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Copyright 2005: Massachusetts General Hospital 
 
End-User Licensing Agreement ("EULA") for HomER: 
  
IMPORTANT- READ CAREFULLY:  
 
1. GRANT OF LICENSE. This EULA grants the licensee the following rights: Software. The licensee may 
install one copy of HomER on a single computer.  Network Use. The licensee may use HomER over an 
internal network, and the licensee may distribute HomER to other computers over an internal network.  
Documentation. The licensee may make a copy of the documentation for internal use only.  This EULA 
grants the licensee a nonexclusive, nontransferable, no-cost, royalty free right to use the HomER for 
licensee's internal, non-commercial, non-clinical, academic research purposes only, under the terms of this 
agreement.  
 
2. LIMITATIONS Academic Version.  
 
HomER can only be used by Colleges, Universities, and other Non-Profit Research Organizations for 
research only.  Colleges, Universities, and other Non-Profit Research Organizations may not use HomER in 
any commercial arrangement to any third-parties when payments are made for services rendered, either 
directly, or indirectly, when the functionality contained within HomER has been used.   
 
For-profit organizations and companies are explicitly prohibited from using this software for any purposes.   
 
Rental. The licensee may not rent or lease HomER.   
 
Commercial Use. The licensee may not charge anyone for any activity that uses HomER. For example, the 
licensee may not charge for segmentation, quantification, and/or  corticalsurface reconstruction using 
HomER.  The licensee cannot charge others for installation of the software, nor can they pay any entity, 
other than a full-time employee, to install and operate the software. The licensee may not incorporate 
HomER or any of its parts into any commercial code or product of any kind.   
 
Software Transfer. The licensee may not transfer HomER to any third party.   
 
Clinical Use:  This software may not and should never be used for clinical purposes.  Software used for 
clinical purposes may require regulatory documentation and associated filings.   
 
Termination.  
 
3. COPYRIGHT and TRADEMARKS.  HomER. All title and copyrights in and to HomER (including but 
not limited to any code, documentation, images, text or data) are owned by The General Hospital 
Corporation doing business as Massachusetts General Hospital. HomER is protected by copyright laws and 
international copyright treaties, as well as other intellectual property laws and treaties. HomER is licensed, 
not given away or sold.   
 
PMI toolbox. Parts of this software are based on the PMI toolbox software copyrighted by The 
Massachusetts General Hospital and John Stott. The original license terms of the PMI toolbox software 
distribution is included in the file docs 
  
 
4. NO SUPPORT OR WARRANTY. HomER is provided with no support whatsoever. The General 
Hospital Corporation may, at their sole discretion, provide bug reports or upgrades at 
www.nmr.mgh.harvard.edu/DOT,   The General Hospital Corporation do not have any obligation to notify 
users of this occurring.   HomER may contain in whole or in part pre-release, untested, or not fully tested 
works. HomER may contain errors that could cause failures or loss of data, and may be incomplete or 
contain inaccuracies. LICENSEE expressly acknowledges and agrees that use of HomER, or any portion 
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thereof, is at LICENSEE's sole and entire risk, and that HomER is an experimental program.  HomER is 
provided "AS IS" and without warranty, upgrades or support of any kind.  
 
THE GENERAL HOSPITAL CORPORATION EXPRESSLY DISCLAIMS ALL WARRANTIES 
AND/OR CONDITIONS, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED WARRANTIES AND/OR CONDITIONS OF MERCHANTABILITY OR SATISFACTORY 
QUALITY AND FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD 
PARTY RIGHTS. THE GENERAL HOSPITAL CORPORATION DOES NOT WARRANT THAT THE 
FUNCTIONS CONTAINED IN HOMER WILL MEET LICENSEE'S REQUIREMENTS, OR THAT 
THE OPERATION OF HOMER WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT 
DEFECTS IN HOMER WILL BE CORRECTED. NO ORAL OR WRITTEN INFORMATION OR 
ADVICE GIVEN BY THE GENERAL HOSPITAL CORPORATION OR A CORTECHS LABS, INC. 
AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE 
THE SCOPE OF THIS WARRANTY. LICENSEE ACKNOWLEDGES THAT HOMER IS NOT 
INTENDED FOR CLINICAL USE AND SHOULD NOT BE USED FOR DIAGNOSIS, TREATMENT 
PLANNING, OR ANY OTHER CLINICAL PURPOSE. 
 
5. LIMITATION OF LIABILITY. UNDER NO CIRCUMSTANCES SHALL THE GENERAL 
HSOPITAL CORPORATION BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR 
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO THIS LICENSE OR 
LICENSEE'S USE OR INABILITY TO USE HOMER, OR ANY PORTION THEREOF, whether under a 
theory of contract, warranty, tort (including negligence), products liability or otherwise. 
 
6. MISCELLANEOUS.  U.S. Government End Users. The Covered Code is a "commercial item" as 
defined in FAR 2.101. Government software and technical data rights in the Covered Code include only 
those rights customarily provided to the public as defined in this License.  This customary commercial 
license in technical data and software is provided in accordance with FAR 12.211 (Technical Data) and 
12.212 (Computer Software) and, for Department of Defense purchases, DFAR 252.227-7015 (Technical 
Data -- Commercial Items) and 227.7202-3 (Rights in Commercial Computer Software or Computer 
Software Documentation). Accordingly, all U.S.  Government End Users acquire Covered Code with only 
those rights set forth herein.  Waiver; Construction. Any law or regulation which provides that the language 
of a contract shall be construed against the drafter will not apply to this License.   
 
Quebec. Where LICENSEEs are located in the province of Quebec, Canada, the following clause applies: 
The parties hereby confirm that they have requested that this License and all related documents be drafted 
in English. Les parties ont exigé que le présent contrat et tous les documents connexes soient rédigés en 
anglais.  Authority. The person submitting this registration warrants that he/she has the authority to bind to 
this Agreement the party which he/she represents.  
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HomER is a data analysis program written by the PMI lab at MGH for the purpose of 
quick, reliable, and user-friendly analysis of near-infrared spectroscopy.  Comments and 
suggestions are always welcome and should be sent to T. Huppert 
(thuppert@nmr.mgh.harvard.edu). 
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EB002482, P41-RR14075), NCRR, and the MIND institute.  T. J. H. is funded by the 
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Filtering  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Filtering tab features:   
 

1) Main Data display window. 
This window displays the data for the entire experimental time course.  
Display type is set by items 10) and 11).  This window is cleared when 
multi-file averages are being displayed. 
 
Right clicking on this window allows export of the data displayed.  Data 
can also be copied to the clipboard by right-clicking on a displayed data 
line.  The colors of displayed data correspond to the color of the source-
detector pair highlighted in window 2 (item 2).    
 

2) Probe Geometry display 
This window displays the loaded probe geometry.  Clicking on the probe 
positions changes the displayed source-detectors in window 1).  The probe 
is specified by the “SD” variable and loaded with the *.nirs file.  Clicking 
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near an optode position will move display to the nearest optode.  Clicking 
on a line will toggle the display of the corresponding source-detector pair. 
X/Y labels are in centimeters.  When lines are toggled off (displayed as 
dotted lines), they will be discluded from filtering (i.e. PCA analysis) 
averaging, and image reconstruction.  This can be used to remove “noisy” 
data channels. 
 

3) LP/HP filter settings 
These fields set the Low and High pass filtering parameters.  Values are 
given in hertz.  Invalid cut-off frequencies are skipped with a warning.  To 
skip either filtering step, the filter cut-off should be set to “[]” (empty set).  
Filter parameters (inc. order, type etc) are specified under item 14). 
See section 4.2 
 

4) Motion correction PCA filter settings 
This field specifies the number of principle components (singular values) 
filtered from the data.  This uses a trunctated SVD filter.  Eigen-values are 
displayed by item 9).  If only one (1) value is specified, then all 
wavelengths are filtered together (i.e. both wavelengths are used in same 
SVD).  To filter each wavelength separately, multiple values should be 
specified.  This function operates on the normalized intensity. 
See section 4.3   
 

5) dOD PCA filter settings 
This field specifies the number of baseline  principle components filtered 
from the data.  Only available if baseline data is present. 
See section 4.4   
 

6) dConc PCA filter settings 
This field specifies the number of principle components of concentration 
filtered from the data.  Principle components taken from current file OR 
baseline (if loaded).  Selected by item 8)  A value should be specified for 
each hemoglobin species [oxy-hemoglobin  deoxy-hemoglobin] (in that 
order). 
See section 4.5   
 

7) Component selection Menu 
Selects whether the priniple components removed by item 6) are taken 
from the current file OR baseline file.  Only available if baseline data is 
specified.  This also changes the display on item 9) to reflect this selection. 
See section 4.5. 
 

8) Prune Source-detector list menu 
Launches measurement list pruning window.  See items 72-82). 
See items 72-82 
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9) View Single-value spectrum 
Plots the single-value spectrum in a new window.   
See Section 4.6. 
 

10) Data display choice menu 
Select which data type to display in window 1).  Only raw data is 
avalaible until filtering is preformed. 
 

11) Wavelength display choice menu 
Select which wavelength  
 

12) Toggle Zoom control 
Toggles on/off the zoom control 

 
13) Launch new window display 

Launches window with data and average time traces.   
 

14) Filtering Options menu 
Launches filtering options menu (items 59-71).   
 

15) Show power spectral density 
Launches new window with plot of the power spectrum of the currently 
displayed data.  Same section 7.5. 
 

16) Display all data  
Displays color-scale plot of intensity verses channel number in window 1)  
 

17) Probe geometry file 
Name of probe geometry file if loaded separately from *.nirs file 

 
18) Select Session/Subject  

Select the current session(or subject) to analyze (if multiple are open) 
 

19) Select data file 
Switch between open data files. 
 

20) Mark as Baseline data 
Mark the current data file (item 19) as a baseline measurement 

 
21) Filtering Menu Tab 

Displays filtering options 
 
 
 
 
Averaging Tab Features: 
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22) Average data display window 
Window for display of average data.  Data type is specified by items 33-
35. 
 

23)  HRF pretime edit field 
Specifies the hemodynamic response pretime (time prior to stimulus) to 
use in averaging/deconvolution.  Specified for currently selcted regressor 
(item 33). 
See section 5.5.   
 

24)  HRF post-stimulus edit field 
Specifies the hemodynamic response post-time (time following stimulus) to 
use in averaging/deconvolution.  Specified for currently selcted regressor 
(item 33). 
See section 5.5. 
 

25)  Calculate Average 
Preforms calculation of average response. 
See section 5.7 & 5.8. 
 

26)  Preform deconvolution of data 
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Preforms a deconvolution (rather then a block average) with item 25) 
See section 5.8. 
 

27)  Show stimulus points 
Displays stimulus points on window 1) 
See section 5.3. 
 

28)  Stimulus thresh-hold 
Threshold value for pruning “raw” stimulus data.   
See section 5.1. 
 

29)  Minimum ISI 
Minimum inter-stimulus interval value for pruning “raw” stimulus data.   
See section 5.1. 
 

30)  View original stimulus 
Plots raw stimulus data on window 1). 
See section 5.1. 
 

31)  Use User-defined stimulus 
Toggle button to use User-defined stimulus (item 32). 
See section 5.2. 
 

32)  Edit User-defined stimulus 
Edit field to enter User-defined stimulus points.   
See section 5.2.  
 

33)  Which regressor to display 
Select which regressor to display data for (if multiple regressors were 
used).   
See section 5.6. 
 

34)  Select type of data display  
Select which data trace to display (dOD or dConc). 
 

35) Select Wavelength 
Select which wavelength to display 

 
36)  Display All data 

Display all data traces 
 

37)  Edit min/max scale 
Edit the max/min values to scale the display in window 2 

 
38)  Set minimum scale 
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Apply minimum scaling to window 2   
 

39)  Set Maximum scale 
Apply maximum scaling to window 2 

 
40)   Toggle Zoom on 
 
41)  Averaging Options 

Launch averaging options window 
 

42)  Averaging Tab 
Display averaging buttons 

 
43)  Reset measurement list 

Resets measurement list of which source-detectors to include in analysis 
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Imaging Tab Features: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

44) Image rconstruction window 
Displays the reconstructed images. 
 

45) Make imaging  forward matrix 
Makes forward matrix for image reconstruction using the PMI toolbox 
and the settings fromitems 47-49). 
See section 6.2.1. 
 

46)   Invert forward matrix 
Applies inversion of forward matrix 
See section 6.2.2 & 6.6. 
 

47)  Reconstruct image 
Reconstructs image using inverted forward matrix.  Image contrast is 
taken from average of time specified by item 57. 
See chapter 6. 
 

48)  Edit absorption coefficient(s) 
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Specify the baseline absorption coefficient for calculating the forward 
matrix. If only one value is specified, the same value is used for all 
wavelengths. 
See section 6.1. 
 

49)  Edit scattering coefficient(s) 
Specify the baseline reduced scattering coefficient for calculating the 
forward matrix. If only one value is specified, the same value is used for 
all wavelengths. 
See section 6.1 
 

50)  Image voxel dimensions 
These fields allow the user to specify the volume dimensions for image 
reconstruction. The default settings are based on the probe dimensions.  
Each direction is specified as [Start Coordinate: step size: End 
Coordinate].  All values are in centemeters.  
  

51)  Imaging options 
This launches a window with the options for image reconstrunction and 
display 
 

52)  Select which regressor 
In the case of multiple regressors in the linear regression model, this 
popup-menu selects which regressor is used in the image reconstruction. 

 
53) Select image display type 

Choice between reconstruction a delta-OD, concentration, or contrast-to-
noise ratio image. 
See section 6.3.2. 
 

54)  Edit max/min image scale 
These fields set the maximum/minimum scales for image display.  The 
effects are toggled on/off by item 54). 
 

55)  Use image scaling 
These buttons toggle whether to autoscale or use the image scaling 
properties specified by 53). 
 

56)  Redisplay image 
If an image has already been reconstructed, this will replot the image in a 
new window. 
 

57)  Select image time window 
This red bar is used to specify the time window over which to average 
when displaying an image. This is also used when specifying the t-
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statistics value(s) for the response.  Clicking above the red bar will 
change its length, while clicking  below it will move the initial position. 
See section 6.3.1.     
 

58)  Imaging Tab 
This selects the imaging options window 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Filtering Options menu       Measurement Pruning menu 
 

59) Current Absroption spectrum used 
This displays the partial citation for the currently selcted hemoglobin 
absorption spectrum. 
 

60)  View current absorption spectrum 
This plots the absoroption spectrum for oxy/deoxy-hemoglobin in a new 
window according to which absorption spectrum was selected in ite, 60) 
See section 4.8. 
 

61)  Change absorption spectrum 
This allows one to select which absorption spectrum for hemoglobin is 
used for the modified Beer-Lambert Law.  A user-defined spectrum can 
also be loaded. 
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See section 4.8 
 

62)  Select type of iirfilter design 
This allows the user to specify the irrfilter design applied during signal 
processing.  For the Chebshev or elptic filter designs, the tolerances for 
the pass-band and stop-band are also specified. 
See section 4.8.  
 

63)  Edit filter order 
This allows the user to specify a higher filter order (default 5) for the 
signal processing. 
See section 4.11. 
 

64)  View filter charectoristics 
This create a new window displaying the filter design charectoristics for 
the signal processing filters.  See items 61 & 62. 
See section 4.11. 
 

65)  Add custom filtering step 
Check this box to include the custom filter step (if loaded). 
Note: This feature is not available in the stand-alone version. 
See section 4.10. 

 
66)  Load custom filtering function 

This allows the user to specify a custom script that gets executed within 
the signal processing.   
Note: This feature is not available in the stand-alone version. 
See section 4.10 

 
67)  Name of custom file 

This displays the name of the custom filter loaded by 64). 
Note: This feature is not available in the stand-alone version. 
See section 4.10 
 

68)  DPF correction factor 
Differential path-length factor to be included in the modified Beer-
Lambert law.  Defined separately for each wavelength.   
See section 4.9 
 

69)  Include DPF in calculations 
Check box to include DPF (item 68) in MBBL calculation of hemoglobin 
Default setting does NOT include this factor. 
See section 4.9 
 

70)  Partial  volume corrections 
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Partial volume correction to be included on concentration calculations.  
Defined separately for each wavelength. 
See section 4.9.  
 

71)  Include partial volume correction to DPF 
Check box to include partial volume correction (item 70) in MBBL 
calculation of hemoglobin 
Default setting does NOT include this factor. 
See section 4.9 
 

72)  Use min intensity criterian in prune 
If checked, measurements will be excluded if below intensity (set by item 
73). 
See section 4.12. 
 

73)  Set minimum intensity 
Sets minimum intensity for pruning. 
See section 4.12. 
 

74)  Use max intensity criterian in prune 
If checked, measurements will be excluded if below intensity (set by item 
75). 
See section 4.12. 
 

75)   Set maximum intensity 
Sets maximum intensity for pruning. 
See section 4.12. 
 

76)  View histogram of intensities 
Displays a histogram of the mean (D.C.) intensities for the data.  Useful 
for desciding the level of pruning. 
 

77)  Set maximum source-detector seperation  
Sets maximum source-detector distance (in cm) for pruning. 
See section 4.12. 
 

78)  Use max SD seperation  in prune 
If checked, measurements will be excluded if the source-detector 
seperation if greater then this distance [in cm] (set by item 77). 
See section 4.12. 
 

79)  Set minimum source-detector seperation  
Sets minimum source-detector distance (in cm) for pruning. 
See section 4.12. 
 

80)  Use min SD seperation  in prune 



 17

83
84
85

8687

88
89
90 91

83
84
85

8687

88
89
90 91

92 93

94
95

96
97

92 93

94
95

96
97

If checked, measurements will be excluded if the source-detector 
seperation if less then this distance [in cm] (set by item 77). 
See section 4.12. 
 

81)  View histogram of separations 
Displays a histogram of the source-detector distances for the data.  Useful 
for desciding the level of pruning. 
See section 4.12. 
 
 

82)  Apply pruning to data 
This button applies the settings of 72-81) to the data.  Measurements 
pruned from the dataset appear as dotted lines on the probe geometry 
(item 2). 

  See section 4.12. 
 

Averaging Options menu        Imaging Options menu 
 

83) Display of currently used regressors 
This is a list of the currently used regressors for the multiple regressor 
deconvilution or the list of stimulus variables used for averaging.  The 
default value is StimOn, which is the first column of the “s” variable 
loaded with the *.nirs dtata file. 
See section 5.6 
  

84)  Add a regressor 
This button will bring up a list box, where one can select from the choices 
of regressors available  
See section 5.6 
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85)  Remove selected regressor 
This button will remove the currently highlighted regressor (in item 83) 
from the list.  If all regressors are removed, the value will default to 
StimOn. 
See section 5.6. 
 

