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Image reconstruction by domain-transform 
manifold learning
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Image reconstruction is essential for imaging applications across 
the physical and life sciences, including optical and radar systems, 
magnetic resonance imaging, X-ray computed tomography, 
positron emission tomography, ultrasound imaging and radio 
astronomy1–3. During image acquisition, the sensor encodes an 
intermediate representation of an object in the sensor domain, 
which is subsequently reconstructed into an image by an inversion 
of the encoding function. Image reconstruction is challenging 
because analytic knowledge of the exact inverse transform may not 
exist a priori, especially in the presence of sensor non-idealities 
and noise. Thus, the standard reconstruction approach involves 
approximating the inverse function with multiple ad hoc stages in 
a signal processing chain4,5, the composition of which depends on 
the details of each acquisition strategy, and often requires expert 
parameter tuning to optimize reconstruction performance. Here 
we present a unified framework for image reconstruction—
automated transform by manifold approximation (AUTOMAP)—
which recasts image reconstruction as a data-driven supervised 
learning task that allows a mapping between the sensor and the 
image domain to emerge from an appropriate corpus of training 
data. We implement AUTOMAP with a deep neural network and 
exhibit its flexibility in learning reconstruction transforms for 
various magnetic resonance imaging acquisition strategies, using 
the same network architecture and hyperparameters. We further 
demonstrate that manifold learning during training results in 
sparse representations of domain transforms along low-dimensional 
data manifolds, and observe superior immunity to noise and a 
reduction in reconstruction artefacts compared with conventional 
handcrafted reconstruction methods. In addition to improving the 
reconstruction performance of existing acquisition methodologies, 
we anticipate that AUTOMAP and other learned reconstruction 
approaches will accelerate the development of new acquisition 
strategies across imaging modalities.

The paradigm shift from manual to automatic feature extraction in a 
host of machine learning tasks including speech recognition6 and image 
classification7 has demonstrated the advantage of allowing real-world 
data to guide efficient representation through a structured training 
process. This strategy is mirrored in biological organisms for refining 
visual perception in a process known as perceptual learning8. Human 
visual reconstruction of time-domain neural codes into the percept 
image is trained through experience during cognitive development 
into adulthood. This conditioning on prior data has been shown to be 
critical to robust performance in low signal-to-noise settings9, which 
are fundamentally challenging for artificial imaging systems across dis-
ciplines and applications. In contemporary medical imaging, faithful 
reconstruction of noisy image acquisitions is of particular importance 
as the clinical push for faster scanning increasingly relies on acquisition 
strategies that result in a reduction of the signal-to-noise ratio, be they 
undersampled magnetic resonance imaging (MRI), or low-dose X-ray 
computed tomography imaging.

Inspired by the perceptual learning archetype, we describe here 
a data-driven unified image reconstruction approach, which we 
call AUTOMAP, that learns a reconstruction mapping between the 
sensor-domain data and image-domain output (Fig. 1a). As this map-
ping is trained, a low-dimensional joint manifold of the data in both 
domains is implicitly learned (Fig. 1b), capturing a highly expressive 
representation that is robust to noise and other input perturbations.

We implemented the AUTOMAP unified reconstruction framework 
with a deep neural network feed-forward architecture composed of 
fully connected layers followed by a sparse convolutional autoencoder 
(Fig. 1c). The fully connected layers approximate the between-manifold 
projection from the sensor domain to the image domain. The convo-
lutional layers extract high-level features from the data and force the 
image to be represented sparsely in the convolutional-feature space. 
Our network operates similarly to the denoising autoencoder described 
previously10, but rather than finding an efficient representation of the 
identity to map φ φ= =−�f x x x( ) ( )x x

1  over the manifold of inputs X  
(where φx maps the intrinsic coordinate system of X  to Euclidean space 
near x), AUTOMAP determines both a between-manifold projection 
g from X  (the manifold of sensor inputs) to Y  (the manifold of output 
images), and a manifold mapping φy to project the image from manifold 
Y  back to the representation in Euclidean space. A composite inverse 
transformation φ φ= −� �f x g x( ) ( )y x

1  over the joint manifold MX,Y = 
×X Y  (Fig. 1b) is achieved. A full mathematical description of this 

manifold learning process is detailed in Methods.
In contrast to previous efforts that use neural networks to solve 

inverse functions11–13, our approach searches for an inverse that best 
represents the data in a low-dimensional feature space determined by 
manifold learning as well as the trained sparse convolutional filters. 
Furthermore, AUTOMAP solves a generalized reconstruction problem 
and thus differs from work using neural networks to implement a 
specific image reconstruction task14–17. These previous approaches 
use known properties of the canonical domain transform to formulate 
the neural network model, or perform the explicit transform before 
processing by a neural network used for image-space artefact reduction.

