
 DOT.dataBaseCovConc.s(:,:,idxLambda)=s;
 DOT.dataBaseCovConc.svs(:,idxLambda) = squeeze(diag(s));
 end
 DOT.data(cf).dConcc = DOT.data(cf).dConc;
 return
 end

 %covariance filter on Conc

 nFiles = length(DOT.data);

 idxBase = 0;
 for idx=1:nFiles
 if DOT.data(idx).BaselineData
 idxBase = idx;
 idx = nFiles + 1;
 end
 end

 if idxBase > 0 & isfield(DOT,'dataBaseCovConc')
 nSV=[];
 nSV=DOT.data(cf).nSV_dConc;
 if length(nSV)~=2
 nSV = nSV(1) * ones(1,2);
 end

 if ~any(nSV~=0)

 88

 DOT.data(cf).dConcc = DOT.data(cf).dConc;
 return
 end

 dataBaseCov=DOT.dataBaseCovConc;

 %Test to make sure the ML-active for the baseline and the data
are
 %the same. If not, issue a warning and use the ML-act for the
data
 %and recalculate the Cov from the new pruned baseline.

 mlAct=DOT.data(cf).MeasListAct;

 if size(mlAct,1)<size(mlAct,2)
 mlAct=mlAct';
 end

 mlActBase=DOT.data(idxBase).MeasListAct';
 if any(mlAct ~= mlActBase)
 %Trouble... issue a warning/choice to proceed
 choice=menu('Warning: Measurement list for baseline and
data do not match. Do you wish to...',...
 'Use ML-active from data','Use ML-active from
baseline','Skip PCA filtering step');
 if choice==1
 %Proceed to recalculate the cov using the ML from data
 for idxLambda = 1:2
 dataBaseCov.v=[];
 dataBaseCov.s=[];
 lst = find(DOT.data(idxBase).MeasList(:,4)==1 &
mlAct);
 c = DOT.data(idxBase).dConc(:,lst,idxLambda)' *
DOT.data(idxBase).dConc(:,lst,idxLambda);

[dataBaseCov.v(:,:,idxLambda),dataBaseCov.s(:,:,idxLambda),foo] =
svd(c);
 end

 elseif choice==2
 %Use ML from baseline
 mlAct=mlActBase;
 else
 %cancel
 DOT.data(cf).dConcc = DOT.data(cf).dConc;
 return
 end

 end

 for idxLambda = 1:2

DOT.data(cf).dConc(:,:,idxLambda)=detrend(DOT.data(cf).dConc(:,:,idxLam
bda));

 89

 DOT.data(cf).dConcc(:,:,idxLambda) =
DOT.data(cf).dConc(:,:,idxLambda);

 lst = find(DOT.data(cf).MeasList(:,4)==1 & mlAct==1);

 dConc=DOT.data(cf).dConc(:,lst,idxLambda);
 v=dataBaseCov.v(:,:,idxLambda);
 s=dataBaseCov.s(:,:,idxLambda);

 lstSV= 1:nSV(idxLambda);
 u = dConc*v*inv(s);

 if nSV(idxLambda)>0
 DOT.data(cf).dConcc(:,lst,idxLambda) = dConc -
u(:,lstSV)*s(lstSV,lstSV)*v(:,lstSV)';
 else
 DOT.data(cf).dConcc(:,lst,idxLambda) = dConc;
 end
 end
 elseif idxBase == 0 & any(DOT.data(cf).nSV_dConc~=0) & cf==min([1
idxBase+1])
 %Only display once...
 DOT.data(cf).dConcc = DOT.data(cf).dConc;
 h=warndlg('No Baseline data detected: Skipping Baseline PCA
filter');
 uiwait(h);
 else

 DOT.data(cf).dConcc = DOT.data(cf).dConc;
 end
else

 nSV = DOT.data(cf).nSV_dConc;

 if ischar(nSV)
 nSV=str2num(nSV);
 DOT.data(cf).nSV_dConc=nSV;
 elseif isempty(nSV)
 DOT.data(cf).nSV_dConc=[0 0];
 nSV=[0 0];
 end

 if length(nSV)<2
 nSV(2)=nSV(1);
 end

 DOT.data(cf).svsConc=[];
 for idxLambda = 1:2

 mlAct=DOT.data(cf).MeasListAct;

 if size(mlAct,1)<size(mlAct,2)
 mlAct=mlAct';
 end

 lst = find(DOT.data(cf).MeasList(:,4)==1 & mlAct);

 90

 dConc=detrend(DOT.data(cf).dConc(:,:,idxLambda));
 DOT.data(cf).dConcc(:,:,idxLambda) = dConc;

 c=dConc(:,lst)'*dConc(:,lst);
 [v,s,foo] = svd(c);

 DOT.data(cf).svsConc(:,idxLambda) = diag(s);

 if nSV(idxLambda)>0

 lstSV= 1:nSV(idxLambda);
 u = dConc*v*inv(s);

 DOT.data(cf).dConcc(:,lst,idxLambda) = dConc(:,lst) -
u(:,lstSV)*s(lstSV,lstSV)*v(:,lstSV)';
 else
 DOT.data(cf).dConc(:,lst,idxLambda) = dConc(:,lst);
 end
 end

end

DOT.data(cf).dConcc(:,:,3) =
DOT.data(cf).dConcc(:,:,1)+DOT.data(cf).dConcc(:,:,2);
Return