86)  View colinearity of design matrix 
This displays the covariance of the design matrix (i.e. XTX).  Off diagonals 
of this matrix indicate collinear variables in the least-squares design.  
This will plot in a new window. 
See section 5.6 
 

87)  View design matrix 
This button will plot (spy) the design matrix in a new window.  All 
regressors will be shown and any filtering will be applied to the design 
matrices. 
See section 5.6 
  

88)  Calculate statistics when averaging 
This check box will perform response statistics everytime the 
average/deconvolution is preformed.  This will slow down this calculation. 
 

89)  Add detrending step to averages 
When this box is checked, a linear trend will be removed from the 
response functions.   
 

90)  Calculate statistics on average data 
This button will calculate the statistics for the reponse functions.  This 
should be applied after the data average is calculated.   
See chapter 8.   

 
91)  Calculate average of auxillary data 

This button will perform averaging on the auxillary data (if present).   
See section 5.9 

 
92)  Calculate image statistics 

Ths button will calculate the statistics for a reconstructed image.  Once 
calculated, the effects (t-stastics) can be displayed by item 93. 
See chapter 8. 
 

93)  Show Effects map for time window 
This images the effects map in a new figure. 
See chapter 8. 

 
94)  Set movie frame rate 
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This field changes the movie frame rate for the exported movie.  The movie 
will be saved at a frame rate of the original sample frequency of the data 
resampled by this value.  This value must be an interger. 
 

95)  Set movie avi file compression level 
This sets the compression level for the exported movie. 
 

96)  Display probe on image 
When this box is checked, the image will be displayed with the probe 
geometry overlain on top. 
 

97)   
 

 
 
Pull-down Menus: 
 
 
 
 
 
 
 
 
 
 
 
 

 
98) File pulldown menu  
99)  Import data 

Loads a save *.nirs data file 
 
Import to current session- loads the data to the currently open session 
Import new session- loads the data into a new session 
  

100) Import Session 
Loads a saved *.hmr file. 

 
101) Save data 

Saves the wotking data as a *.hmr file 
 
Save session- saves only the currently selected session’s data 
Save all- saves every session’s data 
 

98
99
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98
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100
101
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102) Close data  

Closes the data files or figures. 
 
Close current file- closes the currently selected data file 
Close session- closes the current sessions 
Close All- closes everything and provides a blank HomER 
Close all figures- closes all the open figures (except for HomER). 

 
103) Clear memory 

This removes all unneccasary data from the program, cleaning up 
memory. 

 
104) Figures pull-down menu 
105) Display data in new window 

Ceates a summary plot of the current data.  
 

106) Plot single-value spectrum 
Plots the eigen-value spectrum of the current file in a new window 

  See section 4.6. 
 

107) Plot data power spectrum 
Plots the Fouier transfrom of the currently selected data.  

 
108) Plot HRF for all source-detectors 

Plots the hemodynamic reponse of every source-detector pair in a new 
window arranged according to the geometry. 

 
109) Display options 

Options for displaying hemoglobin concentrations and standard deviation.  
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Chapter 1:  Downloading and Installation 
 
 The HomER program is distributed as a self-extracting zip file and is available for 
download at http://www.nmr.mgh.harvard.edu/PMI/resources/.   
 
Registration, including name, email and institutional information is required to 
download HomER.   This information is gathered for annual reporting reasons to the 
National Institutes of Health.  This program was developed under NIH grants (R01-
EB002482, P41-RR14075) and is distributed as a shared resource under that grant.  
Registration information IS NOT distributed for any private or commercial use.  We 
appreciate that registrats be as accurate as possible in filling out this form, for these NIH 
reporting issues. 
 
Homer-users list server: 
 
Registratants are also automatically signed up to be on the homer-
users@nmr.mgh.harvard.edu email server.  This email list is used to communicate 
changes/fixes to the HomER program.  Questions or comments can be sent between all 
registered users through to this email server.   
 
Information about how to be remove your email address from this list or change email 
settings can be found at http://mail.nmr.mgh.harvard.edu/mailman/listinfo/homer-users 
 
 Previous questions and answers are archived and can be viewed by registered users at 
http://mail.nmr.mgh.harvard.edu/mailman/listinfo/homer-users 
 
 
1.1 Unpacking program: 
  
 After downloading the HomER setup file, windows should guide you through the 
installation process.   A shortcut icon (of Homer Simpson) will be put on the computer 
desktop following installation. 
 
 Following selecting the root directory, the HomER program will unpack into a 
number of directories including: 
   

Documentation -- Contains the documentation support guides and setup 
information 

 
Sample Data ----- Contains a sample set of data as well as sample code to 

generate the *.nirs files which HomER accepts.  See chapter 10 for a walk 
through using these sample files. 
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Open Source ----  Contains a limited number of the Matlab *.m scripts which are 
being run by HomER. 

 
HomER.exe ---   The actual binary executable file 
 
HomER.ctf ---  The configuration file required by the Matlab Runtime Component 

to execute HomER. 
 
MRCINSTALLER.exe --- This is the setup program for the Matlab Runtime 

Component.     
 
 
1.2: MRC Installer: 
  

HomER.exe requires the Matlab Runtime Component to execute.  Information 
about the MRC deployment process can be found on the Matlab website 
(www.mathworks.com).  Additional information installing the MRC can be found at: 
(http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/deployment_process
6.html).   In most cases, no additional setup changes (other then those automatically 
installed by the HomER setup code) should be required. 
 
 The MRC MUST be installed the first time HomER is setup.  Subsequent 
installations, including future updates and new releases to the program do not require the 
MRC to be reinstalled.   
 
 
1.3: Running HomER for the first time: 
 
 The first time HomER is run, the MRC must generate several files.  These files 
are created into a folder entitled HomER_MCR.  This folder contains the hundreds of 
binary codes that are part of the HomER program.  The process of generating these files 
may take several minutes.  This means that the FIRST time HomER is executed, the 
program may be unresponsive while these files get generated.  Subsequent times HomER 
is run, the program should launch almost immediately. 
 
 1.4: Updating future releases: 
 
 Future releases of the HomER program will be available distributed containing 
only the HomER.exe and HomER.cfg files.  These files will be signifigantly smaller in 
size, since they will not include the MCR installer.  To update the HomER program, 
simply replace the original (older) copies of these two files.  The HomER_MCR folder 
should also be erased.  This folder will be recreated the first time the new release is run.  
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Chapter 2:  Data format and Preprocessing 
 
2.1: NIRS file format: 
 
 HomER accepts files with the extension *.nirs.  These are simplily the standard 
Matlab format files, renamed with the .nirs extension.   
 
---------------------------------------------------------------------- 
Note on saving/reading files in Matlab: 
 
 Although the .nirs files are standard Matlab format, certain steps must be taken to 

read or save Matlab files with extensions other then *.mat.  The following code is 
an exsample of how to save a file with the .nirs extension.  More information 
about this issue can be found in the files distributed in the Sample Data folder. 

 
 >>  sampleData= rand(30,1);  %create some variable to save 
 
 >>  save(‘MySampleData.nirs’,’sampleData’,’-MAT’);   %the save step 

The –MAT flag allows files to be saved with 
extensions other then .mat  

 
 >> clear sampleData 

 
>> load(‘MySampleData.nirs’,’-MAT’);   %Reloads the file.  Again, the  -

MAT flag is required to load the 
.nirs ext.   

 
  

More information about saving in Matlab with various extensions can be found 
at: 

 (http://www.mathworks.com/access/helpdesk/help/techdoc/ref/save.html?cmdname=save).   
 
 And Loading at: 
 (http://www.mathworks.com/access/helpdesk/help/techdoc/ref/load.html) 
 
---------------------------------------------------------------------- 
 
2.2: Data Format: 
 

Several sample nirs data files are included in the download of this program.  
Sample scripts used to generate these files are also included as templates for creating 
*.nirs data files. 

  
 

The structure of each data file has a mimimum of 5 basic (required) fields.  There are a 
number of additional, optional fields that can open additional features of HomER. 
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d -  This is the actual raw data variable. This variable has dimensions of <number of 

measurements> x <number of time points>.   Rows in d are mapped by the 
measurement list (ml variable described below).  The d variable can be complex 
(as in the case of sine-cosine demodulation for the laser carrier frequencies).   

  
 
ml -  The measurement list. This variable serves to map the data arrays onto the probe 

geometry.   This variable has the size <number of measurements> x <4>. 
 Each row of this matrix describes the corresponding column in the data matrix.  

For example, the third row in ml (i.e.  ml(3,:) in Matlab) describes the third 
column of the data matrix (i.e. d(:,3) ). 

  
 Each row of the ml variable has four columns, which describe the measurement 

conditions for this data.  This has the format. 
 

ml(#,:) = [source index, detector index, frequency, wavelength index] 
 
For example, ml(5,:) =  [2 3 1 1]; would imply that the data in the 5th column of 
the d variable was measured between source position #2 to detector position #3.  
The frequency index is 1, impling that it was a continious wave measurement.  
Finally, the 4th column describes the wavelength.  In this case, the 1 informs us 
that this measurement was taken at the first wavelength.  Wavelengths (in 
nanometers) are described in the SD.Lambda variable  (described later).   
 
Note:  The source and detector indices refer to the optode naming (probe 
positions) and not the physical laser numbers on the instrument.  Each source 
optode should have 2 or more wavelengths (hence lasers) plugged into it in order 
to calculate deoxy and oxy-hemoglobin concentrations.  The data from these two 
wavelengths will be indexed by the same source, detector, and frequency values, 
but have different wavelength indices. 

 
 
t-  The time variable. This maps the aquisition time to index of the measurment. This 

will almost always be a straight line with slope equal to the acquisition frequency.  
The size of this variable is <number of time points> x 1. 

 
s-  This is the stimulus variable. This variable is used to determine the impulse train 

for averaging and deconvultion.  Although this variable should (ideally) be a 
binary (zeros and ones) variable, with ones representing the starts of each 
stimulus epoch, HomER has stimulus pruning features that allow edge detection 
of raw stimulus data (i.e. a voltage line from a presentation computer). 

 
 HomER allows for parametric stimulus experiements.  To provide the timing for 

multiple conditions the s variable should have dimensions of <number of time 
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points> x <number of stimulus conditions>.  Multiple condition averaging is 
described in section 5.6. 

 
SD- This is a structured variable that describes the probe (source-detector) geometry.  

This variable has a number of required fields. 
 

SD.Lambda- This field described the wavelengths used.  The indexing of this 
variable is the same as that used in the ml variable. 

  
 For example,  SD.Lambda = [690 780 830]; implies that the 

measurements were taken at three wavelengths (690nm,780nm, 
and 830nm).  The wavelength index in the 4th column of the ml 
variable refers to this field.  ml =[ <> <> <> 2] means this data was 
at 780nm and ml =[ <> <> <> 1] means 690nm (in the example 
above). 

 
 The number of wavelengths is not limited (except that at least two 

are needed to calculate the two forms of hemoglobin).  Each 
source-detector pair MUST have measurements at all wavelengths. 

  
SD.SrcPos- This field describes the position (in cm) of each source optode.  

This field has size <number of sources> x 3.  For example, 
SD.SrcPos(1,:) = [1.4 1 0]; places source number 1 at x=1.4cm and 
y=0cm. 

 
 Dimensions are relative coordinates (i.e. to some aribitrary defined 

zero point).  Although the probe dimensions can be three 
dimensional, display and image reconstructions are currently only 
allowed in two dimensional (i.e. z=constant). 

 
 SD.DetPos- Same as SD.SrcPos, but decribing the detector positions. 
 
Note:  In older versions of HomER, the SD variable was stored in a separate *.m script 

file.  This new SD variable provides IDENTICAL information to that script.  The 
SD variable can be created by evaluating the lines in these script files.  Since 
HomER is compable with the older versions of the data file format, the *.m 
(probe) file can still be loaded separately.  If the SD variable does not exist in the 
*.nirs file, HomER will prompt you to select this probe script. 

 
 
 
Optional variables: 
 
 These variables are not required for basic functions, but might be usefull to get 

more out of your data sets. 
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aux-   This variable specifies the recorded auxillary data.  These could be physiology 
measures (respiration, heart rate etc), that were recorded during the experimental 
run.  This data can be used to model out systemic physiology changes through 
linear regression (see section 5.6) .  These can also be averaged to determine the 
degree of systemic response to stimuli. 

 
 This variable has dimensions of <number of time points> x <number of 

channels>. 
 
 This variable can also be labeled “aux10” as per backward compatibility. 
 
 
 
2.3: Version Compatibility: 
  
 The stand-alone version of HomER is fully compatible with the older Matlab 
versions of the program. 
 

To load raw data stored in the older format, first select to load the data (see 
section 3.1).  Select the *.* (all file types) and select the raw data (*.mat) file(s).  HomER 
will then load these files.  Since the older file format did not include the probe geometry 
in the file (it was contained in a *.m script), HomER will ask you to select this script file.  
 
 To load previously processed and saved files, choice to load session and select the 
*.* file type option to find the previously saved files.  Older files may need to be re-
updated since a number of fields have changed.  Saved settings should be imported 
properly. 
 
2.4: Preprocessing of Data: 
 
 HomER is written to take data from virtually any existing NIRS instrument.  The 
only requirement is for the data to be arranged into the signal intensity (i.e. voltage or 
light intensity) verses time for each source-detector pair of interest.  Since optical density 
is a relative quantity (i.e. ∆OD = –log(Intenstity(time) / Intensityo) ), the units or scale on 
the input raw data do not matter.  HomER does not reconstruct absolute changes, only 
relative ones.  HomER can take any combination of probe geometry and/or wavelength 
selection. 
 
 Although HomER will take any length of file (in terms of number of source-
detector pairs, length of time, or sample frequency), it is recommended that data be 
preprocessed (down-sampled and/or remove source-detector pairs that are physically too 
far apart to expect signal) to reduce the size of this file as much as possible.  This will 
make the processing within HomER much faster.  For example, principle component 
analysis, whether it is used or not, requires the calculation and single-value 
decomposition of covariance matrices (meaning that the time required for this calculation 
can be considerable for long files).      
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Chapter 3: Starting an analysis session 
 

 Data processing within HomER takes place on three levels:  
 

1. Data file-   This is the data at the individual experimental run level. 
 
2. Session- This is a collection of data files that make up the data for a 

single subject.  For example, a single session of experimental runs. 
 

3. Multiple Session-  This a collection of multiple subjects (or the same 
subject at multiple times).   Only region-of-interest analysis is 
preformed between sessions, since probe positioning and registration 
between sessions is not prefromed. 

 
3.1: Loading data to a session: 
 
 Raw data is loaded into HomER by selecting the “Import Data” command (item 
99) from the Files pull-down menu.  Here, the user has the option to import data to a new 
session or to the current session.  Adding data to the current session will add data files to 
the list of currently open data files.  Importing data to a new session, will open a new 
(blank) session for these files.  If this is the first data to be loaded into a session, HomER 
will prompt you to enter a session ID (i.e. a subject number etc) to identify this session. 
 
If a data file is loaded that matches the name of an already existing one, a number index 
is added to the end of the file name. 
 
Multiple files can be selected and loaded simultaneously through import data.  These are 
loaded into the same session. 
 
All files loaded within a single 
session, must have the same probe 
geometry (i.e. source and detector 
positions and wavelengths).  
Individual files within the same 
session can have different 
measurement lists (ml).  This means 
that large probes and number of 
source-detector pairs can be divided 
into separate files, which makes 
processing faster.  These 
measurements will be concattinated in the averaging allowing image reconstruction (etc) 
to be preformed with the full set of source-detector pairs.  This is also useful for 
combining overlapping measurements taken between source-detector pairs of different 
distances, where the dynamic range of the detectors may force these measurements to be 
split into multiple recordings.   
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Note:  Older versions of HomER accepted data files with the extension *.mat.  In 
addition, these files did not contain the source-detector geometry (but was stored in a 
separate *.m script).  The newest version of HomER is fully compatable with these older 
version files.  To load these files, select the *.* file type when loading files.  Once loaded, 
HomER will prompt you to select the probe script.  
 
 
3.2: Importing a saved session: 
 
 In addition to loading individual data files, entire saved sessions can be loaded 
through the Import Session (item 100) command.  Imported sessions are always added to 
any currently existing open sessions.  Saved sessions are given the extension *.hmr.  Like 
the *.nirs files, these are Matlab format files with a different extension.   
 

In previous versions of HomER, saved sessions 
were given the *.mat extension.  These can be 
loaded in the same way as the new format by 
selecting to the *.* file type from the load window. 
 
 
 
 
 
 
 
 
 

3.3: Closing Files/Sessions: 
 
 Data files as well as entire 
sessions can be closed by the File pull-
down menu (item 102).  In both cases, 
this command will close the currently 
selected file or session. 
 
  
 
 
 
 
3.4: Clean Memory: 
 
 The clean memory command (item 103) removes all the non-essential fields from 
memory, such as the intermediate processing steps.  This will lessen the memory load and 
speed up the display of data.  Re-updating the data (see section 4.1),will recreate these 
erased fields. 
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3.5: Saving Data: 
 
 Data processed with HomER can be saved for later use.  Data can be saved by an 
individual session (saving only the currently selected session) or by saving all sessions 
(which saves all open sessions). 
 
There are several saving options, which can affect the size of the resulting saved files.   
 

Save minimum:  This saves only the most important fields.  For example, the end 
filtered optical density and concentration, as well as the averaged 
data. 

 
Save in 7.0 format:   One of the upgrades from earlier versions to Matlab 7.0 was 

a change in the compression of the files and figures.  While this 
made the files more compressed, they no longer worked in older 
versions of Matlab.  By default, HomER will save files such that 
they maintain backwards compatibility with older Matlab versions, 
however, this option will save smaller *.hmr files. 
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Chapter 4:  Filtering Data 
 
 The first step in analyzing data within HomER is to filter or update the data.  This 
is a required first step even if no signal processing is desired since updating creates a 
number of fields that are required for averaging and eventual image reconstruction. 
 
Updating the data should always be done as a first step to analysis. 
 
Updating consists of a number of calculations including low and high pass filtering of the 
data, principle component analysis based filtering, and calculation of concentration 
changes by the Modified Beer-Lambert law. 
 
 
4.1: Steps involved in updating: 
  
 Its informative to understand the steps that are taken in updating, since it helps to 
understand the amount of processing done up to each level of the analysis.  For more 
information, the updating/filtering code is provided in the appendix of this manual. 
 

1. Intensity normalization.  The raw intensity data is first normalized to 
provide a relative (percent) change by dividing by the mean of the data. 

 
 
 

The intensity normalized data is then low-pass and/or high pass filtered.  
After high-pass filtering, unity again added to bring the data back to unity 
mean. 
 