We demonstrate AUTOMAP image reconstruction using MRI as 
a model system, but we emphasize that our approach is applicable to 
image reconstruction problems across a broad range of modalities 
given the mathematical similarities of tomographic spatial encoding 
functions typically governed by Fredholm integral equations1. The 
plethora of MRI acquisition strategies makes it a particularly appro-
priate platform to exhibit the flexibility of AUTOMAP reconstruction 
over a variety of encoding schemes. We first evaluated the performance 
of AUTOMAP alongside conventional methods in four nontrivial 
reconstruction tasks: (1) Radon projection imaging and model-based 
iterative reconstruction4; (2) spiral-trajectory k-space (rapid acquisi-
tion with non-Cartesian sampling) and conjugate-gradient sensitivity 
encoding (SENSE) reconstruction employing non-uniform fast 
Fourier transform (NUFFT) regridding5; (3) Poisson-disk undersam-
pled k-space (incoherent sparse acquisition) and compressed sensing 
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reconstruction with wavelet sparsifying transform18; and (4) mis-
aligned k-space (a commonplace sampling inaccuracy due to hardware 
limitations or physiologic effects) and the conventional inverse fast 
Fourier transform. Evaluation of the AUTOMAP network was per-
formed on brain magnetic resonance images selected from the Human 
Connectome Project (HCP)19, which were transformed to the sensor 
domain according to the four encoding schemes (see Methods for data 
preparation details) and with varying levels of additive white Gaussian 
noise introduced so that we could observe reconstruction performance 
in noisy conditions.

All reconstruction tasks employed the same network architecture and 
hyperparameters—only the training data differed at the network input 
and output. To demonstrate AUTOMAP’s generalizability in training 
dataset scope, all reconstruction tasks except the undersampled encod-
ing were trained from datasets derived entirely from photographs of 
natural scenes from ImageNet20 as schematically portrayed in Fig. 1b; 
for these acquisitions, the network was not exposed to any MRI or other 
medical images until the test phase (see Methods for data preparation 
and training details).

The results shown in Fig. 2 demonstrate the ability of AUTOMAP 
to reconstruct sensor-domain data across varying encoding acquisi-
tion strategies. We emphasize here that the reconstruction transforms 
emerged strictly from training on data samples, without higher-level 
knowledge (for example, mathematical transforms or domain rep-
resentations) introduced at any stage. To learn a new reconstruction 
for a particular encoding acquisition, one simply needs to generate 
a training dataset with the encoding forward model. The ability of 
AUTOMAP to represent a variety of sophisticated transform functions 
with a single network architecture is grounded in the inherent universal 
approximation properties of nonlinear multilayer perceptron systems21.

Furthermore, AUTOMAP reconstructions exhibit superior noise 
immunity compared to those from conventional methods, as quantified 
by image signal-to-noise ratio and root-mean-squared error (RMSE) 
metrics (Fig. 2). Visual inspection of reconstructed images and error 
maps in Fig. 2 reveals that noise and reconstruction artefacts are dimin-
ished in AUTOMAP reconstructions compared to conventional recon-
structions: streaking artefacts and white noise amplification for iterative 

inverse-Radon22, noise amplification due to iterative reconstruction 
with NUFFT regridding of noisy samples23, structured artefacts 
from noisy undersampled compressed sensing reconstruction24, and 
Nyquist N/2 ghosting from misaligned sampling trajectories25. Additive 
Gaussian noise was not injected during training; the noise immunity we 
observe was not trained explicitly, or imposed by predictive noise mod-
elling, but rather emerged as a result of the manifold learning process 
extracting robust features of the data, leading to improvement in signal-
to-noise ratio during reconstruction. This emphasis on modelling fea-
tures of the signal rather than the noise characteristics to achieve high 
performance in low-signal-to-noise-ratio regimes is consistent with the 
neural mechanisms underlying human visual perceptual learning26.

We next examined the hidden-layer activity of our AUTOMAP 
network during the feed-forward reconstruction process. We trained 
AUTOMAP using training data derived from either ImageNet, HCP 
brain images, or random-valued Gaussian noise without any real-world 
image structure. Each trained network was then used to reconstruct 
the fully sampled Cartesian k-space of a single brain image (Extended 
Data Fig. 2). The activation values of the hidden-layer FC2 (Fig. 1c) 
are plotted in Fig. 3a–c. As the training moves from general (Fig. 3a) to 
specific (Fig. 3c), we observe the hidden-layer activity exhibiting greater 
sparsity, indicating successful extraction of robust features27, consistent  
with the noise immunity observed in our experiments. We note that 
fully connected hidden-layer sparsity was not explicitly imposed 
(that is, not enforced by a penalty in the loss function), but emerged 
naturally through the training process. A normalized histogram of the 
hidden-layer activations is shown in Fig. 3d. A representative set of the 
convolutional kernels applied to feature maps in layer C2 (Fig. 1c) is 
shown in Fig. 3h. Processing by the convolutional layers is similar to 
that of compressed sensing, except that instead of assuming an explicit 
sparsifying transform (for example, wavelet), AUTOMAP simultane-
ously learns a sparse convolutional domain and its sparse representa-
tions through a joint optimization (see Methods for details).