 91

Averaging Functions:

AverageHRF

function [PMI]=AverageHRF(PMI,varargin)
%This function calculates the average HRF from the PMI structure and
stores
%it back onto the structure
%
%
%Written by T. Huppert and D. Boas
%Copyright 2004 MGH
%
%Flags:
% -waitbar if flagged will display waitbar to show progress
% -detend will do final detrending of the HRF
%
%
%Required Fields:
%PMI.data(files).dODc -fully processed dOD variable for each file
%PMI.data(cf).dConc
%PMI.data(files).HRF(regressor).pretime- time before stimulus
%PMI.data(files).HRF(regressor).posttime- time after stimulus
%PMI.data(files).HRF(regressor).regdata- regressor data for this
response
%(i.e. stimOn or Cond)
%
% Output variables:
% PMI.data(files).HRF(regressors).tHRF - time vector for HRF
% PMI.data(cf).HRF(Regressor).Avg
% PMI.data(cf).HRF(Regressor).AvgStd
% PMI.data(cf).HRF(Regressor).AvgStdErr
% PMI.data(cf).HRF(Regressor).AvgOdd
% PMI.data(cf).HRF(Regressor).AvgEven
% PMI.data(cf).HRF(Regressor).AvgEven
% PMI.data(cf).HRF(Regressor).AvgC
% PMI.data(cf).HRF(Regressor).AvgCStd
% PMI.data(cf).HRF(Regressor).AvgCStdErr

useWaitbar=0;
useDetrend=0;
UseAux=0;

%Read in any flags
if nargin>1
 for flag=1:nargin-1
 try
 switch(varargin{flag})
 case '-detend'
 useDetrend=1;
 case '-waitbar'
 useWaitbar=1;
 h=waitbar(0,'Averaging...');

 92

 figure(h);
 drawnow
 case '-Aux'
 UseAux=1;
 case '-TDML'
 TDML=varargin{flag+1};

 end
 end
 end
end

%%%
cf = PMI.currentFile;

numReg=length(PMI.data(cf).HRF);

for Regressor=1:numReg
 %This doesn't really make sense to put in multiple regressors for
an
 %average- but this keeps it consistent with the deconvolution way
of
 %doing things and really doesn't hurt to do it here as well.
 lst2=[];
 blocksConc=[];
 blocks=[];

 preTime=PMI.data(cf).HRF(Regressor).pretime;
 postTime=PMI.data(cf).HRF(Regressor).posttime;

 rate = 1/(PMI.data(cf).t(2)-PMI.data(cf).t(1));

 nHRF = floor((postTime-preTime) * rate + 1);

 nTpts = length(PMI.data(cf).t);
 nPRE = ceil(-preTime * rate);

 nPOST = nHRF - nPRE;

 regdata=PMI.data(cf).HRF(Regressor).regdata;

if isfield(PMI.data(cf).HRF(Regressor),'StimOn') &
~isempty(PMI.data(cf).HRF(Regressor).StimOn)
 regdata=PMI.data(cf).HRF(Regressor).StimOn;
end

if exist('TDML')
 regdata=regdata.*TDML(:,1);
end

 93

 lst = find(regdata==1);

 if ~UseAux
 blocks = zeros(nHRF,size(PMI.data(cf).dODc,2),length(lst));
 else
 blocks = zeros(nHRF,size(PMI.data(cf).Aux,2),length(lst));
 end
 nBlk = 0;
 for idx=1:length(lst)

 if useWaitbar
 h=waitbar(Regressor/numReg*idx/length(lst),h);
 figure(h);
 end

 if (lst(idx)-nPRE)>=1 & (lst(idx)+nPOST)<=nTpts
 nBlk=nBlk+1;
 lst2(nBlk)=idx;
 if ~UseAux
 blocks(:,:,idx) = PMI.data(cf).dODc((lst(idx)-
nPRE):(lst(idx)+nPOST-1),:); %dOD
 blocksConc(:,:,:,idx) = PMI.data(cf).dConcc((lst(idx)-
nPRE):(lst(idx)+nPOST-1),:,:); %dConc
 else
 blocks(:,:,idx) = PMI.data(cf).Aux((lst(idx)-
nPRE):(lst(idx)+nPOST-1),:);
 end
 end

 end

 if ~exist('lst2') | isempty(lst2)
 %no stim points
 msg=['Warning: found no stim points found for regressor: '
PMI.data(cf).HRF(Regressor).type ...
 ' Skipping calculation...'];
 h2=warndlg(msg);
 uiwait(h2);
 continue
 end

 if ~UseAux
 PMI.data(cf).nkp=zeros(3,size(PMI.data(cf).dODc,2));

 PMI.data(cf).nkp(1,:)=length(PMI.data(cf).dODc);
 PMI.data(cf).nkp(2,:)=size(blocks,1)*size(blocks,3);
 PMI.data(cf).nkp(3,:)=size(blocks,1)*size(blocks,3); %not sure

 PMI.data(cf).HRF(Regressor).Avg = mean(blocks(:,:,lst2),3);
 PMI.data(cf).HRF(Regressor).AvgStd = std(blocks(:,:,lst2),0,3);