2. Delta-optical density.     The change in optical density is then calculated 
for each wavelength.  This is equal to: 

 
 

3. Covariance Reduced dOD.    Following calculation of delta-optical 
density, up to two different principle component analysis (PCA) filters are 
applied to the data.  The first PCA filter corrects for motion in the data 
(i.e. subject head movement).  The second PCA filter uses the principle 
components of the baseline data attempt to project out systemic 
physiology.  

 
4. delta-Concentration.  The covariance reduced dOD data is then  

used to calculate delta-concentration from the Modified Beer-Lambert 
law.  This step uses the differential-pathlength and partial volume 
information set in the advanced filtering options. 
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5. Covariance reduced dConc.  Following the MBLL, a third (potential) 

PCA filter is applied to the concentration data (separately for the deoxy 
and oxy-hemoglobin components).  

 
 
Note:  The display of the data, controlled by 
the menu (item 10) is listed in order in order 
of increasing processing (i.e. following the 
steps just outlined). 
 
 
4.2: Low/High Pass filtering: 
 
 Low and high pass filtering of the 
normalized data is preformed according to 
the filter cutoffs given by the edit fields 
(item 3).  By default, the filtering step uses 
the Matlab command filtfilt, which performs 

a forward and reverse (zero-phase) iir-filtering.  Low-pass and High-pass filtering is done 
as two separate steps. 
 
More information about filtfilt can be found at: 
(http://www.mathworks.com/access/helpdesk/help/toolbox/signal/filtfilt.html) 
 
The default irrfilter design is a 3rd order Butterworth filter.  The filter design can be 
changes in the Advanced Filtering Options menu. (items 62 and 63)  More information 
about these filter designs can be found at the Matlab home-page.  Currently, HomER 
requires that both the Low and High-pass filters have the same design.  The filter design 
can be shown by item 64.  This uses the freqz command.  
(http://www.mathworks.com/access/helpdesk/help/toolbox/filterdesign/freqz.html). 
 
 
4.3: Motion Correction (PCA filter #1): 
 
 This is the first of three principle component analyisis (PCA) filtering steps that 

are allowed by HomER.  The purpose of this step is to attempt to remove the large 
motion artifacts in the data.  This is done by projecting those components (eigen-
vectors) that covary between all the source-detector channels.  For example, a 
motion artifact will show as a large change of signal in all source-detector 
channels.  In a PCA analysis, the first (strongest) couple of components calculated 
from the data will capture most of this motion artifact.  Therefore, projecting 
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these first components from the data, will remove these artifacts. The edit field 
(item 4) sets the number of Singular-vectors that are removed.   

  
 
 There are two modes for this filtering step: 
 

1) If a single value is given in the field (i.e. nSV = 1), then the principle 
components are calculated from the entire data file (i.e. all wavelengths as 
one).  This is most appropriate for motion correction, since motion of an 
optode should affect all wavelengths). 

 
2) If two or more values are given (i.e. nSV = [0 1] ), then the principle 

components are calculated independently for each wavelength.  If more 
wavelengths are present then values provided, the remaining are assumed to 
be zero.  The PCA filter then acts on each wavelength independently.  

 
 
Equation: 
 
 
 
 
 
 
 
 
Note on PCA filtering:  The prinicple components of a data set do not equate to any one 

feature of the data (for example, systemic physiology or motion (etc)).  The 
principle components are simpily a set of basis functions describing the data.  
PCA filtering attempts to remove features of the data by determining this set of 
basis functions and then rewriting the data in terms of a limited subset of them.  
For example, by leaving out the first (strongest) basis function (principle 
component), the “most dominant features” which covary between all source-
detector channels is removed.   

 
 Caution should be exercised when using 
PCA filtering since too much filtering (which 
may mean any at all) will likely remove 
components of the desired signal, since the 
components of the hemodynamic response will 
not in general be orthogonal to the first nth 
priniple components of the data.     
 
 
   
4.4: Systemic Filtering (PCA filter #2): 
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 The second PCA filter uses baseline data to derive the principle components and 
then projects them from the functional run data.  The motivation for this is that the 
principle components of the baseline data should capture the features of the systemic 
physiology (blood pressure, respiration, cardiac cycle etc).  Projecting these components 
from the functional run, attempts to filter out these systemic fluctuations from the data.  
This filter requires multiple values (one for each wavelength) to be entered into item 5. 
 
 This Filtering step is ONLY available if baseline data is specified. 
 
More information about this filter can be found in: 
 
Zhang Y. et al.  (2005).  Eigenvector-based spatial filtering for 
reduction of physiological interference in diffuse optical imaging.  
Journal of Biomedical Optics 10(1). 
 
 
 
4.5: dConc. Filtering (PCA filter #3): 
 
 While the last two PCA filters acted on delta-Optical Density, the last PCA filter 
acts on the concentration of oxy and deoxy-hemoglobin.  This allows one to further filter 
out systemic physisiology (which affects the venous and arterial compartments 
differently).  This filter requires two values (one for oxy and deoxy hemoglobin- in that 
order) to be entered into item 6. 
 
 There are two modes for this filter, which are set by item 7 
 

1) Calculate components from data. 
In this mode, the filter works the same as PCA filter #1, but acts on 
concentration.   

 
2) Calculate components from baseline 

Here, the filter works the same as PCA filter #2.  Baseline data 
must be specified to use the filter in this manner. 

 
 
 
4.6: Displaying the SV-spectrum: 
 
 In deciding to use the PCA filters above, it is important to remove an appropriate 
number of singular values.  Removing too many will compromise the hemodynamic 
response.  The Singular value spectrum can be displayed (Item 9).  This will display a 
window showing the eigen-values for each of the principle components.  This represents 
the “power” in each of the components.  
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4.7: Modified Beer-Lambert Law: 
 
 Changes in hemoglobin concentrations are related to changes in optical density by 
the modified Beer-Lambert Law (MBLL).   
 
 
 
 
 
 
 
 
 
 
 
 
4.8: Absorption Spectra:  
   There are several choices for the absorption of hemoglobin available.  These are 

selected in the Advanced Filtering Options menu (item 61).  The citation of the 
currently selected spectrum is given in item 59.  The spectrum can be displayed 
by clicking item 60.      
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All spectra were taken from the Oregon Medical Laser Center 
(http://omlc.ogi.edu/spectra/) 

 
 The full citations for the available spectra are: 
 

1) (Default) 

• W. B. Gratzer, Med. Res. Council Labs, 
Holly Hill, London  

• N. Kollias, Wellman Laboratories, 
Harvard Medical School, Boston  

 
 2) 

• J.M. Schmitt, "Optical Measurement of Blood Oxygenation by 
Implantable Telemetry," Technical Report G558-15, Stanford."  

• M.K. Moaveni, "A Multiple Scattering Field Theory Applied to Whole 
Blood," Ph.D. dissertation, Dept. of Electrical Engineering, University of 
Washington, 1970. 

3)  
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• S. Takatani and M. D. Graham, "Theoretical analysis of diffuse 
reflectance from a two-layer tissue model," IEEE Trans. Biomed. Eng., 
BME-26, 656--664, (1987). 

 
The option to load a custom spectrum is a feature that is under 
construction for future releases of HomER. 

 
 
Multiple wavelengths:  When more the two wavelengths are present, concentration is 

calculated from the least-squares fit of the hemoglobin spectrum to the data. 
 
 
 
 
 
4.9: Differential Path-length corrections:   
 A DPF correction can be included in the 
caluculation of concentration.  This will 
depend on the geometry and subject anatomy 
(skull thickness etc).  This can be specified for 
all wavelengths together (in which case it is a 
scaling factor) or individually per wavelength. 
 
Note:  Unless the option to include the DPF is 
checked, neither the DPF nor the source-
detector distances are taken into account 
when calculating concentration.  This makes 
the units on concentration, somewhat 
arbitrary (i.e. Moles * cm / Liter).  This is 
because without the DPF correction, the 
pathlength is simplily a scaling factor and is 
inaccurate without this correction… meaning 
that without DPF correction, one shouldn’t 
trust the absolute quantity of concentration. 
 
Partial-volume Correction:  A partial volume correction to the DPF can also be 
included.  This correction only applies to concentration (i.e. no partial volume corrections 
are ever added to dOD). 
 
 
4.10: Custom Filtering: 
 
 This feature is not allowed in the stand-alone version of HomER.  In the Matlab 
7.0 version, this allows for additional Matlab function calls to be added at the end of the 
updating step. 
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4.11: Filtering Options: 
 
 
To be written… 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
4.12: Measurement List Pruning: 

 
Pruning provides a way to remove unwanted source-
detector pairs from being included in filtering, averaging 
and/or imaging (for example noisy or low signal channels). 
This can be done on the basis of source-detector seperation 
distances, min/max raw data intensities, or manually by 
clicking on the SD-geometry (item 2).  Removed 
measurements will appear as dotted lines on the probe.  
The entire measurement list can be reset by the button 
above the probe geometry. 
 
Removed measurements are NOT included in the PCA 
analysis.  These means that the principle components are 
calculated from only the remaining (active) measurements.  
Leaving noisy measurements in will create unwanted 

results in the PCA analysis. 
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Chapter 5: Averaging the stimulus response 
 
 
5.1: Pre-conditioning the stimulus: 
 

The stimulus train is calculated from the “s” variable.   To determine the timing of 
the stimulus, an edge detection can be preformed on this data.  This will find the rising 
edge of each stimulus block.  This is designed for dealing with finding the edge of (for 
example) voltage signals recorded from presentation computer.   

 
Stimulus Threshold-  The relative change in signal above which the point is 

assumed a stimulus. 
 
Tsep-  The minimum time seperation between stimuli. 

 
The Reset Stim button recalculates the stimulus train from the “s” variable. 
 
The stimulus points are displayed on the data by the Stimulus toggle button.  The View 
Original Stim button will display the original s variable (in blue) on the graph as well. 
 
5.2: User-Defined Stimuli: 
 
 In addition to supplying the stimulus timing in the s variable with the file, the 
stimulus timing can be manually entered. 
 
 Stimuli timing is entered by either listing the times (in seconds) for the start of 
epoch or (for periodic timing) the stimuli can be specified by: 
 

[Start time: step: Stop time] 
 
 For example, a stimulus that occurred every 20 seconds, starting at 10 sec for the 
entire 6 minutes of the run would be specified by: 
 

[10:20:360] 
 

This would put stimulus points at 10,30,50,70… seconds. 
 
To specify HomER to use the user-defined stimulus 
timing, the user-defined stimulus timing field must be 
filled (item 32) and the toggle button (item 31) must be 
down. 
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5.3: Removing individual stimulus points. 
 
 HomER allows you to remove individual stimulus points from the analysis (for 
example, those points that occurred during a motion artifact etc).  This is done by 
clicking on the green stimulus lines, which turn to red, dotted lines when inactive.  

Clicking on the line again 
will restore the point.  
The Reset Stim button 
will restore all stimulus 
points. 
 
 
 
5.4: Removing blocks of 
data. 
 
 A second feature 
that allows stimulus 
points to be removed 
from the analysis is to 

remove entire blocks of time.  This is more appropriate when dealing with deconvolution 
against the stimulus timing, since the removal of a line would result in the linear 
regression model considering that epoch as baseline, when in fact it is a noisy activation.  
Removing blocks of data is done by 
first RIGHT-clicking on the plot 
window (item 1).  This brings up the 
context-menu for the window, with a 
number of other features on it.  
Chosing to Remove Data, you can 
select a region of time with a drag-
window (click once and then drag 
the rectangle around the area to 
remove).  This period of time will be 
highlighted in red. 
 
To reset the data, choice the Reset 
Data feature in the same menu.  Choicing not to OverLay TDML (for time-domain 
measurement list) will make the red area disappear, but the data is still removed. 
 
 Upon averaging or deconvolution, this data block will be masked out of the 
analysis. 
 
Note:  Removing data will have an effect on the efficiency of the deconvolution (stimulus 
design matrix).  This should be used carefully.  The features to display the residual (and 
studentized residuals) should serve to help recognize outliers (artifacts) in the data. 
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5.5: Setting the time of the HRF: 
 
 The pre and post-stimulus times over which the hemodynamic response function 
(HRF) is calculated are set by items 23 and 24.  This is set for each regressor (stimulus 
condition) individually. 
 
In the case of averaging, sufficient time (before and after) the 
stimulus point must exist to include a stimulus epoch in the 
average.   
 
 
5.6: Multiple Conditions/Regressors: 
 
 One of the new features of HomER is that it now has 
the ability to analyze data from parametric studies (i.e. multiple types of stimilus 
conditions mixed in the same file).  The term “Regressor” is used here because of its 
meaning in the context of the linear regression analysis that is being applied.  The 
regressors that are allowed can be not only multiple condition types, but “nuesience” 
regressors as well.  For example, a systemic phyisiology recording (i.e. blood pressure) 
can be used as a regressor to filter out the blood pressure contibution of the signal (or to 
find the blood-pressure response 
function). 
 Regressors are added or removed 
under the Advanced Averaging Options 
menu.  Allowed regressors include any 
stimulus conditions contained within the 
s variable or any of the auxiliary 
measurements (aux variable) if present.   
The default regressor is the StimOn 
regressor, which is the first column of 
the s variable. 
 
 After selecting which regressors 
to use, the timing for each regressor can 
be independently set.  All files for that 
session automatically get the same set of 
regressors and pre/post timing.  The 
different regressors are selected by the popup menu that appears if multiple regressors are 
loaded.  When importing new files to a session, the option is given to carry these settings 

over as well. 
 
 The stimulus condition regressors (i.e. 
those in the s variable) can be displayed and 
stimulus points removed as described in the 
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previous sections.  Those from the auxillary variable cannot be pruned. 
 
In addition the design matrix (item 87) and the covariance of the design matrix (which 
tests multi-colinearity of the regressors) (item 86) can be displayed for the choice of 
regressors.  These should be used to judge the efficiency of the design.   
 
Equation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Colinearity between regressors can cause the design matrix to be ill-conditioned.  
This will result in warning messages, but more importantly, will create undesired (and 
often horribly misleading) results.  This can be avoided by carefull planning of the 
stimulus timing when creating parametric stimulus experiments. 
 
5.7: Averaging: 
 
 Block averaging of the data can be preformed once the response pre/post timings 
have been set and the stimulus is in order.  Block averaging is preformed by averaging all 
active data blocks (i.e. those shown as green active stimulus points).  Averaging is first 
preformed within a single run and then averaged across data files.  Data files marked as 
baseline data are ignored (even if they might look to have stimulus points in them). 
 
Averaging is also preformed separately between the even and odd stimulus points before 
being averaged together.  This allows the results from the even and odd stimuli to be 
displayed independently, a feature, which helps identify artifacts that can arise from a 
single bad data epoch. 
 
 If multiple regressors (conditions) are selected, HomER averages only those 
which have binary data (i.e. distinct stimulus points, such as those loaded in the s 
variable).  Regressors such as systemic physiology are ignored (and a warning message is 
given as such).  
 
More detailed information about averaging is found in the appendix to this user’s guide. 
 

i i
i

dConc IRF Regressor=∑ g

1_
( ' ) '

_
Stimulus IRF

X X X Conc
Physiol IRF

−⎡ ⎤
= Δ⎢ ⎥

⎣ ⎦
g g g



 43

Note:  The response functions for delta-optical density and delta-concentration are 
preformed separately.  Optical density responses are calculated from the covariance-
reduced optical density.  Concentration responses are calculated from the covariance-
reduced oxy and deoxy-hemoglobin concentrations.  These two averages may not be 
completely consistent with each other, since the cov-reduced concentration data has an 
additional PCA filtering step. 
 
  
5.8: Deconvolution: 
 
 The check box (item 26) determines whether a block averaging or linear 
regression (deconvolution) is performed.  In the case of deconvolution, a linear regression 
of the data against all of the selected regressors is performed.     
 

There are several good resources on linear regression to which the user is referred 
for a more detailed description.  Linear regression attempts to model the data as a linear 
superposition of the contribution of all the regressors used.  In other words, the 
contribution from the stimulus (functional response) is the stimulus timing convoluted by 
the hemodynamic response function (impulse response).  Similarly, the contribution from 
(for example) the cardiac cycle could be modeled as an EKG recording convoluted with a  
cardiac impulse response function.  Linear regression (as used in HomER) attempts to 
calculate these various impulse response functions.   
 
 A more detailed description of the linear regression calculations used in HomER 
are included in the appendix. 
 
Note:  The use of systemic regressors (such as blood pressure and cardiac cycle) can 
allow for the calculation of a  “cleaner” functional hemodynamic response.  This should 
be used carefully since systemic changes may often be stimulus correlated (i.e. heart rate 
changes as the subject performs the task). 
 
 
Note:  The response functions for delta-optical density and delta-concentration are 
preformed separately.  Optical density responses are calculated from the covariance-
reduced optical density.  Concentration responses are calculated from the covariance-
reduced oxy and deoxy-hemoglobin concentrations.  These two averages may not be 
completely consistent with each other, since the cov-reduced concentration data has an 
additional PCA filtering step. 
 
5.9: Auxillary Average: 
 
 HomER also allows for the averaging or deconvolution of the auxillary channels 
(if present).  This is done by item #91 on the Advanced Averaging Menu.  This is done 
exactly the same as with the data. 
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The auxillary averages do NOT automatically update if the averaging conditions change.  
The average auxillaries button must be pressed each time to reflect the changed 
parameters. 
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Chapter 6:  Image reconstructions 
 
 Following averaging, image reconstructions can be created for any of the 
regressor variables (stimulus conditions). 
 
 Calculation of the forward solutions (i.e. 3pt Green’s functions) and inversion 
techniques use functions from the PMI Toolbox (also separately available for download 
at http://www.nmr.mgh.harvard.edu/PMI/).  Additional documentation related to these 
functions is included with this package. 
 
 Image reconstruction in HomER currently only supports back-projection methods 
and linear forward models created from semi-infinite (homogeneous) slab geometries.   
 
6.1: Medium Properties: 
 
 The medium properties, including the absorption and reduced scattering 
coefficients, as well as the voxel dimensions and reconstruction depth are set by items 
48-50 on the imaging tab menu. 
 
 The absorption and reduced scattering coefficients are defined sepreately for each 
wavelength.  If less values are provided then wavelengths, the remaining wavelengths are 
assumed to have the properties of the last index. 
 
Note:  Although the forward matrixes are computed to project changes in optical density, 
HomER allows image reconstruction of concentration changes using the same forward 
matrices.  In the case of concentration image reconstruction, a spectrally weighted 
forward matrix is used (the average of all the wavelengths weighted by the extinction 
coefficients).   
 
6.2: Image Reconstruction: 
 
 There are three steps to the reconstruction of images: 
 

1. Make Forward Matrix:  
This function generates the forward models for image reconstruction using 
the PMI toolbox function genBornMat.  This step must be repeated each 
time the measurement list (see section ??) changes or when switching 
image types (dOD, concentration, or Contrast/Noise images). 
 