We then studied the weight parameters of each trained network using 
a t-distributed stochastic neighbour embedding (t-SNE) analysis28  
(Fig. 3e–g), which embeds a high-dimensional dataset into a low-
dimensional space for visualization. Here we visualize the spatial 
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Figure 1 | Schematic representations of AUTOMAP image 
reconstruction. a, Conventional image reconstruction is implemented 
with sequential modular reconstruction chains composed of handcrafted 
signal processing stages that may include discrete transforms (for example, 
Fourier, Hilbert or Radon), data interpolation techniques, nonlinear 
optimization, and various filtering mechanisms. AUTOMAP replaces this 
approach with a unified image reconstruction framework that learns the 
reconstruction relationship between sensor and image domain without 
expert knowledge. b, A mapping between sensor domain and image 
domain is determined via supervised learning of sensor (top) and image 

(bottom) domain pairs. The training process implicitly learns a low-
dimensional joint manifold ×X Y  over which the reconstruction function 

φ φ= −� �f x g x( ) ( )y x
1  is conditioned. c, AUTOMAP is implemented with a 

deep neural network architecture composed of fully connected layers (FC1 
to FC3) with hyperbolic tangent activations, followed by convolutional 
layers with rectifier nonlinearity activations that form a convolutional 
autoencoder. Our network contains m1 and m2 convolutional feature maps 
at C1 and C2 respectively. The convolution and deconvolution operations 
are labelled ‘conv.’ and ‘deconv.’, respectively. The dimensionality of the 
input to the network is n ×​ n. See Methods for model architecture details.
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Encoding Reference AUTOMAP Conventional
AUTOMAP

Error
Conventional

Error

SNR 33.8 SNR 14.2 RMSE 2.6% RMSE 5.3%

SNR 42.7 SNR 13.8 RMSE 1.7% RMSE 5.0%

SNR 59.3 SNR 43.5 RMSE 1.6% RMSE 2.4%
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Figure 2 | Reconstruction performance of AUTOMAP compared with 
conventional techniques. Reference brain images were encoded into 
sensor-domain sampling strategies with varying levels of additive white 
Gaussian noise and reconstructed with both AUTOMAP and conventional 
approaches. a–e, Radon projection encoding compared with model-
based iterative reconstruction. f–j, Spiral k-space encoding compared 
with conjugate-gradient SENSE reconstruction with NUFFT regridding. 
k–o, Poisson-disk undersampled (40%) Cartesian k-space encoding 

compared with compressed sensing reconstruction using the wavelet 
sparsifying transform. p–t, Misaligned Cartesian k-space, compared with 
conventional inverse fast Fourier transform. Image magnitude signal-
to-noise ratios (SNRs) and error maps (with root-mean-squared error 
(RMSE) calculations) with respect to reference ground truth images 
are also shown. For each encoding experiment, both error maps are 
windowed to the same level. The same network architecture was used for 
all AUTOMAP reconstructions.
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Figure 3 | Analysis of AUTOMAP neural networks. AUTOMAP was 
trained on three separate datasets for a Cartesian k-space encoding: 
generic natural images, brain images, and random-valued noise without 
any real-world image structure (see Methods for training details).  
a–c, Activation values of the fully connected hidden layer (FC2 in Fig. 1c)  
for each trained network while reconstructing the same k-space of a 
brain image. The noise-trained network generates high-amplitude and 
widely distributed hidden layer activation values (a), while the networks 
trained on generic images (b) and brain images (c) exhibit greater sparsity, 
indicating efficient processing of input data due to successful feature 
extraction when trained on relevant data. d, Histogram of FC2 activation 

values for the three networks, accumulated over 100 brain-image k-space 
reconstructions. e–g, Three-dimensional t-SNE embedding of network 
weights from FC2 to FC3 for the differently trained networks (see Methods 
for t-SNE analysis details). The t-SNE of the noise-trained network, 
agnostic to real-world image structure, exhibits disorganized structure 
(e), in contrast to f and g, which reflect the local spatial correlation that 
exists in real-world images. The domain-specific training of the brain-
trained network shows the highest similarity between weights to two-
dimensional neighbours for all pixel locations (g). h, Representative sparse 
convolutional kernels of the final convolutional stage (C2–Image) learned 
from training on brain images.
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relationship of trained network weights, particularly from FC2 to the 
pre-convolutional FC3 image layer (see Methods for details). Figure 3d 
shows that the t-SNE embedding of the noise-trained network weights 
is highly unorganized and unbiased with respect to pixel location; this 
is unsurprising because the network learns a ‘pure’ or ‘neutral’ Fourier 
transform that does not recognize the local spatial correlation that 
exists in real-world images29. The generic-image-trained model cap-
tures this local spatial correlation, so the weights of neighbouring pixels 
are more similar than the weights of pixels further apart, as shown by 
the t-SNE embedding (Fig. 3f). This feature is most clearly exhibited 
by the t-SNE of the brain-trained network weights (Fig. 3g), which are 
organized into a two-dimensional sheet within the three-dimensional 
embedding space, demonstrating extremely high similarity between the 
weights of two-dimensional neighbours for all pixel locations.