 94

 PMI.data(cf).HRF(Regressor).AvgStdErr=
PMI.data(cf).HRF(Regressor).AvgStd/
PMI.data(cf).HRF(Regressor).numStim^0.5;
 PMI.data(cf).HRF(Regressor).AvgOdd =
mean(blocks(:,:,lst2(1:2:end)),3);
 if length(lst2)==1
 PMI.data(cf).HRF(Regressor).AvgEven =
PMI.data(cf).HRF(Regressor).AvgOdd;
 else
 PMI.data(cf).HRF(Regressor).AvgEven =
mean(blocks(:,:,lst2(2:2:end)),3);
 end
 PMI.data(cf).HRF(Regressor).AvgC =
mean(blocksConc(:,:,:,lst2),4);
 PMI.data(cf).HRF(Regressor).AvgCStd =
std(blocksConc(:,:,:,lst2),0,4);
 PMI.data(cf).HRF(Regressor).AvgCStdErr =
PMI.data(cf).HRF(Regressor).AvgCStd /
PMI.data(cf).HRF(Regressor).numStim^0.5;
 PMI.data(cf).HRF(Regressor).tHRF = [preTime:1/rate:postTime];

 if useDetrend
 PMI.data(cf).HRF(Regressor).Avg =
detrend(PMI.data(cf).HRF(Regressor).Avg);
 PMI.data(cf).HRF(Regressor).AvgC(:,:,1) =
detrend(PMI.data(cf).HRF(Regressor).AvgC(:,:,2));
 PMI.data(cf).HRF(Regressor).AvgC(:,:,2) =
detrend(PMI.data(cf).HRF(Regressor).AvgC(:,:,2));
 PMI.data(cf).HRF(Regressor).AvgC(:,:,3) =
detrend(PMI.data(cf).HRF(Regressor).AvgC(:,:,3));
 PMI.data(cf).HRF(Regressor).AvgOdd =
detrend(PMI.data(cf).HRF(Regressor).AvgOdd);
 PMI.data(cf).HRF(Regressor).AvgEven =
detrend(PMI.data(cf).HRF(Regressor).AvgEven);
 end

zeropt=find(min(abs(PMI.data(cf).HRF(Regressor).tHRF))==abs(PMI.data(cf
).HRF(Regressor).tHRF));
 %Point closest to zero (because of uneven fs, the zero might
not be a
 %point

 PMI.data(cf).HRF(Regressor).Avg =
PMI.data(cf).HRF(Regressor).Avg -
ones(size(PMI.data(cf).HRF(Regressor).Avg,1),1)*PMI.data(cf).HRF(Regres
sor).Avg(zeropt,:);
 PMI.data(cf).HRF(Regressor).AvgC(:,:,1) =
PMI.data(cf).HRF(Regressor).AvgC(:,:,1) -
ones(size(PMI.data(cf).HRF(Regressor).AvgC,1),1)*PMI.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,1);
 PMI.data(cf).HRF(Regressor).AvgC(:,:,2) =
PMI.data(cf).HRF(Regressor).AvgC(:,:,2) -
ones(size(PMI.data(cf).HRF(Regressor).AvgC,1),1)*PMI.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,2);
 PMI.data(cf).HRF(Regressor).AvgC(:,:,3) =
PMI.data(cf).HRF(Regressor).AvgC(:,:,3) -

 95

ones(size(PMI.data(cf).HRF(Regressor).AvgC,1),1)*PMI.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,3);

 else
 PMI.data(cf).AuxAvg(Regressor).Avg = mean(blocks(:,:,lst2),3);
 PMI.data(cf).AuxAvg(Regressor).tHRF=[preTime:1/rate:postTime];

 end

end

if useWaitbar
 close(h);
end

if isfield(PMI.data(cf),'HRF_Stats')
 PMI.data(cf).HRF_Stats=[];
 for Reg=1:numReg
 PMI.data(cf).HRF(Reg).HRF_Stats=[];
 end
end

return

 96

DeconvolveHRF:

function [DOT]=DeconvolveHRF(DOT,varargin)
%This function calculates the average HRF from the DOT structure and
stores
%it back onto the structure
%
%Written by T. Huppert and D. Boas
%Copyright 2004 MGH
%
%Flags:
% -TDML {TDML} the time-domain measurement list- used to remove data
points
% -waitbar if flagged will display waitbar to show progress
% -detend will do final detrending of the HRF
%
%
%Required Fields:
%DOT.data(files).dODc -fully processed dOD variable for each file
%DOT.data(files).dConc
%DOT.data(files).HRF(regressor).pretime- time before stimulus
%DOT.data(files).HRF(regressor).posttime- time after stimulus
%DOT.data(files).HRF(regressor).regdata- regressor data for this
response
%DOT.data(files).nkp - Degree of freedom variables
%(i.e. stimOn or Cond)
%
% Output variables:
% DOT.data(files).HRF(Regressor).tHRF - time vector for HRF
% DOT.data(files).HRF(Regressor).Avg
% DOT.data(files).HRF(Regressor).AvgC

cf = DOT.currentFile;
numReg=length(DOT.data(cf).HRF);

useWaitbar=0;
useDetrend=0;
UseAux=0;

TDML=ones(size(DOT.data(cf).raw));