2. Invert Matrix: 
This function inverts the forward matrix using a back-projection 
technique.  This function uses the inversion technique selected under the 
Tomography Options menu (see section ??).   The default is a back-
projection method. 
 



 46

3. Make Image: 
This final command generates and displays the reconstructed image in a 
new window. 

 
6.3: Image Display: 
 
 The displayed image is controlled by a number of additional fields on the HomER 
interface.  These control the time range that the image is derived from as well as what 
type of image is displayed. 
 
6.3.1: Controling the image timing: 
  
 The image displayed is the average change over a period of time.  This timing is 
controlled by the positioning of the red control bar (item 57) which appears at the bottom 
of the averaging window.  Clicking above this line moves the length of the time range, 
while clicking below it controls the start time. 
 
Note:  Item 57 is also used in some of the statistics menus.  To move the time range 
without changing the image timing, toggle the Display Image button to the off position 
(item 56). 
 
Note:  Multiple images (with different timings) can be opened at once.  This is achieved 
by clicking the Make Image button again.  A new window will appear.  The timing and 
scaling controls now ONLY affect the newest window. 
 
6.3.2: Controling the image scale: 
 
Image types: 
 
 Images are reconstructed for the currently selected regressor.  There are three 
choices for image types: 
 

1. delta-Optical density 
This will display an image reconstructed from the cov-
reduced dOD average response.  Each wavelength will be 
displayed. 
 

2. Contrast-to-noise ratio: 
This will display an image of the contrast-to-noise ratio of 
dOD.  The noise is taken as either the standard error of the 
the (cov-reduced) baseline dOD (if baseline is available) or 
as the standard error of the pre-time (up until the zero-
point) for the average response.  
 

3. delta-concentration: 
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This will display images reconstructed from the cov-
reduced oxy and deoxy-hemoglobin (with total hemoglobin 
being the sum of the two).  The forward matrices used top 
generate these images use the spectrally weighted average 
of the wavelength specific forward models. 

 
6.3.3: Overlaying the probe geometry: 
 
 The Advanced Imaging Menu provides the option to overlay the probe geometry 
on each image. 
 
6.4: Movies:  
 
 Once images are reconstructed, movies of the entire response can be created and 
saved as AVI files (which can be viewed in most media views or inserted into 
PowerPoint presentations).  All movie commands are found on the processing pull-down 
menu under imaging. 
 

Make Movie: This command generates the movie from the collection of images.  
Only one set (i.e. wavelength or hemoglobin species) is generated at a 
time (all are processed sequentially). 

 
Note:  Make Movie uses the Matlab function getframe.  Because of this the movie 

must be displayed to the screen as it is generated.  Do NOT close this 
window until the movie has been fully created  (the window will 
automatically close). 

  
 

Play Movie: This command plays the movie in a new window.  The Matlab 
movie function first plays the movie quickly (which is Matlab loading it 
into memory) and then it plays it again at normal speed. 

 
Save Movie: This command allows you to save a movie once created (movies 

do not need to be played before being saved).  HomER will prompt for a 
directory and file name for the *.avi file.   

 
Each wavelength (or concentration) will be saved with the suffix 
‘_###nm.avi’ or ‘_HbX.avi’ added to the file name.  A separate file is 
generated for each movie type. 

 
Delete Movie:    Movie variables are rather large and tend to really slow the 

HomER program when in memory.   Deleting movies removes them from 
the memory. 

 
6.5: Movie Options: 
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 The Advanced Imaging Menu allows one to control the display speed and *.avi 
compression level (type) of the movie file. 
 
 
 
Tomography Options: 
 
 This menu allows the user to chose from a selection of inversion techniques. 
 
  
This section of the user’s guide is not yet written 
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Chapter 7: Data display and Export 
 
 The data processing in HomER is probably just the beginning of the processing 
needed to turn an experiment into a proper publication, therefore HomER allows several 
ways to display or export the data so it can be used in other processing. 
 
7.1: Data Export Options: 
 

Saving data fields:   By Right-clicking on any of the display windows, the option 
to save data will be provided.  This will allow the user to export the data 
type that is currently being displayed (i.e. that entire variable) to either a 
Matlab file (*.mat) or as an ASCII file (which can be read by Excel or 
other programs).  This is done by selecting the save type on the put-file 
menu (either *.mat or *.dat). 

 
 The saved date file will be organized into a column vector for each 

measurement.  The ml variable refrences each column.  This variable is 
saved along with the data with the *.mat option (but not in ASCII files). 

 
 Note: Certain fields are not allowed to be saved as ASCII files.  These 

include delta-concentration (since it is a three-dimensional array 
[measurements x time x {HbO2, HbR, HbT} ] and would need to be saved 
as three separate files) and the SD geometry (right-clicking the probe 
geometry-item 2). 

 
Copy data: This feature copies the data to the Windows clipboard.  This is 

done by right-clicking on a displayed data line. 
 
Saving session data: Anouther option for exporting the data is to interface 

directly with the .hmr format by saving the entire session.  This format is 
described in the appendix to this guide. 

 
 
 
7.2: Data Display: 
 
Note:  Since HomER is being run as a Matlab 7.0 program, all figures saved as .fig 
files will be compressed in the 7.0 format.  This format will not be readable from older 
Matlab versions (in other words, the figure files will not be able to be re-opened!!!).  
To get around this problem, when saving figures, one should choice to Save As into a 
format which will be readable (for example as a tiff or jpeg image).  All other data 
saving (.mat) is done in backward compatible format by default (but I never figured out 
how to change the menu defaults on the figures in a stand-alone program) 
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 There are a number of options for the display of data.  Most of these are context 
specific, meaning that the options available depend on the processing (i.e. whether 
a block averaging or deconvolution was preformed etc). 

 
 Most of these options require no additional explanation.  Here, however, are a few 

of the finer points to these controls. 
 

7.2.1: Displaying Error-bars: 
 
 Data that has been block averaged will have error-bars (both standard deviation 

and standard error) associated with it.  Which of these the error-bars reflect is 
determined by right-clicking on the average display window and selecting the 
choice under plot options. 

 
7.2.2: Confidence-bounds: 

 
 Data that has been processed by linear regression will have confidence bounds 

associated with it.  This is accessed by right-clicking on the average display 
window under plot options.  This will over-lay the 95% confidence bounds on the 
average response. 

 
 Note:  The option to display confidence bounds is only available AFTER statistics 

(see section 8.x) have been calculated on the data and only for the linear 
regression model. 

 
7.2.3: Residuals: 

 
 The residuals of the data that has been processed by linear regression 

(deconvolution) can be displayed by right-clicking on the main display window 
(item 1) and selecting plot residuals under plot options.  These will be plotted in a 
new window.  This is only available for cov-reduced dOD or dConc. 

 
 Note:  The option to display residuals is only available AFTER statistics (see 

section 8.x) have been calculated on the data and only for the linear regression 
model. 

 
7.2.4 Model Fit: 

 
 The modeled response of the data that has been processed by linear regression 

(deconvolution) can be displayed by right-clicking on the main display window 
(item 1) and selecting plot model under plot options.  The model is the regressor 
data convoluted by the impulse response function(s).  (i.e. Data – Model = 
Residuals).  The model is plotted as dotted lines over the cov-reduced dOD or 
dConc. data   
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 Note:  The option to display model is only available AFTER statistics (see chapter 
8) have been calculated on the data and only for the linear regression model. 

 
7.3: Plot in new window 
 

All display windows can be replotted in new windows by right-clicking on the 
original display and selecting New Figure. 

 
7.4: Plot All: 
 

The command to Plot All (item 108) will open a new window and plot the average 
response for each (active) source-detector pair as they are spatially distributed.  
This will plot the data as either dOD or dConc according to the display controls. 
 
Although this feature works well for simple probe geometries, complex or 
overlapping probes may not be displayed properly with this option. 

 
7.5: Plot PSD: 
 

This will display the power-spectrum density (i.e. Fourier Transform) of the data.  
This will not be available for concentration data. 
 

7.6: Display All: 
 

This option will display the data as a psuedo-colored image of <measurement 
channel> verses <time>.  The measurement channels are referenced by the ml 
variable.   
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Chapter 8: Statistical Analysis 
 
  

HomER can perform a number of statistical tests on the data, which can help 
determine the proper way to process the data. These use many functions from the 
Matlab Statistics toolbox.  These are built into the stand-alone version, but are 
required for the full function of the code under Matlab. 

 
8.1 Processing Statistics: 
 
 Statistics are calculated by the (Re)Calculate Statistics command (item 90) on the 
Advanced Averaging Menu.  This command will perform an ANOVA analysis for the 
model fit on the entire time course.  This also performs an effects analysis on the 
functional responses. 
 
 If the Display Avg. All  toggle button is down (i.e. the session average is being 
displayed), then the Calculate Statistics button will calculate the statistics for the session 
average. If this button is up, then only the currently displayed data file is processed.   
 
ANOVA analysis: 
 
 An analysis of variance (ANOVA) analysis is preformed on the model fit  
 
 
This section of the user’s guide is not yet written 
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Chapter 9: Region-of-interest Analysis  
 

This section of the user’s guide is not yet written 
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Chapter 10: Sample Data walk-through: 
 
Example 1: 
Simple_Probe.Nirs 
 
This example data file is the simplest probe, with onle a single source and 4 detectors.  
This tutorial will walk you through how to load, filter, average, and finally save data 
using this data set. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1) The first step is to load the data.  This can be done by selecting the “Import Data” 

command on the Files pull-down menu (item 99).  You can select to either import 
to current session of new session (for now it doesn’t matter).  This will launch a 
window allowing you to select the (*.nirs) data file to load.  Select the one called 
“Simple_Probe.nirs” from the Sample Data folder downloaded with the HomER 
package.  You will then be prompted to enter the session ID (i.e. a name to 
identify this session).   
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2) After selecting the file, HomER should appear as shown to the left.  The probe 
geometry is shown in window 2.  Clicking on this window will select different 
source-detectors to display.  You can select which wavelength is displayed by 
item 11.  There are 2 wavelengths in this file.  Only “Raw Data” is avalaible until 
the data has been updated.  

 
3) The next step is to UPDATE the data.  First, enter the filter parameters into the 

edit fields (item 3).  The first field sets the low-pass filter (LPF) and the second 
sets the high-pass filter (HPF).  To ignore one or both of these filters, the fields 
can be entered as “[]” (empty set).  Once one of these fields has changed, HomER 
will make visible the “Update buttons”.  Click here to update the files.  This will 
apply the filter settings and (since this is the first time through), this will create 
the delta-optical density (etc) fields.   

 
 

 

4) Once updated, you can now change the view to display processed data traces (as 
shown to the left).  Concentration data is additionally displayed by the 
Figures>>Display Options>>Concentrations pull-down menu.  This lets you 
select to display HbO2, HbR, or total-Hb species. 

 
You can display the data in a new window by right-clicking with the mouse on 
the window.  The data can also be copied to the clipboard by right-clicking on a 
data line.  Data can also be exported to file (either ASCII or Matlab) in this way 
as well. 
 
The choices for displaying data are given in order of increasing processing (for 
example, raw data is the least processed, while Covarience reduced 
dConcentration has the most filtering/processing applied to it).   
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5) You can now calculate the average response.  Switch to the averaging menu by 
selecting the averaging tab on the bottom of the screen.  This will bring up 
options for displaying the stimulus. 

 
To display the stimulus, click on the toggle-button called “Show Stim”.  This will 
plot green lines showing the start of each epoch.  This was taken from the “s” 
variable that is part of the nirs file structure.  This variable may need to be 
manually pruned slightly to make it correct (for example, if the s variable was 
recorded from a stimulus computer and may need edge detection applied to it to 
determine the start times).  The Stim Thresh variable controls the minimum 
amplitude of an edge (in normalized units of the derivative of the s-variable).  The 
Stim Tsep sets the minimum time seperation between stim events.  Reset Stim 
(available after one of these fields has changed) applies the changes and replots 
the epochs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Stimulus epochs can be removed by mouse clicking on the green lines.  This will 
change the line color to red, indicating that the epoch is inactive.  This can be 
used to manually remove epochs that have too much noise (i.e. motion artifacts). 
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The timing for the response is set by the PreTime and PostTime fields.  This is the 
time before and after the stimulus start (green line) to calculate the response.  
 
Once the stimulus has been satisfactorally modified, you can click the button 
called “Calculate Average”.  This will perform a block average of the epochs.  In 
the case shown the the left, since the last stimulus was removed (i.e. a red line), 
the average is calculated from only the first two epochs.  The response is now 
plotted in window 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6)   You can now add statistics to the response.  First open the Advanced Averaging 
Options menu.  Now click the “Calculate Statistics” button.  (The option to always 
calculate stats is given above this… this will automatically perform this analysis 
everytime the average button is clicked, but this can become computationally expensive 
for larger data sets). 
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Once the statsistics have been calculated, you can view them by using the mouse to right-
click on the red bar on the plot window.  This red bar selects the contrast timing for the 
statistics (also for image reconstruction).  This will bring up a menu with information 
about the effects analysis of the hemodynamic model.  
 
If you right-click on a data trace in the window, you can display the ANOVA information 
about the individual source-detector data.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lastly, we can save our analysis for loading again in the future.  This is done under the 
pull-down menu FILES>>Save Data.  In this case, (since we only have a single session) 
we want to save session.  This will bring up the window prompting us to select a file 
name and directory.  Saved data will be given the extension *.hmr. 
 
If we had multiple sessions open, “save all sessions” saves everything, while “save 
current session” only save the currently selected session.  
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Example 2:  Image Reconstruction 
 
 This next example uses the OverLapping_Probe.nirs sample data file to 
demonstrate some of HomER’s image reconstruction features. 
 

1) First, load the sample file named “OverLapping_Probe.nirs” following the steps 
outlined in the previous example.   

 
 

 
 
 
2) Filter 

(Update) and average the data as done in example 1.  The result should be similar 
to the figure below.  Once the data has been averaged, we can now reconstruct 
images.  This sample data has overlapping measurements, which allows us to 
perform tomographic reconstructions (rather then simple back-projections) 

 
3) Go to the Imaging window by clicking on the imaging tab on the lower right.  

You can specify the dimensions of the reconstructed image as well as the 
absorption/scattering coeffiecients for each wavelength.  The default depth for the 
image is 1cm deep.   
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4) Make the forward matrix by clicking the “Make Matrix” button. 

 
5) Invert this matrix using the “Invert” button.  Since we haven’t changed any of the 

settings yet, this will use the default, which is to perform a back-projection of the 
data. 

 
6) Click “Make Image” to make the final image.  A new window should pop-up with 

the dOD images in it.  These images are the average HRF contrast over the time 
window defined by the red bar in window 3.  Clicking on this bar (and dragging 
it) will move the contrast window and update the image. 

 
You can change the scaling of the image by manually changing the Max/Min edit 
fields (type 999 to use autoscaling). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7) You can change the appearance of the images by clicking the button called 
“Display options”.  This will bring up a new window as shown to the left.  The 
check boxes for showing probe on image or colorbar will add these to the image 
as shown.  The images may need to be redisplayed (i.e. click display image or the 
red bar) before these changes take effect 

 
 
 

8) We can also perform tomographic reconstructions of images.  To demonstrate 
this, first change the data type from dOD to dConc (item 53).  Now, click the 
button marked “DOT options”.  It will pop-up a new window as shown to the left. 
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Since we are now reconstructing dConc, we will be using spectral priors in the image 
reconstruction (i.e. see:  Li et al. 2004. Optics Letters 29(3): 256-259).  You can 
adjust the regularization amount through the “a” edit field and also the type of noise 
term that is used. This probe will still require quite a bit of regularization.  The “Make 
Image” button applies these settings (this is the same as the “Make Image” button on 
the main page). 
 
9) We will now reconstruct a movie of the activation and  export it to a avi file so 

that we can use it later.  First select Processing >> Imaging >> Movies from the 
top pull-down menu. 
 
Now, chose the function to make movie.  This will start forming the movie in a 
new window.  This function uses the matlab function getframe, which means that 
it must plot each image before adding it to the movie. During this process, DO 
NOT close the window (this could result in an error).  The window will 
automatically close when finished.  
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10)  After creating the movie, the “Save Movie” button will allow you to export 
the movie(s) to avi files, which can be viewed in Windows Media player. 

 
11)  Now, let’s play with some statistics.  To calculate the statistics of an image, 
click the “calculate statistics” button under the Adv Imaging Options menu 
(shown below).  This will calculate the effects and standard deviation maps for 
the stimulus response. 
This process can be rather time consuming since it needs to loop over all files 
(especially if there is multiple regressors). 
 
Once the statistics have been calculated, you can display an effects map (T-statics 
map).  The “Show T-map” button will plot these images in a new window.  The 
value displayed is the –Log(P) [negative log of the p-value] (i.e. the probability 
that the stimulus response is signifigantly different from baseline over the contrast 
range).  As with the image display, the contrast range used to calculate effects is 
defined by red bar in window 3. 

 
 
 
 

12) We can also perform some region of interest analysis.  First click the ROI tab 
to the right of HomER.   
 
We can choice to calculate an ROI based using all channels, only those in our 
active measurement list, or defined by T or F-statistics. 
 
Here, let’s find the ROI defined by the statistics we just calculated. 
 
First, select to “Use Image” to define the ROI (the other choice is to do this in 
source-detector space). 
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Clicking the button “Define Threshhold” will open a window 
with the image.  The slider bar to the right is used to set the 
thresh-hold.  Pixels included in the ROI will be shown in red 
(see below). 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We have now defined the ROI, to calculate the average, first select 
whether you want this ROI calculated from the first, second, or union of 
wavelengths (union means the pixel must be active in all wavelengths to be 
included). 

 
Since we want to use the statistics to define the ROI, we must also select 

the “Use statistical ROI” option. 
 
Click the calculate ROI button. 

 
 The ROI time course will now be shown in the window.   
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 13)  Under the Figures pull-down menu at the top of HomER, the option to Plot 
All will display an image of the probe showing the time-course for each source detector 
pair.  This is displayed as dOD or dConc (Red-HbO2; Blue-rHb; Green- total-Hb).    
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Example 3:  Multiple Regression. 
 
 
This section has yet to be written… 
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Appendix I:    HomER data format 
 
 
 This section describes the format of the HomER variable (DOT). 
 
The DOT variable is a structured cell array.  Each session is indexed to a cell in this 
array.  For example, DOT{1} returns the fields for the first session (cells are indexed 
with curly {} brackets). 
 