We then demonstrated AUTOMAP’s ability to learn reconstruc-
tion of image phase from complex-valued sensor data by including 
phase-modulated data in the network training. A phase-modulated 
training set was created by generating synthetic phase patterns (exam-
ples shown in Fig. 4a) to modulate the magnitude-only training images 
collected from the HCP database before being encoded in k-space. 
Using the same k-space data as input, we trained separate AUTOMAP 
networks to reconstruct magnitude and phase with their respective  
target training images, and validated this by reconstructing in vivo 
k-space raw data taken from a human subject on a 3-tesla (3T) MRI 
scanner (Fig. 4d, e); see Methods for acquisition details. This recon-
struction can also be performed on one larger network with concat-
enated magnitude and phase data. This phase-modulation training 
allows public medical image databases and private PACS (picture 
archiving and communication system) repositories to be used for 
training, despite the typical absence of phase data in these datasets. 
Furthermore, our results show that parameterized influences on the 
input signal can be simulated for training and subsequently disentan-
gled by AUTOMAP, which may be useful in sophisticated reconstruc-
tion problems such as automated motion compensation (see Methods 
and Extended Data Fig. 4 for more detailed discussion).

A potential concern in the reconstruction of real-world experimen-
tally acquired sensor data is whether the AUTOMAP network would 
overfit to the ideal sampling parameters used during training and as 
a result be overly sensitive to sampling deviation during actual acqui-
sitions. We quantified the effect of divergence from the nominal sam-
pling trajectory with Monte Carlo simulations of varying amplitudes of  
trajectory error (Fig. 5a) from a spiral acquisition, and measure the 
resulting reconstruction RMSE from the ground truth reference. To 
examine a broad range of potential errors with realistic trajectories, 
we measured the actual trajectory during a spiral acquisition and 

computed the difference vectors of samples between the actual and 
ideal designed trajectories. This was used to scale the vector magni-
tudes to generate offset sampling trajectories. We tested errors from 
zero deviation (perfect match) to four times the measured deviation, 
and found that AUTOMAP’s reconstruction error smoothly increased 
as a function of trajectory error, similar to a conventional NUFFT 
reconstruction’s error curve (Fig. 5b), demonstrating reasonable robust-
ness to trajectory deviation. Although the AUTOMAP error curve was 
slightly steeper, AUTOMAP still achieved better reconstruction accu-
racy than did NUFFT, out to very large trajectory errors, more than 3.5 
times larger than the measured experimental deviation (Fig. 5b) from 
a commercial 3T MRI scanner.

These simulation results are consistent with the reconstruction  
performance on real scanner data acquired from human subjects. 
Figure 5c, d shows AUTOMAP and NUFFT reconstructions of a 
10-interleave spiral magnetic resonance acquisition, in which both 
methods assume the nominal trajectory that deviates from the actual 
experimental scan trajectory. Although there is no ground truth with 
which to calculate reconstruction error, image signal-to-noise ratio 
was measured to be higher in the AUTOMAP output (21.6 versus 
17.6). Figure 5e, f displays windowed versions of Fig. 5c, d, revealing 
coherent object-dependent and ringing artefacts in the NUFFT recon-
struction (Fig. 5f); these are much reduced in the AUTOMAP recon-
struction, primarily exhibiting standard Gaussian white noise (Fig. 5e).

Finally, we demonstrate reconstruction of multichannel magnetic 
resonance data acquired on a clinical 3T scanner with 15.5 times under-
sampling (acceleration factor R =​ 4 ×​ 4 uniform with low frequency 
region) retrospective undersampling (Fig. 5g–k). In comparison to a 
conventional SENSE reconstruction (Fig. 5i), AUTOMAP (Fig. 5h) 
demonstrates reduced noise and reconstruction artefacts, which can 
clearly be observed in the error maps (Fig. 5j, k) and quantified by a 
reduction in RMSE from 10.8% to 6.72%). Further acquisition and 
reconstruction details can be found in Methods.

At its core, AUTOMAP is a conceptual approach for trained image 
reconstruction with manifold learning; the specific neural network 
implementation presented here is not the only possible implemen-
tation, but a first demonstration that can be extended and improved 
upon in many directions. In Methods we discuss the application of 
AUTOMAP to other reconstruction problems and ways to address 
practical implementation challenges. As an example of applicability 
beyond MRI, human 18F-fluorodeoxyglucose (FDG) positron emis-
sion tomography (PET) data are reconstructed with AUTOMAP in 
Extended Data Fig. 5.

AUTOMAP provides a new paradigm for image reconstruction that 
learns a reconstruction function for arbitrary acquisition strategies, 
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Figure 4 | Learning reconstruction of phase for in vivo data. The 
inclusion of synthetic phase to the training dataset enables AUTOMAP to 
properly reconstruct both the magnitude and phase. a, Synthetic k-space 
data for training was generated from HCP magnitude images by phase 