%Read in any flags
if nargin>1
 for flag=1:nargin-1
 try
 switch(varargin{flag})
 case '-detend'
 useDetrend=1;
 case '-waitbar'
 useWaitbar=1;
 h=waitbar(0,'Deconvolving...');
 figure(h);
 drawnow
 case '-TDML'
 TDML=varargin{flag+1};

 97

 case '-Aux'
 UseAux=1;
 end
 end
 end
end

%%%

%Make the design matrix
counter=0;

A=[];

for Regressor=1:numReg
 %Since there can be more then one regressor variable, loop over the
 %number of regressors.

 regdata=DOT.data(cf).HRF(Regressor).regdata;

 if isfield(DOT.data(cf).HRF(Regressor),'StimOn') &
~isempty(DOT.data(cf).HRF(Regressor).StimOn)
 regdata=DOT.data(cf).HRF(Regressor).StimOn;
 end

 preTime=DOT.data(cf).HRF(Regressor).pretime;
 postTime=DOT.data(cf).HRF(Regressor).posttime;

 rate = 1/(DOT.data(cf).t(2)-DOT.data(cf).t(1));

 nTpts = length(DOT.data(cf).t);
 nPast=floor(abs(preTime)*rate);

 DOT.data(cf).HRF(Regressor).tHRF = [preTime:1/rate:postTime];
 nHRF= floor((postTime-preTime) * rate + 1);
 DOT.data(cf).HRF(Regressor).nHRF =nHRF;

 Atemp=corrmtx(regdata,nHRF-1,'autocorrelation');
 Atemp=Atemp./max(max(Atemp));
 A=[A Atemp(1+nPast:nPast+nTpts,:)];

 RegIdx(Regressor)=counter+1;
 counter=counter+nHRF;
end
RegIdx(numReg+1)=counter+1;
nLambda=length(DOT.SD.Lambda);

%initialize some variables
dOD=zeros(size(A,2),size(DOT.data(cf).raw,2));
conc=zeros(size(A,2),size(DOT.data(cf).raw,2)/nLambda,3);

%What this does is to take data points that are "not to be trusted" and
%replaces them with a zero filled design matrix (so they don't
contribute

 98

%to the least squares result). This works only if afterward, every row
in
%the design matrix is still represented.

%TDML is created by the "remove data" option in PlotAxes 1
% TDML=> "Time-domain Measurement list"

%now sort the TDML to find the number of unique combinations- I want
%to do this inverse a minimum nuber of times.
TDML=TDML';
unqRows=unique(TDML,'rows');

%loop over the number of unique rows. The Remove data feature treats
all
%channels idenitically (so NumUnqRows==1) but for the TDML can be input
%directly in the original file (as in the case with Time-division
%multiplexing) and thus each channel potentially has a different

NumUnqRow=size(unqRows,1);

for row=1:NumUnqRow

 if useWaitbar
 h=waitbar(row/(2*NumUnqRow),h);
 figure(h);
 end

 rowlst=find(ismember(TDML,unqRows(row,:),'rows'));
 rowlstC=find(DOT.data(cf).MeasList(rowlst,4)==1);

 lstTDML=find(unqRows(row,:)==0);

 Atemp=A;
 Atemp(lstTDML,:)=[];

 invATA=inv(Atemp'*Atemp);
 Ainv=invATA*Atemp';

 lstTDML=find(unqRows(row,:)~=0);

 if any(any(Ainv==inf))
 h2=warndlg('Design matrix is poorly scaled...Cannot preceed');
 uiwait(h2);
 close(waitH)
 return
 end

 %do the actual deconvolutions
 if UseAux
 Aux = Ainv * detrend(DOT.data(cf).Aux(lstTDML,:));
 else
 Aux = Ainv * detrend(DOT.data(cf).Aux(lstTDML,:));
 dOD(:,rowlst) = Ainv * DOT.data(cf).dODc(lstTDML,rowlst);

conc(:,rowlst(rowlstC),1)=Ainv*DOT.data(cf).dConcc(lstTDML,rowlst(rowls
tC),1);

 99

conc(:,rowlst(rowlstC),2)=Ainv*DOT.data(cf).dConcc(lstTDML,rowlst(rowls
tC),2);

conc(:,rowlst(rowlstC),3)=Ainv*DOT.data(cf).dConcc(lstTDML,rowlst(rowls
tC),3);

 DOT.data(cf).nkp(1,rowlst)=length(lstTDML);
 DOT.data(cf).nkp(2,rowlst)=size(Atemp,2);
 DOT.data(cf).nkp(3,rowlst)=size(Atemp,2);
 end

end

%Now break it up into the various regressors and store into the proper
%fields.

for Regressor=1:numReg
 if useWaitbar
 h=waitbar(.5+Regressor/(2*numReg),h);
 figure(h);
 end

 if UseAux
 DOT.data(cf).AuxAvg(Regressor).Avg =
Aux(RegIdx(Regressor):RegIdx(Regressor+1)-1,:);

DOT.data(cf).AuxAvg(Regressor).tHRF=DOT.data(cf).HRF(Regressor).tHRF;
 else

DOT.data(cf).AuxAvg(Regressor).tHRF=DOT.data(cf).HRF(Regressor).tHRF;

DOT.data(cf).HRF(Regressor).Avg=zeros(DOT.data(cf).HRF(Regressor).nHRF,
size(dOD,2));