Session Fields: 
 
 
 
 DOT.subjectNum   ------------ Session (Subject) Name 
 DOT.SDGfilenm   ------------ Source-Detector file Name 
 DOT.SDGpathnm   ------------ Path to Source-Detector file  
  
 DOT.SD    ------------ Source-Detector Variable 
  
   DOT.SD.Lambda ------------ Wavelength List 
   DOT.SD.SrcPos ------------ Source Positions 
   DOT.SD.SrcAmp ------------ Source Amplitude (Gains) 
   DOT.SD.DetPos ------------ Detector Positions 
   DOT.SD.DetAmp ------------ Detector Amplitudes (Gains) 
   DOT.SD.nSrcs ------------ Number of Sources 
   DOT.SD.nDets ------------ Number of Detectors 
 
 SD.color    ------------  Colors used in displays 
 SD.currentFile    ------------  Index to currently selected file 
 SD.plotLst    ------------  Indices to currently plotted data 
 SD.SrcPicked    ------------  Source position currently picked 
 SD.ImgAvgStart   ------------  Start timing for contrast timing 
 SD.ImgAvgLen   ------------  Length of timing for contrast  
 
 SD.data    ------------ Data file structure- see below 
 SD.dataAvg    ------------Averaged file structure- see below 
 SD.img    ------------ Recon Image structure- see below 
 SD.roi     ------------ ROI structure- see below 
 SD.roiAvg    ------------ ROI (multi-session)- see below 
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Data Fields: 
 
The data (raw through processed) for each data file within a session is contained within 
the DOT.data(file) variable.  This is a structured arrary, indexed by the file number. 
 
 
%File descriptors 
 
DOT.data.FILEpathnm   ------------ Path to the file  
DOT.data.filenm    ------------ Name of the data file 
DOT.data.BaselineData   ------------ {Flag} – is file baseline data 
    
 
% Filtering parameters 
 
DOT.data.lpf     ------------ Low pass filter value   
DOT.data.nSV    ------------ # of SV to remove by PCA #1 
DOT.data.hpf     ------------ High pass filter value 
DOT.data.nSV_dOD    ------------ # of SV to remove by PCA #2 
DOT.data.nSV_dConc   ------------ # of SV to remove by PCA #3 
DOT.data.dOD_UpToDate   ------------ {Flag} – is filtered? 
DOT.data.avgUpToDate   ------------ {Flag} – is averaged? 
 
 
% Data fields 
 
DOT.data.MeasList    ------------The ml variable 
DOT.data.MeasListAct   ------------ Active measurements (binary) 
DOT.data.nMeas    ------------Number of Measurements 
DOT.data.Sact 
DOT.data.Dact 
 
DOT.data.raw     ------------The orignal (d variable) data 
DOT.data.norm    ------------Intensity Normalized, LPF 
DOT.data.norm_cov    ------------Cov Reduced (PCA #1) 
DOT.data. Intens_hpf    ------------The high-pass filter correction 
DOT.data.dOD    ------------delta-optical density 
DOT.data.dODc    ------------Cov-reduced dOD (PCA #2) 
DOT.data.dConc    ------------delta-concentration 
DOT.data.dConcc    ------------ Cov-reduced dConc (PCA #3) 
 
DOT.data.t     ------------ The time (t) variable 
DOT.data.svs     ------------ Single-value spectrum (PCA #1) 
DOT.data.svsConc    ------------ Single-value spectrum (PCA #3) 
 
DOT.data.Aux     ------------The auxillary data 
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% Data Averaged fields 
 
DOT.data.HRF    ------------Hemodynamic response-see below 
DOT.data.AuxAvg    ------------Auxillary response-see below 
DOT.data.TDML    ------------Block removal matrix 
     
 
DataAvg Fields: 
 
DOT.dataAvg.MeasList   ------------The ml variable for combined files 
DOT.dataAvg.MeasListAct   ------------ Active measurements (binary) 
DOT.dataAvg.HRF    ------------Hemodynamic response-see below 
DOT.dataAvg.HRF_stats   ------------Response statistics-see below 
 
 
HRF Fields: 
 
The hemodynamic response variable (under either DOT.data.HRF, DOT.DataAvg.HRF, 
DOT.ROI.HRF, or  DOT.ROIavg.HRF) describes the averaged data from the individual 
file, average of all files in a session, region-of-interest average within a session, or 
region-of-interest average between sessions.  This structure is indexed by regressor (i.e. 
HRF(1)  first regressor).   
 
 
 
DOT.[].HRF.type    ------------Regressor name  
DOT.[].HRF.regdata    ------------Regressor data variable 
DOT.[].HRF.StimOn    ------------Stimulus variable (if binary) 
DOT.[].HRF.numStim    ------------Number of epochs (if app) 
DOT.[].HRF.pretime    ------------Pretime of impulse response 
DOT.[].HRF.posttime    ------------Posttime of impulse response 
DOT.[].HRF.lpf    ------------Low-pass value (if used) 
DOT.[].HRF.hpf    ------------High-pass value (if used) 
DOT.[].HRF.UseFilter   ------------Flag- pre-filter regressor? 
 
 
Response data: 
  
DOT.[].HRF.tHRF    ------------Response timing  
DOT.[].HRF.nHRF    ------------Number of degrees of freedom 
 
DOT.[].HRF.Avg    ------------dOD (covariance reduced) average 
DOT.[].HRF.AvgC    ------------dConcentraion average 
DOT.[].HRF.AvgOdd    ------------dOD (odd epochs only)  
DOT.[].HRF.AvgEven   ------------dOD (even epochs only) 
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DOT.[].HRF.AvgStdErr   ------------Standard Error dOD 
DOT.[].HRF.AvgStd    ------------Standard Deviation dOD 
DOT.[].HRF.AvgCStdErr   ------------Standard Error dConcentration 
DOT.[].HRF.AvgCStd   ------------Standard Dev. dConcentration 
 
HRF statistics (regressor specific):          
 
DOT.[].HRF.to    ------------dOD T-statistics 
DOT.[].HRF.P     ------------dOD T-statistics (p-value) 
DOT.[].HRF.Conf_High   ------------dOD 90% upper bound 
DOT.[].HRF.Conf_Low   ------------dOD 90% lower bound 
 
 
HRF_Stats Fields (ANOVA): 
 
DOT.dataAvg.HRF_Stats.Fo   ------------Model F-Statistic 
DOT.dataAvg.HRF_Stats.P   ------------Model F-Statistic (p-value) 
DOT.dataAvg.HRF_Stats.StdRes  ------------Studentized residual 
DOT.dataAvg.HRF_Stats.PRESS  ------------PRESS statistic 
DOT.dataAvg.HRF_Stats.R2Adj  ------------R^2 (adjusted) statistic 
 
 
 
Img Fields: 
 
DOT.IMG.A     ------------Forward Model 
DOT.IMG.Ainv    ------------Inverse Model 
DOT.IMG.Medium    ------------Forward Model Medium 
 
DOT.IMG.Medium.idxRefr   ------------Index of refraction 
DOT.IMG.Medium.Muao   ------------Absorption coefficient 
DOT.IMG.Medium.Muso   ------------Reduced Scattering coefffienct 
DOT.IMG.Medium.g    ------------Anisotopic factor 
DOT.IMG.Medium.Geometry  ------------Semi infinite 
DOT.IMG.Medium.Slab_Thickness  ------------Slab thickness (cm) 
 
DOT.IMG.Medium.CompVol 
DOT.IMG.Medium.CompVol .Type  ------------“Homogenous” 
DOT.IMG.Medium.CompVol .X  ------------X coordinates (cm) 
DOT.IMG.Medium.CompVol Xstep 
DOT.IMG.Medium.CompVol Y  ------------Y coordinates (cm) 
DOT.IMG.Medium.CompVol Ystep 
DOT.IMG.Medium.CompVol Z  ------------Z coordinates (cm) 
DOT.IMG.Medium.CompVol ZStep 
 
DOT.IMG.img    ------------Reconstructed Image 
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DOT.IMG.tHRF    ------------Image response timing 
DOT.IMG.Movie    ------------Stored Movie 
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Appendix II:  Technical Reports 
 
DOTFilter: 

This function performs the filtering step on the current session. This function is 
included in its entirety in the Open Source folder with this download. 
 
 
 
function DOT =  DOTFilter(DOT, varargin) 
%This function applies all the filtering to the raw data 
% 
%Written by T. Huppert and D. Boas 
%Copyright 2004 MGH 
% 
%Flags: 
%  -waitbar   if flagged will display waitbar to show progress 
%  -detend    will do final detrending of the HRF 
% 
% 
%Required Fields: 
%DOT.data(files).raw 
%DOT.data(files).hpf 
%DOT.data(files).lpf 
%DOT.data(files).nSV 
%DOT.data(files).nSV_dOD 
% 
% 
% Output variables: 
% DOT.data(cf).Inten_Filt 
% DOT.data(cf).norm 
% DOT.data(cf).norm_cov 
% DOT.data(cf).dOD 
% DOT.data(cf).dOD_UpToDate 
 
%Set the default flags  
useWaitbar=0; 
  
%Default Filter parameters 
AdvOptions.FiltOptions.FilterType=1;  %Default Butterworth 
AdvOptions.FiltOptions.FilterOrder=3;  %Default 3rd order  
  
%Read in any flags 
%This is a varargin switch-yard.  Flags are passed into the program and 
%sorted. 
if nargin>1 
    for flag=1:nargin-1 
        try 
            switch(varargin{flag}) 
                case '-waitbar' 
                    useWaitbar=1; 
                    h=waitbar(0,'Updating...'); 
                    figure(h); 
                    drawnow 
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                case '-AdvOptions' 
                    AdvOptions=varargin{flag+1}; 
            end 
        end 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cf = DOT.currentFile;  %Grab the current file being used in this 

session 
  
  
Intens = DOT.data(cf).raw;  %set d1 to the raw data then find the mean 
of the raw data 
fs = 1/(DOT.data(cf).t(2)-DOT.data(cf).t(1)); % sampling frequency    
  
[timepts,measurements]=size(Intens); 
  
lpf = DOT.data(cf).lpf; %Hz, low pass frequency 
hpf = DOT.data(cf).hpf; %high pass frequency     
  
  
%do the LPF 
 
Note: The MakeFilter program takes in the filter type {1= Butterworth, 
2= Chebyshev type I, 3= Chebyshev type II, 4 = Elipic} and the Filter 
parameters {cut-off freq, sample freq, high/low, stop-band, ripple} and 
outputs the correct filter paraters (for example [fb,fa] 
=butter(order,[wn]*2/fs) ); 
 
%This section of code returns the filter parameters and then applies 
them using filtfilt to the Intens variable.  The new variable 
Intens_LPF is now low-pass filtered. 
 
if lpf>0 & lpf<fs/2; 
    if AdvOptions.FiltOptions.FilterType==1 
        [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,… 

AdvOptions.FiltOptions.FilterOrder,fs,lpf,'low'); 
     
    elseif AdvOptions.FiltOptions.FilterType==4 
        [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,… 

AdvOptions.FiltOptions.FilterOrder,fs,lpf,'low',… 
AdvOptions.FiltOptions.Filter_Rp,… 
AdvOptions.FiltOptions.Filter_Rs); 

    else 
        [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,… 

AdvOptions.FiltOptions.FilterOrder,fs,lpf,'low',… 
AdvOptions.FiltOptions.Filter_Rp); 

    end 
     
    %[fa,fb]=butter(FilterOrder,lpf*2/fs); 
    Intens_LPF=filtfilt(fb,fa,Intens); 
else 
    if lpf>fs/2; 

   h=warndlg('Low pass filter frequency exceeds Nyquist 
frequency'); 

        figure(h); 
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        uiwait(h); 
    end 
    %do nothing  (If didn’t LPF, then Intens_LPF is the same as Intens) 
    Intens_LPF=Intens; 
end 
   
 
%Update the Waitbar (if usewaitbar flag was active)  
if useWaitbar 
    h=waitbar(1/3,h); 
    figure(h); 
end 
  
  
%Normalize data and convert to dOD     
meanIntens = mean(abs(Intens_LPF),1); 
 %Take abs() to change from I/Q to reals 
Intens_Norm = abs(Intens_LPF./(ones(timepts,1)*meanIntens));  %set dm1 
to the normalized data list 
  
The variable Intens_Norm (processed up untill this 
point) is the one displayed to the screen when the 
choice of Normalized Intensity is selected  
 
 
%Do the motion correction PCA filter (PCA filter #1) 
  
    nSV = DOT.data(cf).nSV;  %Number of Singular vectors to remove 
    Intens_Norm_zM=Intens_Norm -1;  %zero mean the data 
 
 
if length(nSV)<2 

%If only one value was provided then preform the PCA analysis on 
both wavelengths together… 

 
lst=find(DOT.data(cf).MeasListAct);  %The active measuyrements 

only  
c = Intens_Norm_zM(:,lst).' * Intens_Norm_zM(:,lst); %covarience 
matrix 
[v,s,foo] = svd(c);       %single value decomposition and store 
as v,s,foo 
DOT.data(cf).svs = diag(s);  %Store the variable for display by 

SV-Spectrum 
  
    if nSV>0 
   %If the nSV is a valid number, the perform the PCA filter 
 
        u = Intens_Norm_zM(:,lst)*v*inv(s); 
        lstSV = 1:nSV; 
        Norm_Cov = Intens_Norm_zM; 

 Norm_Cov(:,lst) = Intens_Norm_zM(:,lst) - 
u(:,lstSV)*s(lstSV,lstSV)*v(:,lstSV)'; 

 
    else 
        Norm_Cov = Intens_Norm_zM;  
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    end 
else 
 
%This is the case when more then one value was provided.  Do the PCA 
per wavelength.  This means we loop over the number of wavelengths 
 

Norm_Cov = Intens_Norm_zM; %So those measurements which don’t get 
updated (i.e. not on the active ML) carry 
through 

 
%If the number of values provided is less then the number of 
wavelengths, then zero-fill the rest   

    if length(nSV)<length(DOT.SD.Lambda) 
        nSV(end:length(DOT.SD.Lambda))=0; 
    end 
 
    DOT.data(cf).svs=[]; 
 
   %Loop over the number of wavelengths 
  
    for idxLambda=1:length(DOT.SD.Lambda) 
            if size(DOT.data(cf).MeasListAct,1)< 

size(DOT.data(cf).MeasListAct,2) 
 

                DOT.data(cf).MeasListAct=DOT.data(cf).MeasListAct'; 
            end 
 

lst=find(DOT.data(cf).MeasList(:,4)==idxLambda &… 
DOT.data(cf).MeasListAct);  %lst if the list of 
measurements at THIS wavelength and on the active ML  

 
  

        c = Intens_Norm_zM(:,lst).' * Intens_Norm_zM(:,lst); 
%covarience matrix 
[v,s,foo] = svd(c);       %single value decomposition and 

store as v,s,foo 
          

DOT.data(cf).svs(:,idxLambda) = diag(s); 
  
        if nSV(idxLambda)>0 
            u = Intens_Norm_zM(:,lst)*v*inv(s); 
            lstSV = 1:nSV(idxLambda); 

Norm_Cov(:,lst) = Intens_Norm_zM(:,lst) - 
u(:,lstSV)*s(lstSV,lstSV)*v(:,lstSV)'; 

        end 
  
    end 
end 
  
Norm_Cov=Norm_Cov+1;  %add one to undo the effect of zero-mean 
 
  
  
%do the HPF 
  
%This is the same basic process as the LPF 
if hpf>0 & hpf<fs/2; 
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    if AdvOptions.FiltOptions.FilterType==1 
        [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,… 

AdvOptions.FiltOptions.FilterOrder,fs,hpf,'high'); 
    elseif AdvOptions.FiltOptions.FilterType==4 
        [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,… 

AdvOptions.FiltOptions.FilterOrder,fs,hpf,'high',… 
AdvOptions.FiltOptions.Filter_Rp,… 
AdvOptions.FiltOptions.Filter_Rs); 

    else 
        [fb,fa] = MakeFilter(AdvOptions.FiltOptions.FilterType,… 

AdvOptions.FiltOptions.FilterOrder,fs,hpf,'high',… 
AdvOptions.FiltOptions.Filter_Rp); 

    end 
     
    %[fa,fb]=butter(FilterOrder,hpf*2/fs); 
     
     
    Norm_Cov_HPF =filtfilt(fb,fa,Norm_Cov)+1; 
else 
    if hpf>fs/2; 
        h=warndlg('High pass filter frequency exceeds Nyquist 
frequency'); 
        figure(h); 
        uiwait(h); 
    end 
    %do nothing 
    Norm_Cov_HPF =Norm_Cov; 
end 
  
 
dOD_Norm = -log(Norm_Cov_HPF);  %delta-Optical Density is the negative 

log of the normalized data 
  
 
 
The variable dOD_Norm (processed up untill this 
point) is the one displayed to the screen when the 
choice of dOD is selected 
 
 
if useWaitbar 
    h=waitbar(2/3,h); 
    figure(h); 
end 
  
 
%Put the variables into the DOT format. 
 
DOT.data(cf).Intens_hpf = abs(Intens_HPF); 
DOT.data(cf).norm = abs(Intens_Norm); 
DOT.data(cf).norm_cov = abs(Norm_Cov); 
DOT.data(cf).dOD = abs(dOD_Norm).*sign(real(dOD_Norm)); 
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if useWaitbar 
    h=waitbar(3/3,h); 
    figure(h); 
end 
  
DOT.data(cf).dOD_UpToDate = 1; 
  
if useWaitbar 
    close(h); 
end 
return    
 
 
 
… The output of this function is the Optical Density variable (and all processing done up 
until then).  The second and third PCA filters and the MBLL are handled by a second 
program. 
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HomERFilt: 
 
%This is the partial code from the filtering script.  Each data file (for the current session) 
is sequentially passed through this function. 
 
 
%This first part, just makes the call to the DOTFilter program (see above) passing it the 
correct flags (etc). 
 