modulation with two-dimensional sinusoids of varying spatial frequencies. 
b–e, After training, the magnitude (b) and phase (c) of T2-weighted raw 
k-space acquired from a human subject are properly reconstructed by 
AUTOMAP (d, e). (FFT, fast Fourier transform.)
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conditioned upon low-dimensional features of real-world data to 
improve artefact reduction and reconstruction accuracy for noisy and 
undersampled acquisitions. We anticipate that the noise robustness 
attainable with our approach will improve imaging quality and speed for 
a broad range of applications exhibiting low signal-to-noise ratio, includ-
ing low-dose X-ray computed tomography30, low-light charge-coupled 
devices31, large-baseline radio astronomy32 and rapid volumetric  
optical coherence tomography33. Finally, we also anticipate that the 
AUTOMAP paradigm will enable the development of new classes of 
acquisition strategies across imaging modalities as the reconstruction 
of arbitrary encoding schemes can be learned without domain expert 
knowledge.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 5 | Performance of AUTOMAP in real-world acquisitions. 
a, Plot of the family of k-space trajectory deviations used in Monte 
Carlo reconstruction analysis as described in the text. b, RMSE of 
AUTOMAP and NUFFT Monte Carlo reconstructions as a function 
of normalized trajectory error, with unity error corresponding to the 
measured experimental trajectory deviation in a 3T clinical scanner. 
Error bars indicate standard error of the mean. c, d, AUTOMAP and 
NUFFT reconstructions of a real-world 3T magnetic resonance spiral 

acquisition; the mean image signal-to-noise ratio is improved in the 
AUTOMAP reconstruction (21.6 versus 17.6). e, f, The presence of 
reconstruction artefacts is also reduced, as revealed in the windowed 
images. g–i, AUTOMAP and SENSE reconstructions of a real-world 
R =​ 4 ×​ 4 undersampled 32-channel 3T magnetic resonance acquisition are 
displayed and compared with the fully sampled reference. j, k, Error maps 
are windowed to the same intensity level. The RMSE reconstruction error 
is reduced with AUTOMAP compared to SENSE (6.72% versus 10.8%).
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Methods
Image dataset acquisition and pre-processing. The training dataset of generic 
images was assembled from ImageNet20. 10,000 images from the ‘animal’, ‘plant’ 
and ‘scene’ categories were each cropped to the central 256 ×​ 256 pixels and sub-
sequently subsampled to 128 ×​ 128. Y-channel luminance was extracted from 
the RGB colour images to form greyscale intensity images. Each image was then 
rotated in 90° increments to augment the dataset. The mean intensity of each image 
was subtracted and the entire dataset was normalized to a constant value defined 
by the maximum intensity of the dataset.

The training dataset of de-identified brain images was assembled from the 
MGH-USC HCP19 public database, which were acquired with the T1-weighted 
three-dimensional MRI acquisition protocol MPRAGE with repetition time 
TR =​ 2,530 ms, echo time TE =​ 1.15 ms, inversion time TI =​ 1,100 ms, flip angle 
FA =​ 7.0° and bandwidth BW =​ 651 Hz Px−1 on a Siemens Skyra 3T MRI platform 
(Siemens Medical Solutions, Erlangen, Germany). The de-identification process 
used by the HCP protocol masked the face and ear regions to protect the subjects’ 
privacy.

Axial, sagittal and coronal T1-weighted slices from 131 subjects were used to 
generate a 50,000-image dataset. For each image, the central 256 ×​ 256 pixels were 
cropped and subsampled to 128 ×​ 128. To promote translation invariance in the 
training, each image was symmetrically tiled to create a larger 256 ×​ 256 image 
containing four reflections of the original, and cropped to a random 128 ×​ 128 
section. The same data normalization process described above for the ImageNet 
dataset was used.