DOT.data(cf).HRF(Regressor).AvgC=zeros(DOT.data(cf).HRF(Regressor).nHRF
,size(dOD,2)/nLambda,3);
 DOT.data(cf).HRF(Regressor).AvgOdd=[];
 DOT.data(cf).HRF(Regressor).AvgEven=[];

DOT.data(cf).HRF(Regressor).Avg=dOD(RegIdx(Regressor):RegIdx(Regressor+
1)-1,:);

DOT.data(cf).HRF(Regressor).AvgC(:,:,1)=conc(RegIdx(Regressor):RegIdx(R
egressor+1)-1,:,1);

DOT.data(cf).HRF(Regressor).AvgC(:,:,2)=conc(RegIdx(Regressor):RegIdx(R
egressor+1)-1,:,2);

 100

DOT.data(cf).HRF(Regressor).AvgC(:,:,3)=conc(RegIdx(Regressor):RegIdx(R
egressor+1)-1,:,3);

 if useDetrend
 DOT.data(cf).HRF(Regressor).Avg =
detrend(DOT.data(cf).HRF(Regressor).Avg);
 DOT.data(cf).HRF(Regressor).AvgC(:,:,1) =
detrend(DOT.data(cf).HRF(Regressor).AvgC(:,:,1));
 DOT.data(cf).HRF(Regressor).AvgC(:,:,2) =
detrend(DOT.data(cf).HRF(Regressor).AvgC(:,:,2));
 DOT.data(cf).HRF(Regressor).AvgC(:,:,3) =
detrend(DOT.data(cf).HRF(Regressor).AvgC(:,:,3));

 end

 %Set the t=0 point to zero.

zeropt=find(min(abs(DOT.data(cf).HRF(Regressor).tHRF))==abs(DOT.data(cf
).HRF(Regressor).tHRF));
 %Point closest to zero (because of uneven fs, the zero might
not be a
 %point1

 DOT.data(cf).HRF(Regressor).Avg =
DOT.data(cf).HRF(Regressor).Avg -
ones(size(DOT.data(cf).HRF(Regressor).Avg,1),1)*DOT.data(cf).HRF(Regres
sor).Avg(zeropt,:);
 DOT.data(cf).HRF(Regressor).AvgC(:,:,1) =
DOT.data(cf).HRF(Regressor).AvgC(:,:,1) -
ones(size(DOT.data(cf).HRF(Regressor).AvgC,1),1)*DOT.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,1);
 DOT.data(cf).HRF(Regressor).AvgC(:,:,2) =
DOT.data(cf).HRF(Regressor).AvgC(:,:,2) -
ones(size(DOT.data(cf).HRF(Regressor).AvgC,1),1)*DOT.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,2);
 DOT.data(cf).HRF(Regressor).AvgC(:,:,3) =
DOT.data(cf).HRF(Regressor).AvgC(:,:,3) -
ones(size(DOT.data(cf).HRF(Regressor).AvgC,1),1)*DOT.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,3);
 end
end

if useWaitbar
 close(h);
end

if isfield(DOT.data(cf),'HRF_Stats')
 DOT.data(cf).HRF_Stats=[];
 for Reg=1:numReg
 DOT.data(cf).HRF(Reg).HRF_Stats=[];
 end
end

return

 101

 HRFStatistics:

function DOT = HRFstatistics(DOT,varargin)
%This function adds all the statistics for the HRF
%
%Required Inputs:
%DOT.data.HRF.Avg
%DOT.data.HRF.AvgC
%DOT.data.HRF.tHRF
%DOT.data.HRF.regdata
%DOT.dataAvg.HRF.Avg
%DOT.dataAvg.HRF.AvgC
%DOT.dataAvg.HRF.tHRF
%
%
%Outputs:
%
%These are for the entire model:
% DOT.data(cf).HRF_Stats.Fo
% DOT.data(cf).HRF_Stats.to
% DOT.data(cf).HRF_Stats.P
% DOT.data(cf).HRF_Stats.res
% DOT.data(cf).HRF_Stats.StdRes
% DOT.data(cf).HRF_Stats.PRESS
% DOT.data(cf).HRF_Stats.R_student
%
% DOT.data(cf).HRF_Stats.Fo_Conc
% DOT.data(cf).HRF_Stats.to_Conc
% DOT.data(cf).HRF_Stats.P_Conc
% DOT.data(cf).HRF_Stats.res_Conc
% DOT.data(cf).HRF_Stats.StdRes_Conc
% DOT.data(cf).HRF_Stats.PRESS_Conc
% DOT.data(cf).HRF_Stats.R_student_Conc
%
% ind. HRFs
% DOT.data(cf).HRF(Reg).t
% DOT.data(cf).HRF(Reg).P
% DOT.data(cf).HRF(Reg).Conf_High
% DOT.data(cf).HRF(Reg).Conf_Low
%
% DOT.data(cf).HRF(Reg).t_Conc
% DOT.data(cf).HRF(Reg).P_Conc
% DOT.data(cf).HRF(Reg).Conf_High_Conc
% DOT.data(cf).HRF(Reg).Conf_Low_Conc
%
%These are for the individual regressors (not included unless -All
flag):
%DOT.data.HRF.partpvalue - partial pvalue for just this regressor
%DOT.data.HRF.partRes - partial residual
%
% -Flags:
% '-all' - The output will contain all the statistics. This is a
larger
% data structure