AdvOptions=get(handles.OptionsStore,'userdata'); 
if DOT{currentsub}.data(cf).dOD_UpToDate 
    dd1 = DOT{currentsub}.data(cf).dOD; 
    waitbarcount=waitbarcount+3; 
else 

if isfield(AdvOptions,'FiltOptions') & 
isfield(AdvOptions.FiltOptions,'FilterType') 
DOT{currentsub} =  DOTFilter(DOT{currentsub},'-
AdvOptions',AdvOptions); 

    else 
        DOT{currentsub} =  DOTFilter(DOT{currentsub}); 
    end 
end 
  
 
%This performs the second (dOD-with Baseline) PCA filtering step (see later 
description) 
 
DOT{currentsub}=PCAFilter(DOT{currentsub}); 
  
%This is now the cov-reduced dOD variable 
dd1c = DOT{currentsub}.data(cf).dODc; 
The variable dd1c (processed up untill this point) 
is the one displayed to the screen when the choice 
of dOD-cov.reduced is selected 
 
 
%Now we start applying the MBLL law.  We first do the partial volume/DPF corrections 
(if indicated to do so by the Adv. Averaging Window) 
  
 
%Do partial volume/pathlength correction if desired 
  
if isfield(AdvOptions, 'FiltOptions') &… 

AdvOptions.FiltOptions.UsePartialVolumeCorr==1 
    partialVolCorr=AdvOptions.FiltOptions.PartialVolumeCorr; 
else 
 %Dummy settings 
    partialVolCorr=ones(length(DOT{currentsub}.SD.Lambda),1); 
end 
  
if isfield(AdvOptions, 'FiltOptions') & … 

AdvOptions.FiltOptions.UsePathLengthCorr==1 
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    DPF=AdvOptions.FiltOptions.DPF; 
    MeasList=DOT{currentsub}.data(cf).MeasList; 
    Distances=((DOT{currentsub}.SD.SrcPos(MeasList(:,1),1)-

DOT{currentsub}.SD.DetPos(MeasList(:,2),1)).^2 +... 
(DOT{currentsub}.SD.SrcPos(MeasList(:,1),2)-
DOT{currentsub}.SD.DetPos(MeasList(:,2),2)).^2 +... 
(DOT{currentsub}.SD.SrcPos(MeasList(:,1),3)-
DOT{currentsub}.SD.DetPos(MeasList(:,2),3)).^2).^0.5; 

else 
%Dummy settings 

 
    DPF=ones(nLambda,1); 
    Distances=ones(size(DOT{currentsub}.data(cf).MeasList,1),1); 
end 
  
  
%Apply the corrections to the dOD variable (now has units of cm-1) 
for idx=1:nLambda 
    lst= find(DOT{currentsub}.data(cf).MeasList(:,4)==idx); 
    for idx2=1:length(lst) 

 dd1c(:,lst(idx2))=dd1c(:,lst(idx2))*partialVolCorr(idx)/… 
(DPF(idx)*Distances(lst(idx2))); 

    end 
end 
  
%Update the progress bar 
waitbarcount=waitbarcount+1; 
try 
    updateWaitbar=waitbar(waitbarcount/waitbartotal,updateWaitbar,msg); 
catch 
    updateWaitbar=waitbar(waitbarcount/waitbartotal,msg); 
end 
    figure(updateWaitbar); 
 
 
%Now we convert to concentrations.  The GetExtinctions function returns the extinction 
coefficients for the specified wavelengths.  It uses a look-up table (roughly every 1-5nm 
depending on spectra source) and uses a linear interp to determine intermediate 
wavelengths (so any wavelength can be used) 
 
%GetExtinctions(Wavelengths, AbsSprectum Type).    
 AbsSprectum Type = 1  (Default/ if type not provided) 

• W. B. Gratzer, Med. Res. Council Labs, Holly Hill, London  

• N. Kollias, Wellman Laboratories, Harvard Medical School, Boston  

AbsSprectum Type = 2  

• J.M. Schmitt, "Optical Measurement of Blood Oxygenation by 
Implantable Telemetry," Technical Report G558-15, Stanford."  
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• M.K. Moaveni, "A Multiple Scattering Field Theory Applied to Whole 
Blood," Ph.D. dissertation, Dept. of Electrical Engineering, University of 
Washington, 1970. 

AbsSprectum Type = 3 

• S. Takatani and M. D. Graham, "Theoretical analysis of diffuse 
reflectance from a two-layer tissue model," IEEE Trans. Biomed. Eng., 
BME-26, 656--664, (1987). 

 
 
 
%convert to concentrations 
  
if ~isfield(AdvOptions,'FiltOptions') | 
~isfield(AdvOptions.FiltOptions,'AbsSpect') 
    AdvOptions.FiltOptions.AbsSpect=1; 
end 
  
  
    e = GetExtinctions(… 

DOT{currentsub}.SD.Lambda,AdvOptions.FiltOptions.AbsSpect); 
    e = e(:,[1 2]); 
    einv = inv( e'*e )*e';  %For Least-squares solution 
    ml = DOT{currentsub}.data(cf).MeasList; 
    lst = find( ml(:,4)==1 ); 
     
       
    for idx=1:length(lst) 
        ML_lst=find(ml(:,1)==ml(lst(idx),1) & ml(:,2)==ml(lst(idx),2)); 
        SD_lst=ml(ML_lst,:); 
        [foo, ord]=sort(SD_lst(:,4)); 
              
        concs(:,:,idx) = ( einv * dd1c(:,ML_lst(ord))' )'; 
            
    end 
    concs(:,3,:)=concs(:,1,:)+concs(:,2,:);         %add total Hb =Oxy 
+ deOxy concetration- stores to tensor of D x 3 x Ml  
    concs = permute( concs, [1 3 2]);  
  
 
%Update the progress bar 
waitbarcount=waitbarcount+1; 
updateWaitbar=waitbar(waitbarcount/waitbartotal,updateWaitbar,msg); 
figure(updateWaitbar); 
  
  
  
DOT{currentsub}.data(cf).dConc = concs; 
 
The variable concs (processed up untill this point) 
is the one displayed to the screen when the choice 
of delta-Concentration is selected 
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%The final step is to apply the PCA filter (#3) on the dConc data.  See later description.  
 
if get(handles.HomER_PCA_conc,'value')==2 
    UseBaselinePCA=1; 
else 
     UseBaselinePCA=0; 
end 
  
%dConc PCA filtering step 
DOT{currentsub}=PCAFilterConc(DOT{currentsub},UseBaselinePCA); 
  
 
%The rest of this code deals with updating the displays to HomER etc… 
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PCAFilter: 
 
function DOT=PCAFilter(DOT) 
%This function applies the PCA filter based on the components of the 
%baseline 
% 
%Required Inputs: 
%DOT.SD.Lambda 
%DOT.data(cf).BaselineData 
%DOT.data(cf).dOD 
%DOT.data(cf).MeasList 
  
%covariance of dOD on each wavelength  <moved outside if/end block so 
it is always preformed  
cf = DOT.currentFile; 
nLambda = length(DOT.SD.Lambda); 
  
if DOT.data(cf).BaselineData 
        mlAct=DOT.data(cf).MeasListAct'; 
        DOT.dataBaseCov.v = []; 
        DOT.dataBaseCov.svs = []; 
        DOT.dataBaseCov.s=[]; 
        for idxLambda = 1:nLambda 
            lst = find( DOT.data(cf).MeasList(:,4)==idxLambda & mlAct); 
             
            c = detrend(DOT.data(cf).dOD(:,lst))' * 
detrend(DOT.data(cf).dOD(:,lst)); 
            [v,s,foo] = svd(c); 
            DOT.dataBaseCov.v(:,:,idxLambda)=v; 
            DOT.dataBaseCov.s(:,:,idxLambda)=s; 
            DOT.dataBaseCov.svs(:,idxLambda) = squeeze(diag(s)); 
        end 
         DOT.data(cf).dODc = DOT.data(cf).dOD; 
    return         
end 
        
%covariance filter on dOD on each wavelength 
  
  
nFiles = length(DOT.data); 
  
idxBase = 0; 
for idx=1:nFiles 
    if DOT.data(idx).BaselineData 
        idxBase = idx; 
        idx = nFiles + 1; 
    end 
end 
  
if idxBase > 0 & isfield( DOT,'dataBaseCov') 
        nSV=[]; 
        nSV=DOT.data(cf).nSV_dOD; 
        if length(nSV)~=nLambda 
            nSV = nSV(1) * ones(1,nLambda); 
        end 
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        if ~any(nSV~=0) 
            DOT.data(cf).dODc = DOT.data(cf).dOD; 
            return   
        end 
  
        DOT.data(cf).dOD=detrend(DOT.data(cf).dOD); 
  
        dataBaseCov=DOT.dataBaseCov; 
         
        %Test to make sure the ML-active for the baseline and the data 
are 
        %the same. If not, issue a warning and use the ML-act for the 
data 
        %and recalculate the Cov from the new pruned baseline. 
         
        mlAct=DOT.data(cf).MeasListAct'; 
        mlActBase=DOT.data(idxBase).MeasListAct'; 
        if any(mlAct ~= mlActBase)  
            %Trouble... issue a warning/choice to proceed 
            choice=menu('Warning: Measurement list for baseline and 
data do not match.  Do you wish to...',... 
                'Use ML-active from data','Use ML-active from 
baseline','Skip PCA filtering step'); 
            if choice==1 
                %Proceed to recalculate the cov using the ML from data 
                for idxLambda = 1:nLambda 
                    dataBaseCov.v=[]; 
                    dataBaseCov.s=[]; 
                    lst = find( 
DOT.data(idxBase).MeasList(:,4)==idxLambda & mlAct); 
                    c = DOT.data(idxBase).dOD(:,lst)' * 
DOT.data(idxBase).dOD(:,lst); 
                    
[dataBaseCov.v(:,:,idxLambda),dataBaseCov.s(:,:,idxLambda),foo] = 
svd(c); 
                end           
             
             
            elseif choice==2 
                %Use ML from baseline 
                mlAct=mlActBase; 
            else 
                %cancel 
                DOT.data(cf).dODc = DOT.data(cf).dOD; 
                return 
            end 
         
        end 
         
        DOT.data(cf).dODc = DOT.data(cf).dOD; 
        for idxLambda = 1:nLambda 
            lst = find( DOT.data(cf).MeasList(:,4)==idxLambda & 
mlAct==1);         
             
            dOD=DOT.data(cf).dOD(:,lst); 
            v=dataBaseCov.v(:,:,idxLambda); 
            s=dataBaseCov.s(:,:,idxLambda); 
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            lstSV= 1:nSV(idxLambda); 
            u = dOD*v*inv(s); 
  
            if nSV(idxLambda)>0 
                DOT.data(cf).dODc(:,lst) = dOD - 
u(:,lstSV)*s(lstSV,lstSV)*v(:,lstSV)'; 
            else 
                DOT.data(cf).dODc(:,lst) = dOD; 
            end 
       end 
elseif idxBase == 0 & any(DOT.data(cf).nSV_dOD~=0) & cf==min([1 
idxBase+1]) 
    %Only display once... 
    DOT.data(cf).dODc = DOT.data(cf).dOD; 
    h=warndlg('No Baseline data detected:  Skipping Baseline PCA 
filter'); 
    uiwait(h); 
else 
     
    
    DOT.data(cf).dODc = DOT.data(cf).dOD; 
end 
  
return 
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PCA_Filter_dConc 
 
function DOT=PCAFilterConc(DOT,UseBaseline) 
%This function applies the PCA filter based on the components of the 
%baseline 
% 
%Required Inputs: 
%DOT.SD.Lambda 
%DOT.data(cf).BaselineData 
%DOT.data(cf).dOD 
%DOT.data(cf).MeasList 
  
%covariance of dOD on each wavelength  <moved outside if/end block so 
it is always preformed  
cf = DOT.currentFile; 
  
if UseBaseline 
    if DOT.data(cf).BaselineData 
        mlAct=DOT.data(cf).MeasListAct'; 
        DOT.dataBaseCovConc.v = []; 
        DOT.dataBaseCovConc.svs = []; 
        DOT.dataBaseCovConc.s=[]; 
        for idxLambda = 1:2 
            lst = find( DOT.data(cf).MeasList(:,4)==1 & mlAct); 
             
            c = detrend(DOT.data(cf).dConc(:,lst,idxLambda))' * 
detrend(DOT.data(cf).dConc(:,lst,idxLambda)); 
            [v,s,foo] = svd(c); 
            DOT.dataBaseCovConc.v(:,:,idxLambda)=v; 
            DOT.dataBaseCovConc.s(:,:,idxLambda)=s; 
            DOT.dataBaseCovConc.svs(:,idxLambda) = squeeze(diag(s)); 
        end 
        DOT.data(cf).dConcc = DOT.data(cf).dConc; 
        return         
    end 
     
    %covariance filter on Conc 
     
    nFiles = length(DOT.data); 
     
    idxBase = 0; 
    for idx=1:nFiles 
        if DOT.data(idx).BaselineData 
            idxBase = idx; 
            idx = nFiles + 1; 
        end 
    end 
     
    if idxBase > 0 & isfield( DOT,'dataBaseCovConc')  
        nSV=[]; 
        nSV=DOT.data(cf).nSV_dConc; 
        if length(nSV)~=2 
            nSV = nSV(1) * ones(1,2); 
        end 
         
        if ~any(nSV~=0) 
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            DOT.data(cf).dConcc = DOT.data(cf).dConc; 
            return   
        end 
         
        dataBaseCov=DOT.dataBaseCovConc; 
         
        %Test to make sure the ML-active for the baseline and the data 
are 
        %the same. If not, issue a warning and use the ML-act for the 
data 
        %and recalculate the Cov from the new pruned baseline. 
         
        mlAct=DOT.data(cf).MeasListAct; 
         
        if size(mlAct,1)<size(mlAct,2) 
            mlAct=mlAct'; 
        end 
         
        mlActBase=DOT.data(idxBase).MeasListAct'; 
        if any(mlAct ~= mlActBase)  
            %Trouble... issue a warning/choice to proceed 
            choice=menu('Warning: Measurement list for baseline and 
data do not match.  Do you wish to...',... 
                'Use ML-active from data','Use ML-active from 
baseline','Skip PCA filtering step'); 
            if choice==1 
                %Proceed to recalculate the cov using the ML from data 
                for idxLambda = 1:2 
                    dataBaseCov.v=[]; 
                    dataBaseCov.s=[]; 
                    lst = find( DOT.data(idxBase).MeasList(:,4)==1 & 
mlAct); 
                    c = DOT.data(idxBase).dConc(:,lst,idxLambda)' * 
DOT.data(idxBase).dConc(:,lst,idxLambda); 
                    
[dataBaseCov.v(:,:,idxLambda),dataBaseCov.s(:,:,idxLambda),foo] = 
svd(c); 
                end           
                 
                 
            elseif choice==2 
                %Use ML from baseline 
                mlAct=mlActBase; 
            else 
                %cancel 
                DOT.data(cf).dConcc = DOT.data(cf).dConc; 
                return 
            end 
             
        end 
         
        for idxLambda = 1:2 
             
            
DOT.data(cf).dConc(:,:,idxLambda)=detrend(DOT.data(cf).dConc(:,:,idxLam
bda));  
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            DOT.data(cf).dConcc(:,:,idxLambda) = 
DOT.data(cf).dConc(:,:,idxLambda); 
             
            lst = find( DOT.data(cf).MeasList(:,4)==1 & mlAct==1);         
             
            dConc=DOT.data(cf).dConc(:,lst,idxLambda); 
            v=dataBaseCov.v(:,:,idxLambda); 
            s=dataBaseCov.s(:,:,idxLambda); 
             
            lstSV= 1:nSV(idxLambda); 
            u = dConc*v*inv(s); 
             
            if nSV(idxLambda)>0 
                DOT.data(cf).dConcc(:,lst,idxLambda) = dConc - 
u(:,lstSV)*s(lstSV,lstSV)*v(:,lstSV)'; 
            else 
                DOT.data(cf).dConcc(:,lst,idxLambda) = dConc; 
            end 
        end 
    elseif idxBase == 0 & any(DOT.data(cf).nSV_dConc~=0) & cf==min([1 
idxBase+1]) 
        %Only display once... 
        DOT.data(cf).dConcc = DOT.data(cf).dConc; 
        h=warndlg('No Baseline data detected:  Skipping Baseline PCA 
filter'); 
        uiwait(h); 
    else 
         
        DOT.data(cf).dConcc = DOT.data(cf).dConc; 
    end 
else 
     
    
    nSV = DOT.data(cf).nSV_dConc; 
     
    if ischar(nSV) 
        nSV=str2num(nSV); 
        DOT.data(cf).nSV_dConc=nSV; 
    elseif isempty(nSV) 
        DOT.data(cf).nSV_dConc=[0 0]; 
        nSV=[0 0]; 
    end 
     
    if length(nSV)<2 
        nSV(2)=nSV(1); 
    end 
     
    DOT.data(cf).svsConc=[]; 
    for idxLambda = 1:2 
         
        mlAct=DOT.data(cf).MeasListAct; 
         
        if size(mlAct,1)<size(mlAct,2) 
            mlAct=mlAct'; 
        end 
         
        lst = find( DOT.data(cf).MeasList(:,4)==1 & mlAct); 
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        dConc=detrend(DOT.data(cf).dConc(:,:,idxLambda));  
        DOT.data(cf).dConcc(:,:,idxLambda) = dConc; 
         
           c=dConc(:,lst)'*dConc(:,lst); 
           [v,s,foo] = svd(c); 
         
           DOT.data(cf).svsConc(:,idxLambda) = diag(s); 
          
         
        if nSV(idxLambda)>0 
             
            lstSV= 1:nSV(idxLambda); 
            u = dConc*v*inv(s); 
         
            DOT.data(cf).dConcc(:,lst,idxLambda) = dConc(:,lst) - 
u(:,lstSV)*s(lstSV,lstSV)*v(:,lstSV)'; 
        else 
            DOT.data(cf).dConc(:,lst,idxLambda) = dConc(:,lst); 
        end 
    end 
     
end 
  
DOT.data(cf).dConcc(:,:,3) = 
DOT.data(cf).dConcc(:,:,1)+DOT.data(cf).dConcc(:,:,2); 
Return 
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Averaging Functions: 
 
AverageHRF 
 
function [PMI]=AverageHRF(PMI,varargin) 
%This function calculates the average HRF from the PMI structure and 
stores 
%it back onto the structure 
% 
% 
%Written by T. Huppert and D. Boas 
%Copyright 2004 MGH 
% 
%Flags: 
%  -waitbar   if flagged will display waitbar to show progress 
%  -detend    will do final detrending of the HRF 
% 
% 
%Required Fields: 
%PMI.data(files).dODc   -fully processed dOD variable for each file 
%PMI.data(cf).dConc 
%PMI.data(files).HRF(regressor).pretime-  time before stimulus 
%PMI.data(files).HRF(regressor).posttime-  time after stimulus 
%PMI.data(files).HRF(regressor).regdata-  regressor data for this 
response 
%(i.e. stimOn or Cond) 
% 
% Output variables: 
% PMI.data(files).HRF(regressors).tHRF - time vector for HRF 
% PMI.data(cf).HRF(Regressor).Avg 
% PMI.data(cf).HRF(Regressor).AvgStd 
% PMI.data(cf).HRF(Regressor).AvgStdErr 
% PMI.data(cf).HRF(Regressor).AvgOdd 
% PMI.data(cf).HRF(Regressor).AvgEven 
% PMI.data(cf).HRF(Regressor).AvgEven 
% PMI.data(cf).HRF(Regressor).AvgC 
% PMI.data(cf).HRF(Regressor).AvgCStd 
% PMI.data(cf).HRF(Regressor).AvgCStdErr 
  
  
useWaitbar=0; 
useDetrend=0; 
UseAux=0; 
  