The test data used in the first evaluation experiment were taken from 
another subject outside those used for training. The test data also included the 
T2-weighted MRI acquisition protocol SPACE with TR =​ 3,200 ms, TE =​ 561 ms, 
FOV =​ 224 mm ×​ 244 mm and BW =​ 744 Hz Px−1 on the same Siemens Skyra 3T 
MRI platform.
Sensor-domain encoding of image data. Sensor-domain representations for 
each image were encoded according to the reconstruction task. For the Radon 
transform experiment (Fig. 2a–c), we used the discrete Radon transform with 180 
projection angles and 185 parallel rays. The spiral k-space experiment (Fig. 2d–f) 
used nonuniform fast Fourier transform (NUFFT)34 to encode a ten-interleave 
spiral trajectory35 with variable density factor α =​ 1 and undersampling factor 
R =​ 1/1.2 based on the pre-subsampled 256 ×​ 256 images (the MATLAB code 
used for this trajectory encoding is available at http://bigwww.epfl.ch/algorithms/
mri-reconstruction/). The undersampled Cartesian k-space experiment (Fig. 2g–i) 
used a Poisson-disk sampling pattern with 40% undersampling of the Fourier-
transformed k-space generated with the Berkeley Advanced Reconstruction 
Toolbox (BART)36. The misaligned Cartesian k-space experiment (Fig. 2j–l) used 
Fourier-transformed k-space where an empirically observed phase shift from a 
typical echo planar imaging acquisition was applied to every odd readout line.
Modulation with synthesized phase. Phase-modulated training data was used 
in the raw sensor data experiments of Figs 4 and 5 to train networks to accurately 
process phase-modulated sensor data. Synthesized phase maps were created by 
generating two-dimensional sinusoids with varying spatial frequencies independent  
along each image axis, and rotated by a random angle with respect to the image 
axes. The intensities of the sinusoids represented phase values, and were normalized 
to be between 0 and 2π​. Each magnitude image in the training dataset was then 
modulated with a randomly generated phase map to form the complex-valued 
target image, which was then encoded by the appropriate forward encoding model 
to produce the corresponding sensor-domain input.
Model architecture. The input to the neural network consists of a vector of 
sensor-domain-sampled data produced by the preprocessing steps detailed above. 
Because the input layer is fully connected to the first hidden layer, for each recon-
struction task the sensor-domain data (typically represented in two dimensions 
for images) can be vectorized in any order without any effect on the training. 
Since the neural network computational framework used here (Tensorflow37) oper-
ates on real-valued inputs and parameters, complex data must be separated into 
real and imaginary components concatenated in the input vector. Thus, an n ×​ n 
complex-valued k-space matrix, for example, is reshaped to a 2n2 ×​ 1 real-valued 
vector (for our experiments, n =​ 128). As schematically illustrated in Fig. 1c, the 
input layer FC1 is fully connected to an n2 ×​ 1-dimensional hidden layer FC2 and 
activated by the hyperbolic tangent function. This first hidden layer is fully con-
nected to another n2 ×​ 1-dimensional hidden layer FC3 with hyperbolic tangent 
activation, and is reshaped to an n ×​ n matrix in preparation for convolutional 
processing. The first convolutional layer C1 convolves 64 filters of 5 ×​ 5 with stride 
1 followed by a rectifier nonlinearity38. The second convolutional layer C2 again 
convolves 64 filters of 5 ×​ 5 with stride 1 followed by a rectifier nonlinearity. The 
final output layer deconvolves the C2 layer with 64 filters of 7 ×​ 7 with stride 1. 
The output layer represents the reconstructed magnitude image, except for the 

phase-modulation experiment, where the network was trained separately to recon-
struct the real and imaginary components of the image.
Training details. The same network architecture and hyperparameters were 
used for our experiments. For each sensor encoding reconstruction task, a differ-
ent network was trained from the corresponding sensor-domain encodings and  
target images applied to the inputs and outputs, respectively, of the neural network 
(details of training data and network architecture described above). One per cent 
multiplicative noise was applied to the input to promote manifold learning during 
training by forcing the network to learn robust representations from corrupted 
inputs10. We note that the specific noise distribution of this corruption process did 
not serve to model the additive Gaussian noise that was applied during evaluation. 
The RMSProp algorithm (see http://www.cs.toronto.edu/~​tijmen/csc321/slides/lec-
ture_slides_lec6.pdf) was used with minibatches of size 100, learning rate 0.00002, 
momentum 0.0 and decay 0.9. The loss function minimized during training was a 
simple squared loss between the network output and target image intensity values, 
with an additional L1-norm penalty (λ =​ 0.0001) applied to the feature map acti-
vations in the final hidden layer C2 to promote sparse convolutional representa-
tions. The convolutional layers are inspired by Winner-Take-All autoencoders39 
that jointly optimize the sparse convolutional codes as well as the deconvolutional 
kernel ‘dictionaries’ upon which the final image is built (Fig. 3h). Note that this 
imposed sparsity on the convolutional layers is separate from the fully connected 
hidden-layer activation sparsity that emerged without an applied sparsifying penalty 
(Fig. 3a–c), and occurs even without imposed convolutional sparsity. Each net-
work was trained for 100 epochs (duration typically 7–8 h) on the Tensorflow37 
deep learning framework using two NVIDIA Tesla P100 graphics processing units 
(GPUs) with 16-GB memory capacity each, specifically employing either a conven-
tional server platform with two P100 GPUs or the NVIDIA DGX-1 using two GPUs 
per experiment. Example plots of training convergence are shown in Extended Data 
Fig. 3. The validation error tracking the training error without upward divergence 
demonstrates a stable training regime with good bias-variance tradeoff, indicating 
that model complexity is well matched to the reconstruction problem.
Evaluation on simulated sensor data. The performance of AUTOMAP-trained 
networks for the four acquisition strategies was evaluated by reconstructing the 
four sensor-domain encodings of T1- and T2-weighted MRI brain images of a 
human subject from the HCP database as described above. For the Radon trans-
form, spiral k-space, and misaligned k-space experiments, the network was trained 
using ImageNet data; for the undersampled k-space experiment, the network was 
trained with data from the HCP brain image dataset using only T1-weighted 
images from other subjects in the HCP database.