 102

% '-HRF_range' [# #] - i.e. [0:51],[51:100] - do t-stats over the
51:100 tPts range compared to the 0:51 range in HRF
% '-waitbar'
% '-cf' #
% '-dataAvg'
% '-Residualonly'

alpha=0.95;
cf = DOT.currentFile;

useWaitbar=0;
OutAll=0;
HRF_range=0;
useDataAvg=0;
OutResOnly=0;
AvgOnly=0;

%Read in any flags
if nargin>1
 for flag=1:nargin-1
 switch(varargin{flag})
 case '-waitbar'
 useWaitbar=1;
 waitH=waitbar(0,'Processing Statistics...');
 figure(waitH);
 drawnow
 case '-all'
 OutAll=1;
 case '-HRF_range'
 HRF_range=1;
 RangeOff=varargin{flag+1};
 RangeOn=varargin{flag+2};
 case '-cf'
 cf=varargin{flag+1};
 case '-Residualonly'
 OutResOnly=1;
 case '-Averaged'
 AvgOnly=1;
 end
 end
end

%%%
HRF=DOT.data(cf).HRF;

numReg=length(DOT.data(cf).HRF);

DOT.data(cf).HRF_Stats.Fo=[];
DOT.data(cf).HRF_Stats.to=[];
DOT.data(cf).HRF_Stats.P=[];
DOT.data(cf).HRF_Stats.StdRes=[];
DOT.data(cf).HRF_Stats.PRESS=[];
DOT.data(cf).HRF_Stats.R2Adj=[];
DOT.data(cf).HRF_Stats.res=[];

 103

DOT.data(cf).HRF_Stats.res_Conc=[];
DOT.data(cf).HRF_Stats.Fo_Conc=[];
DOT.data(cf).HRF_Stats.to_Conc=[];
DOT.data(cf).HRF_Stats.P_Conc=[];
DOT.data(cf).HRF_Stats.StdRes_Conc=[];
DOT.data(cf).HRF_Stats.PRESS_Conc=[];
DOT.data(cf).HRF_Stats.R2Adj_Conc=[];
% DOT.data(cf).HRF_Stats.R_student=[];

for Reg=1:numReg
 DOT.data(cf).HRF(Reg).to=[];
 DOT.data(cf).HRF(Reg).P=[];
 DOT.data(cf).HRF(Reg).Conf_High=[];
 DOT.data(cf).HRF(Reg).Conf_Low=[];

 DOT.data(cf).HRF(Reg).to_Conc=[];
 DOT.data(cf).HRF(Reg).P_Conc=[];
 DOT.data(cf).HRF(Reg).Conf_High_Conc=[];
 DOT.data(cf).HRF(Reg).Conf_Low_Conc=[];
end

lstC=find(DOT.data(cf).MeasList(:,4)==1);

if ~AvgOnly
 %Remake design matrix
 X=[];
 counter=0;
 for Regressor=1:numReg
 if ~isempty(HRF(Regressor).Avg)
 preTime=DOT.data(cf).HRF(Regressor).pretime;
 postTime=DOT.data(cf).HRF(Regressor).posttime;

 rate = 1/(DOT.data(cf).t(2)-DOT.data(cf).t(1));

 nTpts = length(DOT.data(cf).t);
 nPast=floor(abs(preTime)*rate);

 DOT.data(cf).HRF(Regressor).tHRF =
[preTime:1/rate:postTime];
 nHRF= floor((postTime-preTime) * rate + 1);
 DOT.data(cf).HRF(Regressor).nHRF =nHRF;

 regdata=DOT.data(cf).HRF(Regressor).regdata;

 if isfield(DOT.data(cf).HRF(Regressor),'StimOn') &
~isempty(DOT.data(cf).HRF(Regressor).StimOn)
 regdata=DOT.data(cf).HRF(Regressor).StimOn;
 end

 Xtemp=corrmtx(regdata,nHRF-1,'autocorrelation')*sqrt(nHRF);

 X=[X Xtemp(1+nPast:nPast+nTpts,:)];

 RegIdx(Regressor)=counter+1;

 104

 counter=counter+nHRF;
 end
 end

 RegIdx(numReg+1)=counter+1;

 if isfield(DOT.data(cf),'TDML')
 TDML=DOT.data(cf).TDML;
 else
 TDML=ones(size(DOT.data(cf).raw));
 end

 TDML=TDML(:,1); %For now

 lstTDML=find(TDML==0);
 X(lstTDML,:)=[];

 XtX=X'*X;
 C=inv(XtX); %Covariance matrix

 if any(any(C==inf))
 h2=warndlg('Design matrix is poorly scaled...Cannot calculate
statistics');
 uiwait(h2);
 close(waitH)
 return
 end

 H=X*C*X'; %Hat matrix
 h=diag(H);

 clear Xtemp;

 %I guess we have to do this on a per channel basis:
 lenData=size(DOT.data(cf).raw,1);
 numMeas=size(DOT.data(cf).MeasList,1);
 numMeasC=length(find(DOT.data(cf).MeasList(:,4)==1));