%Read in any flags 
if nargin>1 
    for flag=1:nargin-1 
        try 
            switch(varargin{flag}) 
                case '-detend' 
                    useDetrend=1; 
                case '-waitbar' 
                    useWaitbar=1; 
                    h=waitbar(0,'Averaging...'); 
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                    figure(h); 
                    drawnow 
                case '-Aux' 
                    UseAux=1; 
                case '-TDML' 
                    TDML=varargin{flag+1}; 
  
            end 
        end 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
cf = PMI.currentFile; 
  
numReg=length(PMI.data(cf).HRF); 
  
  
  
  
  
  
  
  
for Regressor=1:numReg 
    %This doesn't really make sense to put in multiple regressors for 
an 
    %average- but this keeps it consistent with the deconvolution way 
of 
    %doing things and really doesn't hurt to do it here as well. 
    lst2=[]; 
    blocksConc=[]; 
    blocks=[]; 
  
    preTime=PMI.data(cf).HRF(Regressor).pretime; 
    postTime=PMI.data(cf).HRF(Regressor).posttime; 
  
    rate = 1/(PMI.data(cf).t(2)-PMI.data(cf).t(1)); 
  
    nHRF = floor( (postTime-preTime) * rate + 1 ); 
  
    nTpts = length(PMI.data(cf).t); 
    nPRE = ceil(-preTime * rate); 
  
    nPOST = nHRF - nPRE; 
  
  
    regdata=PMI.data(cf).HRF(Regressor).regdata; 
  
if isfield(PMI.data(cf).HRF(Regressor),'StimOn') & 
~isempty(PMI.data(cf).HRF(Regressor).StimOn) 
      regdata=PMI.data(cf).HRF(Regressor).StimOn; 
end 
  
if exist('TDML') 
    regdata=regdata.*TDML(:,1); 
end 
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    lst = find(regdata==1); 
  
    if ~UseAux 
        blocks = zeros(nHRF,size(PMI.data(cf).dODc,2),length(lst)); 
    else 
        blocks = zeros(nHRF,size(PMI.data(cf).Aux,2),length(lst)); 
    end 
    nBlk = 0; 
    for idx=1:length(lst) 
  
        if useWaitbar 
            h=waitbar(Regressor/numReg*idx/length(lst),h); 
            figure(h); 
        end 
  
        if (lst(idx)-nPRE)>=1 & (lst(idx)+nPOST)<=nTpts 
            nBlk=nBlk+1; 
            lst2(nBlk)=idx; 
            if ~UseAux 
                blocks(:,:,idx) = PMI.data(cf).dODc((lst(idx)-
nPRE):(lst(idx)+nPOST-1),:);  %dOD 
                blocksConc(:,:,:,idx) = PMI.data(cf).dConcc((lst(idx)-
nPRE):(lst(idx)+nPOST-1),:,:);  %dConc 
            else 
                blocks(:,:,idx) = PMI.data(cf).Aux((lst(idx)-
nPRE):(lst(idx)+nPOST-1),:); 
            end 
        end 
  
    end 
  
  
  
    if ~exist('lst2') | isempty(lst2) 
        %no stim points 
        msg=['Warning: found no stim points found for regressor: ' 
PMI.data(cf).HRF(Regressor).type ... 
            '                      Skipping calculation...']; 
        h2=warndlg(msg); 
        uiwait(h2); 
        continue 
    end 
  
    if ~UseAux 
        PMI.data(cf).nkp=zeros(3,size(PMI.data(cf).dODc,2)); 
  
        PMI.data(cf).nkp(1,:)=length(PMI.data(cf).dODc); 
        PMI.data(cf).nkp(2,:)=size(blocks,1)*size(blocks,3); 
        PMI.data(cf).nkp(3,:)=size(blocks,1)*size(blocks,3);  %not sure 
  
        PMI.data(cf).HRF(Regressor).Avg = mean(blocks(:,:,lst2),3); 
        PMI.data(cf).HRF(Regressor).AvgStd = std(blocks(:,:,lst2),0,3); 
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        PMI.data(cf).HRF(Regressor).AvgStdErr= 
PMI.data(cf).HRF(Regressor).AvgStd/ 
PMI.data(cf).HRF(Regressor).numStim^0.5; 
        PMI.data(cf).HRF(Regressor).AvgOdd = 
mean(blocks(:,:,lst2(1:2:end)),3); 
        if length(lst2)==1 
            PMI.data(cf).HRF(Regressor).AvgEven = 
PMI.data(cf).HRF(Regressor).AvgOdd; 
        else 
            PMI.data(cf).HRF(Regressor).AvgEven = 
mean(blocks(:,:,lst2(2:2:end)),3); 
        end 
        PMI.data(cf).HRF(Regressor).AvgC = 
mean(blocksConc(:,:,:,lst2),4); 
        PMI.data(cf).HRF(Regressor).AvgCStd = 
std(blocksConc(:,:,:,lst2),0,4); 
        PMI.data(cf).HRF(Regressor).AvgCStdErr = 
PMI.data(cf).HRF(Regressor).AvgCStd / 
PMI.data(cf).HRF(Regressor).numStim^0.5; 
        PMI.data(cf).HRF(Regressor).tHRF = [preTime:1/rate:postTime]; 
  
        if useDetrend 
            PMI.data(cf).HRF(Regressor).Avg = 
detrend(PMI.data(cf).HRF(Regressor).Avg); 
            PMI.data(cf).HRF(Regressor).AvgC(:,:,1) = 
detrend(PMI.data(cf).HRF(Regressor).AvgC(:,:,2)); 
            PMI.data(cf).HRF(Regressor).AvgC(:,:,2) = 
detrend(PMI.data(cf).HRF(Regressor).AvgC(:,:,2)); 
            PMI.data(cf).HRF(Regressor).AvgC(:,:,3) = 
detrend(PMI.data(cf).HRF(Regressor).AvgC(:,:,3)); 
            PMI.data(cf).HRF(Regressor).AvgOdd = 
detrend(PMI.data(cf).HRF(Regressor).AvgOdd); 
            PMI.data(cf).HRF(Regressor).AvgEven = 
detrend(PMI.data(cf).HRF(Regressor).AvgEven); 
        end 
  
        
zeropt=find(min(abs(PMI.data(cf).HRF(Regressor).tHRF))==abs(PMI.data(cf
).HRF(Regressor).tHRF)); 
        %Point closest to zero (because of uneven fs, the zero might 
not be a 
        %point 
  
        PMI.data(cf).HRF(Regressor).Avg = 
PMI.data(cf).HRF(Regressor).Avg - 
ones(size(PMI.data(cf).HRF(Regressor).Avg,1),1)*PMI.data(cf).HRF(Regres
sor).Avg(zeropt,:); 
        PMI.data(cf).HRF(Regressor).AvgC(:,:,1) = 
PMI.data(cf).HRF(Regressor).AvgC(:,:,1) - 
ones(size(PMI.data(cf).HRF(Regressor).AvgC,1),1)*PMI.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,1); 
        PMI.data(cf).HRF(Regressor).AvgC(:,:,2) = 
PMI.data(cf).HRF(Regressor).AvgC(:,:,2) - 
ones(size(PMI.data(cf).HRF(Regressor).AvgC,1),1)*PMI.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,2); 
        PMI.data(cf).HRF(Regressor).AvgC(:,:,3) = 
PMI.data(cf).HRF(Regressor).AvgC(:,:,3) - 
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ones(size(PMI.data(cf).HRF(Regressor).AvgC,1),1)*PMI.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,3); 
  
    else 
        PMI.data(cf).AuxAvg(Regressor).Avg = mean(blocks(:,:,lst2),3); 
        PMI.data(cf).AuxAvg(Regressor).tHRF=[preTime:1/rate:postTime]; 
  
    end 
  
end 
  
if useWaitbar 
    close(h); 
end 
  
  
if isfield(PMI.data(cf),'HRF_Stats') 
    PMI.data(cf).HRF_Stats=[]; 
    for Reg=1:numReg 
        PMI.data(cf).HRF(Reg).HRF_Stats=[]; 
    end 
end 
  
  
return 
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DeconvolveHRF: 
 
function [DOT]=DeconvolveHRF(DOT,varargin) 
%This function calculates the average HRF from the DOT structure and 
stores 
%it back onto the structure 
% 
%Written by T. Huppert and D. Boas 
%Copyright 2004 MGH 
% 
%Flags: 
%  -TDML {TDML}  the time-domain measurement list- used to remove data 
points    
%  -waitbar   if flagged will display waitbar to show progress 
%  -detend    will do final detrending of the HRF 
% 
% 
%Required Fields: 
%DOT.data(files).dODc   -fully processed dOD variable for each file 
%DOT.data(files).dConc 
%DOT.data(files).HRF(regressor).pretime-  time before stimulus 
%DOT.data(files).HRF(regressor).posttime-  time after stimulus 
%DOT.data(files).HRF(regressor).regdata-  regressor data for this 
response 
%DOT.data(files).nkp -  Degree of freedom variables 
%(i.e. stimOn or Cond) 
% 
% Output variables: 
% DOT.data(files).HRF(Regressor).tHRF - time vector for HRF 
% DOT.data(files).HRF(Regressor).Avg  
% DOT.data(files).HRF(Regressor).AvgC  
  
cf = DOT.currentFile; 
numReg=length(DOT.data(cf).HRF); 
  
  
useWaitbar=0; 
useDetrend=0; 
UseAux=0; 
  
TDML=ones(size(DOT.data(cf).raw)); 
  
%Read in any flags 
if nargin>1 
    for flag=1:nargin-1 
        try 
            switch(varargin{flag}) 
                case '-detend' 
                    useDetrend=1; 
                case '-waitbar' 
                    useWaitbar=1; 
                    h=waitbar(0,'Deconvolving...'); 
                    figure(h); 
                    drawnow 
                case '-TDML' 
                    TDML=varargin{flag+1}; 
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                case '-Aux' 
                    UseAux=1; 
            end        
        end 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%Make the design matrix 
counter=0; 
  
A=[]; 
  
for Regressor=1:numReg 
    %Since there can be more then one regressor variable, loop over the 
    %number of regressors. 
     
    regdata=DOT.data(cf).HRF(Regressor).regdata; 
    
     if isfield(DOT.data(cf).HRF(Regressor),'StimOn') & 
~isempty(DOT.data(cf).HRF(Regressor).StimOn) 
         regdata=DOT.data(cf).HRF(Regressor).StimOn;  
     end 
  
    preTime=DOT.data(cf).HRF(Regressor).pretime; 
    postTime=DOT.data(cf).HRF(Regressor).posttime; 
     
    rate = 1/(DOT.data(cf).t(2)-DOT.data(cf).t(1)); 
     
    nTpts = length(DOT.data(cf).t); 
    nPast=floor(abs(preTime)*rate); 
     
    DOT.data(cf).HRF(Regressor).tHRF = [preTime:1/rate:postTime]; 
    nHRF= floor( (postTime-preTime) * rate + 1 ); 
    DOT.data(cf).HRF(Regressor).nHRF =nHRF; 
     
    Atemp=corrmtx(regdata,nHRF-1,'autocorrelation'); 
    Atemp=Atemp./max(max(Atemp)); 
    A=[A Atemp(1+nPast:nPast+nTpts,:)]; 
     
    RegIdx(Regressor)=counter+1; 
    counter=counter+nHRF; 
end 
RegIdx(numReg+1)=counter+1; 
nLambda=length(DOT.SD.Lambda); 
  
  
%initialize some variables 
dOD=zeros(size(A,2),size( DOT.data(cf).raw,2)); 
conc=zeros(size(A,2),size( DOT.data(cf).raw,2)/nLambda,3); 
  
%What this does is to take data points that are "not to be trusted" and 
%replaces them with a zero filled design matrix (so they don't 
contribute 
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%to the least squares result).  This works only if afterward, every row 
in 
%the design matrix is still represented.   
  
%TDML is created by the "remove data" option in PlotAxes 1 
% TDML=> "Time-domain Measurement list" 
  
%now sort the TDML to find the number of unique combinations- I want 
%to do this inverse a minimum nuber of times.   
TDML=TDML'; 
unqRows=unique(TDML,'rows'); 
  
%loop over the number of unique rows.  The Remove data feature treats 
all 
%channels idenitically (so NumUnqRows==1) but for the TDML can be input 
%directly in the original file (as in the case with Time-division 
%multiplexing) and thus each channel potentially has a different  
  
NumUnqRow=size(unqRows,1); 
  
for row=1:NumUnqRow 
     
        if useWaitbar 
            h=waitbar(row/(2*NumUnqRow),h); 
            figure(h); 
        end 
         
    rowlst=find(ismember(TDML,unqRows(row,:),'rows')); 
    rowlstC=find(DOT.data(cf).MeasList(rowlst,4)==1); 
     
     
    lstTDML=find(unqRows(row,:)==0); 
     
    Atemp=A; 
    Atemp(lstTDML,:)=[]; 
  
    invATA=inv(Atemp'*Atemp); 
    Ainv=invATA*Atemp'; 
     
    lstTDML=find(unqRows(row,:)~=0); 
     
    if any(any(Ainv==inf)) 
        h2=warndlg('Design matrix is poorly scaled...Cannot preceed'); 
        uiwait(h2); 
        close(waitH) 
        return 
    end 
  
    %do the actual deconvolutions 
    if UseAux 
        Aux = Ainv * detrend(DOT.data(cf).Aux(lstTDML,:)); 
    else 
        Aux = Ainv * detrend(DOT.data(cf).Aux(lstTDML,:)); 
        dOD(:,rowlst) = Ainv * DOT.data(cf).dODc(lstTDML,rowlst); 
        
conc(:,rowlst(rowlstC),1)=Ainv*DOT.data(cf).dConcc(lstTDML,rowlst(rowls
tC),1); 
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conc(:,rowlst(rowlstC),2)=Ainv*DOT.data(cf).dConcc(lstTDML,rowlst(rowls
tC),2); 
        
conc(:,rowlst(rowlstC),3)=Ainv*DOT.data(cf).dConcc(lstTDML,rowlst(rowls
tC),3); 
  
        DOT.data(cf).nkp(1,rowlst)=length(lstTDML); 
        DOT.data(cf).nkp(2,rowlst)=size(Atemp,2); 
        DOT.data(cf).nkp(3,rowlst)=size(Atemp,2);   
    end 
  
end 
  
  
  
  
  
  
%Now break it up into the various regressors and store into the proper 
%fields. 
  
for Regressor=1:numReg 
        if useWaitbar 
            h=waitbar(.5+Regressor/(2*numReg),h); 
            figure(h); 
        end 
  
    if UseAux 
        DOT.data(cf).AuxAvg(Regressor).Avg = 
Aux(RegIdx(Regressor):RegIdx(Regressor+1)-1,:); 
        
DOT.data(cf).AuxAvg(Regressor).tHRF=DOT.data(cf).HRF(Regressor).tHRF; 
    else 
        
DOT.data(cf).AuxAvg(Regressor).tHRF=DOT.data(cf).HRF(Regressor).tHRF; 
         
        
DOT.data(cf).HRF(Regressor).Avg=zeros(DOT.data(cf).HRF(Regressor).nHRF,
size(dOD,2)); 
        
DOT.data(cf).HRF(Regressor).AvgC=zeros(DOT.data(cf).HRF(Regressor).nHRF
,size(dOD,2)/nLambda,3); 
        DOT.data(cf).HRF(Regressor).AvgOdd=[]; 
        DOT.data(cf).HRF(Regressor).AvgEven=[]; 
  
        
DOT.data(cf).HRF(Regressor).Avg=dOD(RegIdx(Regressor):RegIdx(Regressor+
1)-1,:); 
        
DOT.data(cf).HRF(Regressor).AvgC(:,:,1)=conc(RegIdx(Regressor):RegIdx(R
egressor+1)-1,:,1); 
        
DOT.data(cf).HRF(Regressor).AvgC(:,:,2)=conc(RegIdx(Regressor):RegIdx(R
egressor+1)-1,:,2); 
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DOT.data(cf).HRF(Regressor).AvgC(:,:,3)=conc(RegIdx(Regressor):RegIdx(R
egressor+1)-1,:,3); 
  
        if useDetrend 
            DOT.data(cf).HRF(Regressor).Avg = 
detrend(DOT.data(cf).HRF(Regressor).Avg); 
            DOT.data(cf).HRF(Regressor).AvgC(:,:,1) = 
detrend(DOT.data(cf).HRF(Regressor).AvgC(:,:,1)); 
            DOT.data(cf).HRF(Regressor).AvgC(:,:,2) = 
detrend(DOT.data(cf).HRF(Regressor).AvgC(:,:,2)); 
            DOT.data(cf).HRF(Regressor).AvgC(:,:,3) = 
detrend(DOT.data(cf).HRF(Regressor).AvgC(:,:,3)); 
  
        end 
  
        %Set the t=0 point to zero. 
  
        
zeropt=find(min(abs(DOT.data(cf).HRF(Regressor).tHRF))==abs(DOT.data(cf
).HRF(Regressor).tHRF)); 
        %Point closest to zero (because of uneven fs, the zero might 
not be a 
        %point1 
  