We reconstructed the same set of sensor-domain inputs with conventional 
reconstruction techniques for each acquisition strategy: For Radon projection 
imaging, model-based iterative reconstruction4 was used with generalized Huber 
function parameters δ =​ 0.05 and T =​ 4.0 and run until the average magnitude of 
voxel updates was less than 1%, implemented with OpenMBIR software available  
at http://engineering.purdue.edu/~​bouman/OpenMBIR/. Spiral-trajectory 
k-space was reconstructed with a single-coil implementation of conjugate gradi-
ent-SENSE using NUFFT regridding5,34 with kernel size Jd =​ 8 samples, run over 
30 conjugate gradient iterations, with MATLAB code available at http://bigwww.
epfl.ch/algorithms/mri-reconstruction/. The Poisson-disk undersampled k-space 
was reconstructed with compressed sensing18 using the wavelet sparsifying trans-
form with the L1 penalty parameter λ =​ 0.01, using BART36 with code available 
at https://mrirecon.github.io/bart/. Misaligned k-space (commonplace sampling 
inaccuracy due to hardware limitations or physiologic effects) was reconstructed 
with the native MATLAB implementation of the two-dimensional inverse fast 
Fourier transform.

To probe the noise sensitivity of the reconstructions, varying levels of additive 
white Gaussian noise (AWGN) were introduced to the sensor-domain signals: 
25 dB AWGN signal-to-noise ratio (SNR) for the spiral experiment, 30 dB AWGN 
SNR for the undersampled Cartesian experiment and 40 dB AWGN SNR for the 
Radon projection experiment; these SNR measures indicate the power level of the 
additive noise relative to the power of the signals. The influence of this additive 
noise on the resultant image SNR of the reconstructions was measured with a 
standard Monte Carlo SNR map calculation40 σ= /r x r rSNR( ) ( ) ( )n n , where x r( )n  
and σ r( )n  are the mean and standard deviation, respectively, over Monte Carlo 
instances n =​ 1, 2, …, 100, of the image magnitude at voxel r. The representative 
SNR for an image was computed by taking the mean of the SNR map over the 
region of interest of voxels in the brain. We did not noise-corrupt the misaligned 
k-space because the sampling trajectory already represented a perturbed input. 
More extreme cases of noise corruption and its effects on reconstruction are shown 
in Extended Data Fig. 1.
Evaluation on raw MRI scanner data. Cartesian k-space test data (of Fig. 4) were 
acquired from a healthy volunteer on a 3T Siemens Trio MRI scanner with a spin-
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echo imaging sequence with TR =​ 3,110 ms, TE =​ 23.0 ms, matrix size =​ 208 ×​ 256 
and slice thickness 3 mm. Data from the 12-channel receiver head coil was 
coil-compressed to one channel with singular value decomposition (SVD) and 
the central 128 ×​ 128 k-space samples formed the input for the 128 ×​ 128 matrix 
reconstruction task. As described above, the AUTOMAP network was trained on 
phase-modulated HCP brain data with Cartesian Fourier encoding; the acquired 
raw scanner data was then input to the trained network for reconstruction.

Spiral k-space data (Fig. 5) were acquired from a healthy volunteer on a Siemens 
3T Prisma MRI scanner using a 32-channel head coil. A constant spiral trajectory 
was designed to cover a field of view of 256 ×​ 256 mm2 with 2 ×​ 2 mm2 in-plane 
resolution and 5 mm slice thickness. This was achieved using ten spiral interleaves, 
each having an 8-ms readout duration which included a 1-ms rewinder, with slew 
rate 133 mT m−1 ms−1 and maximum gradient strength 24 mT m−1; TE =​ 35 ms, 
TR =​ 200 ms, and flip angle of 20°. Data from the multichannel receiver head coil 
was SVD coil-compressed to one channel. A calibration acquisition measurement 
was made to measure the actual sampling trajectory41. The AUTOMAP network 
was trained on phase-modulated HCP brain data with non-Cartesian encoding 
with the designed spiral trajectory; acquired raw scanner data was then input to 
the trained network for reconstruction, and compared with NUFFT regridding 
reconstruction34 with kernel size Jd =​ 6 samples, using code available from http://
web.eecs.umich.edu/~​fessler/irt/irt/.