 %Initialize some things.
 DOT.data(cf).HRF_Stats.res=zeros(lenData,numMeas);
 DOT.data(cf).HRF_Stats.StdRes=zeros(lenData,numMeas);
 DOT.data(cf).HRF_Stats.PRESS=zeros(lenData,numMeas);

 DOT.data(cf).HRF_Stats.res_Conc=zeros(lenData,numMeasC,2);
 DOT.data(cf).HRF_Stats.StdRes_Conc=zeros(lenData,numMeasC,2);
 DOT.data(cf).HRF_Stats.PRESS_Conc=zeros(lenData,numMeasC,2);

 for ch=1:numMeas

 if useWaitbar
 try
 waitH=waitbar(ch/numMeas,waitH);
 figure(waitH);
 end

 105

 end

 lstTDML=find(TDML~=0);
 y=DOT.data(cf).dODc(lstTDML,ch);

 B=[];
 for Regressor=1:numReg
 if ~isempty(HRF(Regressor).Avg)
 B=[B; HRF(Regressor).Avg(:,ch)];
 end
 end

 e=y-H*y;
 DOT.data(cf).HRF_Stats.res(lstTDML,ch)=e;

 if OutResOnly
 %If you only want the residuals- exit here
 continue
 end

 %Degree of freedom variables:
 n=DOT.data(cf).nkp(1,ch);
 k=DOT.data(cf).nkp(2,ch);
 p=DOT.data(cf).nkp(3,ch);

 %Analysis of Variance approach...

 %Residual sum of squares:
 SSRes=sum(e.^2);
 MSRes=SSRes/(n);

 %Total sum of squares:
 SST=sum(y.^2);

 %Regression sum of squares:
 SSR=SST-SSRes;

 sigma2=SSRes/(n-p);

 %These are the overall model statistics

 Model_Fo=(SSR/k)/(SSRes/(n-k-1));
 Model_to=Model_Fo^0.5;
 Model_R2Adj=1-(SSRes/(n-p))/(SST/(n-1));

 Model_P=1-fcdf(Model_Fo,k,n-k-1); %From Fo with F(k,n-k-1)
dist.

 StdR= e./(1-h).^0.5.*1/MSRes^0.5; %Studentized residuals
(internally scaled)
 PRESS=e./(1-h);
 % S2=((n-p)*MSRes-e.^2/(1-h))./(n-p-1);
 % R_student=e./(S2*(1-h)).^0.5;

 106

 %Individual regression coefficients
 %I want the partial residual info here.

 Ind_to=B./(sigma2*diag(C)).^0.5;
 Ind_Po=1-tcdf(abs(Ind_to),n-k-1);

 %Confidence intervals for individual regressors

 Conf_t=tinv(1-alpha/2,n-k-1);
 deltaB=Conf_t*(sigma2*diag(C)).^0.5;
 Conf_High=B+deltaB;
 Conf_Low=B-deltaB;

 %Now store all the data...

 DOT.data(cf).HRF_Stats.Fo(ch)=Model_Fo;
 DOT.data(cf).HRF_Stats.to(ch)=Model_to;
 DOT.data(cf).HRF_Stats.P(ch)=Model_P;
 DOT.data(cf).HRF_Stats.StdRes(lstTDML,ch)=StdR;
 DOT.data(cf).HRF_Stats.PRESS(lstTDML,ch)=PRESS;
 DOT.data(cf).HRF_Stats.R2Adj(ch)=Model_R2Adj;
 % DOT.data(cf).HRF_Stats.R_student(:,ch)=R_student;

 %Sort back to ind. HRFs
 for Reg=1:numReg
 if ~isempty(HRF(Reg).Avg)

DOT.data(cf).HRF(Reg).to(:,ch)=Ind_to(RegIdx(Reg):RegIdx(Reg+1)-1);
 DOT.data(cf).HRF(Reg).P(:,ch)=Ind_Po;

DOT.data(cf).HRF(Reg).Conf_High(:,ch)=Conf_High(RegIdx(Reg):RegIdx(Reg+
1)-1);

DOT.data(cf).HRF(Reg).Conf_Low(:,ch)=Conf_Low(RegIdx(Reg):RegIdx(Reg+1)
-1);
 end
 end

 %Now do Conc
 if ~isempty(find(ch==lstC))
 lstTDML=find(TDML~=0);
 y_HbO=DOT.data(cf).dConcc(lstTDML,ch,1);
 y_HbR=DOT.data(cf).dConcc(lstTDML,ch,2);

 e(:,1)=y_HbO-H*y_HbO;
 e(:,2)=y_HbR-H*y_HbR;

 DOT.data(cf).HRF_Stats.res_Conc(lstTDML,ch,:)=e;

 107

 %Analysis of Variance approach...
 %Residual sum of squares:
 SSRes=sum(e.^2,1);
 MSRes=SSRes./(n);

 %Total sum of squares:
 SST=sum(y.^2,1);

 %Regression sum of squares:
 SSR=SST-SSRes;

 sigma2=SSRes/(n-p);

 %These are the overall model statistics

 Model_Fo=(SSR/k)./(SSRes/(n-k-1));
 Model_to=Model_Fo.^0.5;
 Model_R2Adj=1-(SSRes/(n-p))./(SST/(n-1));

 Model_P=1-fcdf(Model_Fo,k,n-k-1); %From Fo with F(k,n-k-1)
dist.