        DOT.data(cf).HRF(Regressor).Avg = 
DOT.data(cf).HRF(Regressor).Avg - 
ones(size(DOT.data(cf).HRF(Regressor).Avg,1),1)*DOT.data(cf).HRF(Regres
sor).Avg(zeropt,:); 
        DOT.data(cf).HRF(Regressor).AvgC(:,:,1) = 
DOT.data(cf).HRF(Regressor).AvgC(:,:,1) - 
ones(size(DOT.data(cf).HRF(Regressor).AvgC,1),1)*DOT.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,1); 
        DOT.data(cf).HRF(Regressor).AvgC(:,:,2) = 
DOT.data(cf).HRF(Regressor).AvgC(:,:,2) - 
ones(size(DOT.data(cf).HRF(Regressor).AvgC,1),1)*DOT.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,2); 
        DOT.data(cf).HRF(Regressor).AvgC(:,:,3) = 
DOT.data(cf).HRF(Regressor).AvgC(:,:,3) - 
ones(size(DOT.data(cf).HRF(Regressor).AvgC,1),1)*DOT.data(cf).HRF(Regre
ssor).AvgC(zeropt,:,3); 
    end 
end 
  
if useWaitbar 
    close(h); 
end 
  
  
if isfield(DOT.data(cf),'HRF_Stats') 
    DOT.data(cf).HRF_Stats=[]; 
    for Reg=1:numReg 
        DOT.data(cf).HRF(Reg).HRF_Stats=[]; 
    end 
end 
  
return 
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 HRFStatistics: 
 
function DOT = HRFstatistics(DOT,varargin) 
%This function adds all the statistics for the HRF 
% 
%Required Inputs: 
%DOT.data.HRF.Avg 
%DOT.data.HRF.AvgC 
%DOT.data.HRF.tHRF 
%DOT.data.HRF.regdata 
%DOT.dataAvg.HRF.Avg 
%DOT.dataAvg.HRF.AvgC 
%DOT.dataAvg.HRF.tHRF 
% 
% 
%Outputs: 
% 
%These are for the entire model: 
% DOT.data(cf).HRF_Stats.Fo 
% DOT.data(cf).HRF_Stats.to 
% DOT.data(cf).HRF_Stats.P 
% DOT.data(cf).HRF_Stats.res 
% DOT.data(cf).HRF_Stats.StdRes 
% DOT.data(cf).HRF_Stats.PRESS 
% DOT.data(cf).HRF_Stats.R_student 
% 
% DOT.data(cf).HRF_Stats.Fo_Conc 
% DOT.data(cf).HRF_Stats.to_Conc 
% DOT.data(cf).HRF_Stats.P_Conc 
% DOT.data(cf).HRF_Stats.res_Conc 
% DOT.data(cf).HRF_Stats.StdRes_Conc 
% DOT.data(cf).HRF_Stats.PRESS_Conc 
% DOT.data(cf).HRF_Stats.R_student_Conc 
% 
% ind. HRFs 
% DOT.data(cf).HRF(Reg).t 
% DOT.data(cf).HRF(Reg).P 
% DOT.data(cf).HRF(Reg).Conf_High 
% DOT.data(cf).HRF(Reg).Conf_Low 
% 
% DOT.data(cf).HRF(Reg).t_Conc 
% DOT.data(cf).HRF(Reg).P_Conc 
% DOT.data(cf).HRF(Reg).Conf_High_Conc 
% DOT.data(cf).HRF(Reg).Conf_Low_Conc 
% 
%These are for the individual regressors (not included unless -All 
flag): 
%DOT.data.HRF.partpvalue   - partial pvalue for just this regressor 
%DOT.data.HRF.partRes      - partial residual 
% 
% -Flags: 
% '-all'  - The output will contain all the statistics.  This is a 
larger 
%           data structure 
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% '-HRF_range' [# #] - i.e. [0:51],[51:100] - do t-stats over the 
51:100 tPts range compared to the 0:51 range  in HRF 
% '-waitbar' 
% '-cf' # 
% '-dataAvg' 
% '-Residualonly' 
  
alpha=0.95; 
cf = DOT.currentFile; 
  
  
useWaitbar=0; 
OutAll=0; 
HRF_range=0; 
useDataAvg=0; 
OutResOnly=0; 
AvgOnly=0; 
  
%Read in any flags 
if nargin>1 
    for flag=1:nargin-1 
        switch(varargin{flag}) 
            case '-waitbar' 
                useWaitbar=1; 
                waitH=waitbar(0,'Processing Statistics...'); 
                figure(waitH); 
                drawnow 
            case '-all' 
                OutAll=1; 
            case '-HRF_range' 
                HRF_range=1; 
                RangeOff=varargin{flag+1}; 
                RangeOn=varargin{flag+2}; 
            case '-cf' 
                cf=varargin{flag+1}; 
            case '-Residualonly' 
                OutResOnly=1; 
            case '-Averaged' 
                AvgOnly=1; 
        end 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
HRF=DOT.data(cf).HRF; 
  
numReg=length(DOT.data(cf).HRF); 
  
  
DOT.data(cf).HRF_Stats.Fo=[]; 
DOT.data(cf).HRF_Stats.to=[]; 
DOT.data(cf).HRF_Stats.P=[]; 
DOT.data(cf).HRF_Stats.StdRes=[]; 
DOT.data(cf).HRF_Stats.PRESS=[]; 
DOT.data(cf).HRF_Stats.R2Adj=[]; 
DOT.data(cf).HRF_Stats.res=[]; 
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DOT.data(cf).HRF_Stats.res_Conc=[]; 
DOT.data(cf).HRF_Stats.Fo_Conc=[]; 
DOT.data(cf).HRF_Stats.to_Conc=[]; 
DOT.data(cf).HRF_Stats.P_Conc=[]; 
DOT.data(cf).HRF_Stats.StdRes_Conc=[]; 
DOT.data(cf).HRF_Stats.PRESS_Conc=[]; 
DOT.data(cf).HRF_Stats.R2Adj_Conc=[]; 
%     DOT.data(cf).HRF_Stats.R_student=[]; 
  
  
for Reg=1:numReg 
    DOT.data(cf).HRF(Reg).to=[]; 
    DOT.data(cf).HRF(Reg).P=[]; 
    DOT.data(cf).HRF(Reg).Conf_High=[]; 
    DOT.data(cf).HRF(Reg).Conf_Low=[]; 
  
    DOT.data(cf).HRF(Reg).to_Conc=[]; 
    DOT.data(cf).HRF(Reg).P_Conc=[]; 
    DOT.data(cf).HRF(Reg).Conf_High_Conc=[]; 
    DOT.data(cf).HRF(Reg).Conf_Low_Conc=[]; 
end 
  
  
  
lstC=find(DOT.data(cf).MeasList(:,4)==1); 
  
if ~AvgOnly 
    %Remake design matrix 
    X=[]; 
    counter=0; 
    for Regressor=1:numReg 
        if ~isempty(HRF(Regressor).Avg) 
            preTime=DOT.data(cf).HRF(Regressor).pretime; 
            postTime=DOT.data(cf).HRF(Regressor).posttime; 
  
            rate = 1/(DOT.data(cf).t(2)-DOT.data(cf).t(1)); 
  
            nTpts = length(DOT.data(cf).t); 
            nPast=floor(abs(preTime)*rate); 
  
            DOT.data(cf).HRF(Regressor).tHRF = 
[preTime:1/rate:postTime]; 
            nHRF= floor( (postTime-preTime) * rate + 1 ); 
            DOT.data(cf).HRF(Regressor).nHRF =nHRF; 
  
            regdata=DOT.data(cf).HRF(Regressor).regdata; 
  
            if isfield(DOT.data(cf).HRF(Regressor),'StimOn') & 
~isempty(DOT.data(cf).HRF(Regressor).StimOn) 
                regdata=DOT.data(cf).HRF(Regressor).StimOn; 
            end 
  
            Xtemp=corrmtx(regdata,nHRF-1,'autocorrelation')*sqrt(nHRF); 
  
            X=[X Xtemp(1+nPast:nPast+nTpts,:)]; 
  
            RegIdx(Regressor)=counter+1; 
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            counter=counter+nHRF; 
        end 
    end 
  
    RegIdx(numReg+1)=counter+1; 
  
    if isfield(DOT.data(cf),'TDML') 
        TDML=DOT.data(cf).TDML; 
    else 
        TDML=ones(size(DOT.data(cf).raw)); 
    end 
  
    TDML=TDML(:,1);  %For now 
      
    lstTDML=find(TDML==0); 
    X(lstTDML,:)=[]; 
     
     
    XtX=X'*X; 
    C=inv(XtX); %Covariance matrix 
  
    if any(any(C==inf)) 
        h2=warndlg('Design matrix is poorly scaled...Cannot calculate 
statistics'); 
        uiwait(h2); 
        close(waitH) 
        return 
    end 
  
    H=X*C*X';   %Hat matrix 
    h=diag(H); 
  
    clear Xtemp; 
  
    %I guess we have to do this on a per channel basis: 
    lenData=size(DOT.data(cf).raw,1); 
    numMeas=size(DOT.data(cf).MeasList,1); 
    numMeasC=length(find(DOT.data(cf).MeasList(:,4)==1)); 
     
    %Initialize some things. 
    DOT.data(cf).HRF_Stats.res=zeros(lenData,numMeas); 
    DOT.data(cf).HRF_Stats.StdRes=zeros(lenData,numMeas); 
    DOT.data(cf).HRF_Stats.PRESS=zeros(lenData,numMeas); 
      
    DOT.data(cf).HRF_Stats.res_Conc=zeros(lenData,numMeasC,2); 
    DOT.data(cf).HRF_Stats.StdRes_Conc=zeros(lenData,numMeasC,2); 
    DOT.data(cf).HRF_Stats.PRESS_Conc=zeros(lenData,numMeasC,2); 
    
   
  
    for ch=1:numMeas 
  
        if useWaitbar 
            try 
                waitH=waitbar(ch/numMeas,waitH); 
                figure(waitH); 
            end 
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        end 
  
         
        lstTDML=find(TDML~=0); 
        y=DOT.data(cf).dODc(lstTDML,ch); 
         
        B=[]; 
        for Regressor=1:numReg 
            if ~isempty(HRF(Regressor).Avg) 
                B=[B; HRF(Regressor).Avg(:,ch)]; 
            end 
        end 
  
        
        e=y-H*y; 
        DOT.data(cf).HRF_Stats.res(lstTDML,ch)=e; 
  
        if OutResOnly 
            %If you only want the residuals- exit here 
            continue 
        end 
  
       %Degree of freedom variables: 
        n=DOT.data(cf).nkp(1,ch); 
        k=DOT.data(cf).nkp(2,ch); 
        p=DOT.data(cf).nkp(3,ch); 
  
  
  
        %Analysis of Variance approach... 
  
        %Residual sum of squares: 
        SSRes=sum(e.^2); 
        MSRes=SSRes/(n); 
  
        %Total sum of squares: 
        SST=sum(y.^2); 
  
        %Regression sum of squares: 
        SSR=SST-SSRes; 
  
        sigma2=SSRes/(n-p); 
  
        %These are the overall model statistics 
  
        Model_Fo=(SSR/k)/(SSRes/(n-k-1)); 
        Model_to=Model_Fo^0.5; 
        Model_R2Adj=1-(SSRes/(n-p))/(SST/(n-1)); 
  
        Model_P=1-fcdf(Model_Fo,k,n-k-1);  %From Fo with F(k,n-k-1) 
dist. 
  
        StdR= e./(1-h).^0.5.*1/MSRes^0.5;   %Studentized residuals  
(internally scaled) 
        PRESS=e./(1-h); 
        %     S2=((n-p)*MSRes-e.^2/(1-h))./(n-p-1); 
        %     R_student=e./(S2*(1-h)).^0.5; 
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        %Individual regression coefficients 
        %I want the partial residual info here. 
  
        Ind_to=B./(sigma2*diag(C)).^0.5; 
        Ind_Po=1-tcdf(abs(Ind_to),n-k-1); 
  
        %Confidence intervals for individual regressors 
  
        Conf_t=tinv(1-alpha/2,n-k-1); 
        deltaB=Conf_t*(sigma2*diag(C)).^0.5; 
        Conf_High=B+deltaB; 
        Conf_Low=B-deltaB; 
  
  
        %Now store all the data... 
  
  
        DOT.data(cf).HRF_Stats.Fo(ch)=Model_Fo; 
        DOT.data(cf).HRF_Stats.to(ch)=Model_to; 
        DOT.data(cf).HRF_Stats.P(ch)=Model_P; 
        DOT.data(cf).HRF_Stats.StdRes(lstTDML,ch)=StdR; 
        DOT.data(cf).HRF_Stats.PRESS(lstTDML,ch)=PRESS; 
        DOT.data(cf).HRF_Stats.R2Adj(ch)=Model_R2Adj; 
        %     DOT.data(cf).HRF_Stats.R_student(:,ch)=R_student; 
  
  
        %Sort back to ind. HRFs 
        for Reg=1:numReg 
            if ~isempty(HRF(Reg).Avg) 
                
DOT.data(cf).HRF(Reg).to(:,ch)=Ind_to(RegIdx(Reg):RegIdx(Reg+1)-1); 
                DOT.data(cf).HRF(Reg).P(:,ch)=Ind_Po; 
                
DOT.data(cf).HRF(Reg).Conf_High(:,ch)=Conf_High(RegIdx(Reg):RegIdx(Reg+
1)-1); 
                
DOT.data(cf).HRF(Reg).Conf_Low(:,ch)=Conf_Low(RegIdx(Reg):RegIdx(Reg+1)
-1); 
            end 
        end 
  
         
         
        %Now do Conc 
        if ~isempty(find(ch==lstC)) 
            lstTDML=find(TDML~=0); 
            y_HbO=DOT.data(cf).dConcc(lstTDML,ch,1); 
            y_HbR=DOT.data(cf).dConcc(lstTDML,ch,2); 
  
  
            e(:,1)=y_HbO-H*y_HbO; 
            e(:,2)=y_HbR-H*y_HbR; 
  
            DOT.data(cf).HRF_Stats.res_Conc(lstTDML,ch,:)=e; 
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            %Analysis of Variance approach... 
            %Residual sum of squares: 
            SSRes=sum(e.^2,1); 
            MSRes=SSRes./(n); 
  
            %Total sum of squares: 
            SST=sum(y.^2,1); 
  
            %Regression sum of squares: 
            SSR=SST-SSRes; 
  
            sigma2=SSRes/(n-p); 
  
            %These are the overall model statistics 
  
            Model_Fo=(SSR/k)./(SSRes/(n-k-1)); 
            Model_to=Model_Fo.^0.5; 
            Model_R2Adj=1-(SSRes/(n-p))./(SST/(n-1)); 
  
            Model_P=1-fcdf(Model_Fo,k,n-k-1);  %From Fo with F(k,n-k-1) 
dist. 
  
            StdR= e./((1-
h)*ones(1,2)).^0.5.*(ones(length(e),1)*(ones(1,2)./MSRes.^0.5));   
%Studentized residuals  (internally scaled) 
            PRESS=e./((1-h)*ones(1,2)); 
  
  
             
            B=[]; 
            for Regressor=1:numReg 
                if ~isempty(HRF(Regressor).AvgC) 
                    B=[B; HRF(Regressor).AvgC(:,ch,1:2)]; 
                end 
            end 
             
            B=squeeze(B); 
  
            %Individual regression coefficients 
            %I want the partial residual info here. 
  
            Ind_to(:,1)=B(:,1)./(sigma2(:,1)*diag(C)).^0.5; 
            Ind_Po(:,1)=1-tcdf(abs(Ind_to(:,1)),n-k-1); 
            Ind_to(:,2)=B(:,1)./(sigma2(:,2)*diag(C)).^0.5; 
            Ind_Po(:,2)=1-tcdf(abs(Ind_to(:,2)),n-k-1); 
  
             
            %Confidence intervals for individual regressors 
  
            Conf_t=tinv(1-alpha/2,n-k-1); 
            deltaB(:,1)=Conf_t*(sigma2(:,1)*diag(C)).^0.5; 
            deltaB(:,2)=Conf_t*(sigma2(:,2)*diag(C)).^0.5; 
            Conf_High(:,1)=B(:,1)+deltaB(:,1); 
            Conf_Low(:,1)=B(:,1)-deltaB(:,1); 
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            Conf_High(:,2)=B(:,2)+deltaB(:,2); 
            Conf_Low(:,2)=B(:,2)-deltaB(:,2); 
             
  
            %Now store all the data... 
  
  
            DOT.data(cf).HRF_Stats.Fo_Conc(ch,:)=Model_Fo; 
            DOT.data(cf).HRF_Stats.to_Conc(ch,:)=Model_to; 
            DOT.data(cf).HRF_Stats.P_Conc(ch,:)=Model_P; 
            DOT.data(cf).HRF_Stats.StdRes_Conc(lstTDML,ch,:)=StdR; 
            DOT.data(cf).HRF_Stats.PRESS_Conc(lstTDML,ch,:)=PRESS; 
            DOT.data(cf).HRF_Stats.R2Adj_Conc(ch,:)=Model_R2Adj; 
            %     DOT.data(cf).HRF_Stats.R_student(:,ch)=R_student; 
  
  
            %Sort back to ind. HRFs 
            for Reg=1:numReg 
                if ~isempty(HRF(Reg).Avg) 
                    
DOT.data(cf).HRF(Reg).to_Conc(:,ch,:)=Ind_to(RegIdx(Reg):RegIdx(Reg+1)-
1,:); 
                    DOT.data(cf).HRF(Reg).P_Conc(:,ch,:)=Ind_Po; 
                    
DOT.data(cf).HRF(Reg).Conf_High_Conc(:,ch,:)=Conf_High(RegIdx(Reg):RegI
dx(Reg+1)-1,:); 
                    
DOT.data(cf).HRF(Reg).Conf_Low_Conc(:,ch,:)=Conf_Low(RegIdx(Reg):RegIdx
(Reg+1)-1,:); 
                end 
            end 
  
  
  
        end 
  
    end 
else 
    %Do the average only version 
    for Reg=1:numReg 
        if useWaitbar 
            waitH=waitbar(0.5+Reg/numReg,waitH); 
            figure(waitH); 
        end 
        if ~isempty(HRF(Reg).Avg) & isfield(HRF(Reg),'AvgStdErr') 
            n=DOT.data(cf).nkp(1,1); 
            k=DOT.data(cf).nkp(2,1); 
  
  
            MSE=HRF(Reg).AvgStdErr; 
            Ind_to=HRF(Reg).Avg./MSE; 
            DOT.data(cf).HRF(Reg).to=Ind_to; 
            Ind_Po=1-tcdf(abs(Ind_to),n-k-1); 
            DOT.data(cf).HRF(Reg).P=Ind_Po; 
  
            Conf_t=tinv(1-alpha/2,n-k-1); 
            deltaB=Conf_t*MSE; 
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            Conf_High=HRF(Reg).Avg+deltaB; 
            Conf_Low=HRF(Reg).Avg-deltaB; 
            DOT.data(cf).HRF(Reg).Conf_High=Conf_High; 
            DOT.data(cf).HRF(Reg).Conf_Low=Conf_Low; 
        end 
         
        %Now Conc. 
        if ~isempty(HRF(Reg).AvgC) & isfield(HRF(Reg),'AvgCStdErr') 
            n=DOT.data(cf).nkp(1,1); 
            k=DOT.data(cf).nkp(2,1); 
  
  
            MSE=HRF(Reg).AvgCStdErr; 
            Ind_to=HRF(Reg).AvgC./MSE; 
            DOT.data(cf).HRF(Reg).to_Conc=Ind_to; 
            Ind_Po=1-tcdf(abs(Ind_to),n-k-1); 
            DOT.data(cf).HRF(Reg).P_Conc=Ind_Po; 
  
            Conf_t=tinv(1-alpha/2,n-k-1); 
            deltaB=Conf_t*MSE; 
            Conf_High=HRF(Reg).Avg+deltaB; 
            Conf_Low=HRF(Reg).Avg-deltaB; 
            DOT.data(cf).HRF(Reg).Conf_High_Conc=Conf_High; 
            DOT.data(cf).HRF(Reg).Conf_Low_Conc=Conf_Low; 
        end 
         
         
    end 
  
  
  
end 
if useWaitbar 
    try 
        close(waitH); 
    end 
end 
  
return 
 

 