 StdR= e./((1-
h)*ones(1,2)).^0.5.*(ones(length(e),1)*(ones(1,2)./MSRes.^0.5));
%Studentized residuals (internally scaled)
 PRESS=e./((1-h)*ones(1,2));

 B=[];
 for Regressor=1:numReg
 if ~isempty(HRF(Regressor).AvgC)
 B=[B; HRF(Regressor).AvgC(:,ch,1:2)];
 end
 end

 B=squeeze(B);

 %Individual regression coefficients
 %I want the partial residual info here.

 Ind_to(:,1)=B(:,1)./(sigma2(:,1)*diag(C)).^0.5;
 Ind_Po(:,1)=1-tcdf(abs(Ind_to(:,1)),n-k-1);
 Ind_to(:,2)=B(:,1)./(sigma2(:,2)*diag(C)).^0.5;
 Ind_Po(:,2)=1-tcdf(abs(Ind_to(:,2)),n-k-1);

 %Confidence intervals for individual regressors

 Conf_t=tinv(1-alpha/2,n-k-1);
 deltaB(:,1)=Conf_t*(sigma2(:,1)*diag(C)).^0.5;
 deltaB(:,2)=Conf_t*(sigma2(:,2)*diag(C)).^0.5;
 Conf_High(:,1)=B(:,1)+deltaB(:,1);
 Conf_Low(:,1)=B(:,1)-deltaB(:,1);

 108

 Conf_High(:,2)=B(:,2)+deltaB(:,2);
 Conf_Low(:,2)=B(:,2)-deltaB(:,2);

 %Now store all the data...

 DOT.data(cf).HRF_Stats.Fo_Conc(ch,:)=Model_Fo;
 DOT.data(cf).HRF_Stats.to_Conc(ch,:)=Model_to;
 DOT.data(cf).HRF_Stats.P_Conc(ch,:)=Model_P;
 DOT.data(cf).HRF_Stats.StdRes_Conc(lstTDML,ch,:)=StdR;
 DOT.data(cf).HRF_Stats.PRESS_Conc(lstTDML,ch,:)=PRESS;
 DOT.data(cf).HRF_Stats.R2Adj_Conc(ch,:)=Model_R2Adj;
 % DOT.data(cf).HRF_Stats.R_student(:,ch)=R_student;

 %Sort back to ind. HRFs
 for Reg=1:numReg
 if ~isempty(HRF(Reg).Avg)

DOT.data(cf).HRF(Reg).to_Conc(:,ch,:)=Ind_to(RegIdx(Reg):RegIdx(Reg+1)-
1,:);
 DOT.data(cf).HRF(Reg).P_Conc(:,ch,:)=Ind_Po;

DOT.data(cf).HRF(Reg).Conf_High_Conc(:,ch,:)=Conf_High(RegIdx(Reg):RegI
dx(Reg+1)-1,:);

DOT.data(cf).HRF(Reg).Conf_Low_Conc(:,ch,:)=Conf_Low(RegIdx(Reg):RegIdx
(Reg+1)-1,:);
 end
 end

 end

 end
else
 %Do the average only version
 for Reg=1:numReg
 if useWaitbar
 waitH=waitbar(0.5+Reg/numReg,waitH);
 figure(waitH);
 end
 if ~isempty(HRF(Reg).Avg) & isfield(HRF(Reg),'AvgStdErr')
 n=DOT.data(cf).nkp(1,1);
 k=DOT.data(cf).nkp(2,1);

 MSE=HRF(Reg).AvgStdErr;
 Ind_to=HRF(Reg).Avg./MSE;
 DOT.data(cf).HRF(Reg).to=Ind_to;
 Ind_Po=1-tcdf(abs(Ind_to),n-k-1);
 DOT.data(cf).HRF(Reg).P=Ind_Po;

 Conf_t=tinv(1-alpha/2,n-k-1);
 deltaB=Conf_t*MSE;

 109

 Conf_High=HRF(Reg).Avg+deltaB;
 Conf_Low=HRF(Reg).Avg-deltaB;
 DOT.data(cf).HRF(Reg).Conf_High=Conf_High;
 DOT.data(cf).HRF(Reg).Conf_Low=Conf_Low;
 end

 %Now Conc.
 if ~isempty(HRF(Reg).AvgC) & isfield(HRF(Reg),'AvgCStdErr')
 n=DOT.data(cf).nkp(1,1);
 k=DOT.data(cf).nkp(2,1);

 MSE=HRF(Reg).AvgCStdErr;
 Ind_to=HRF(Reg).AvgC./MSE;
 DOT.data(cf).HRF(Reg).to_Conc=Ind_to;
 Ind_Po=1-tcdf(abs(Ind_to),n-k-1);
 DOT.data(cf).HRF(Reg).P_Conc=Ind_Po;

 Conf_t=tinv(1-alpha/2,n-k-1);
 deltaB=Conf_t*MSE;
 Conf_High=HRF(Reg).Avg+deltaB;
 Conf_Low=HRF(Reg).Avg-deltaB;
 DOT.data(cf).HRF(Reg).Conf_High_Conc=Conf_High;
 DOT.data(cf).HRF(Reg).Conf_Low_Conc=Conf_Low;
 end

 end

end
if useWaitbar
 try
 close(waitH);
 end
end

return