Multichannel T2-weighted data (of Fig. 5) were acquired on a 3T Siemens 
Trio with the standard Siemens 32-channel head array coil. A turbo spin echo 
sequence with 224 ×​ 224 mm2 field of view was acquired across 35 slices with a 30% 
distance factor. The imaging parameters are as follows: TR =​ 6.1 s, TE =​ 98 ms, flip  
angle 150°, and a resolution of 0.5 ×​ 0.5 ×​ 3.0 mm3 with a matrix size of 448 ×​ 448. 
The fully sampled uncombined complex k-space data were retrospectively under-
sampled to a 112 ×​ 112 matrix, corresponding to 2 mm in-plane resolution. The 
channel data were then mixed down to 16 modes using the standard global SVD-
based compression. Iterative SENSE reconstruction42 was performed using the 
GMRES solver43 with a stopping criterion of 1 ×​ 10−4 relative error to generate 
the ground truth reconstruction. Sensor-domain data were then undersampled 
by 15.5 times with an R =​ 4 ×​ 4 coherent undersampling pattern and 5 ×​ 5 low- 
frequency region, and reconstructed with AUTOMAP and SENSE using the 
SVD coil sensitivity profiles. The AUTOMAP network was trained on HCP brain 
images, which were modulated by the SVD coil sensitivity profiles to produce 
the multichannel training data. Each channel was Fourier-transformed and  
correspondingly undersampled with the same R =​ 15.5 pattern, and channels were 
concatenated at the network input.
Evaluation on raw PET scanner data. PET data were acquired from a healthy 
volunteer using the Biograph mMR scanner (Siemens Healthineers, Erlangen, 
Germany). The emission data corresponding to the 45–60-min interval post-
administration of about 5 mCi of 18F-FDG were used in this work. A PET volume 
was reconstructed using filtered back projection (Extended Data Fig. 5b) and the 
standard ordinary Poisson ordered subsets expectation maximization (OP-OSEM) 
algorithm44 (Extended Data Fig. 5c), accounting for variable detector efficiency 
and photon attenuation and scatter using software provided by the manufacturer. 
The head attenuation map was generated from the magnetic resonance data using 
software developed in-house45. Spatial smoothing was performed after image 
reconstruction using a 5-mm full-width at half-maximum (FWHM) Gaussian 
kernel. A set of attenuation-corrected two-dimensional sinograms corresponding 
to the direct planes was also generated from the three-dimensional sinograms using 
the single slice rebinning algorithm, and was used as input to the AUTOMAP 
reconstruction network, which was trained on T1-weighted brain images from 
the HCP database, encoded with discrete Radon transform and Poisson sampling 
using native MATLAB functions. Although the absence of a ground truth image 
makes it difficult to evaluate the differences between the reconstruction techniques 
(Extended Data Fig. 5b–d), this experiment demonstrates the ability of AUTOMAP 
to reconstruct PET data acquired on a human scanner with results comparable to 
clinically used reconstruction methods.
t-SNE analysis. Relationship of trained network weights were visualized with 
t-SNE28. We employed a standard Cartesian Fourier k-space encoding for the 
networks. To reduce computational load, lower-resolution reconstruction 
networks were trained using 64 ×​ 64 images from either ImageNet, brain images, or 
random-valued noise without any real-world image structure. In the visualization, 
each point corresponds to a single pixel in FC3, represented by an n2-dimensional 
vector of weights directed to it from the FC2 layer. The label for each point is a 
scalar pixel location in the image space (from 0 to n2) that also defines its colour in 
the visualization; similar colours correspond to similar pixel location. The t-SNE 
algorithm was implemented with perplexity 64 over 200 iterations with MATLAB 
code available at https://lvdmaaten.github.io/tsne/.
Description of AUTOMAP manifold learning. Our learning task is twofold. 
Given �x, the noisy observation of sensor-domain data x, we first want to learn the 

stochastic projection operator onto X : = |~ ~p x P x x( ) ( ) . After obtaining x, our second 
and more important task is to reconstruct f(x) by producing a reconstruction 
mapping R R→f̂ : n n2 2 that minimizes the reconstruction error L f x f x(ˆ ( ), ( )).

We first describe the reconstruction process by considering the idealized 
scenario in which the input sensor data are noiseless. We denote the data =y x{ , }i i i

n
1, 

where for the ith observation xi indicates a n ×​ n set of input parameters, and yi 
indicates the n ×​ n real, underlying images. We assume that (1) there exists a 
unknown smooth and homeomorphic function R R→f : n n2 2, such that y =​ f(x), 
and (2) =x{ }i i

n
1, =y{ }i i

n
1 lie on unknown smooth manifolds X  and Y , respectively. 

Both manifolds are embedded in the ambient space Rn2, such that <X ndim( ) 2 
and <Y ndim( ) 2.

The above two assumptions combine to define a joint manifold = ×M X YX Y,  
within which the entire dataset =x y( , )i i i

n
1 lies, which can be written as:

R R= ∈ × | ∈ ∈M X YX Y x f x x f x{( , ( )) , ( ) }n n
,

2 2

We note that as (x, f(x)) is described using the regular Euclidean coordinate system, 
we may equivalently describe this point using the intrinsic coordinate system of 
MX Y,  as (z, g(z)), such that there exists a homeomorphic mapping φ φ φ= ( , )x y  
between (x, f(x)) and (z, g(z)). That is, φ=x z( )x  and φ= �f x g z( ) ( )y . As an aside, 
in topology, R Rφ φ φ= → ×MX Y( , ) :x y

n n
,

2 2 corresponds to the local coordinate 
chart of MX Y,  at the neighbourhood of (x, f(x)). Instead of learning f directly in 
the ambient space, we wish to learn the diffeomorphism g between X  and Y  in 
order to take advantage of the low-dimensional nature of the embedded space. 
Consequently, the process of generating y =​ f (x) from x can be written as a 
sequence of function evaluations:

φ φ= −� �f x g x( ) ( )y x
1

For the convenience of later presentation, we notice that given input image x, the 
output image follows a probability distribution | =Q Y X x f( , ), which is a degener-
ate distribution with point mass at y =​ f(x).

We now turn to the more realistic scenario where corruption exists in the sensor- 
domain input and describe the denoising process. Instead of observing the perfect 
input data xi, we observe �xi, which is a corrupted version of xi by some known 
corruption process described by the probability distribution | =~P X X x( ). To handle 
this complication, we seek to learn a denoising step | =~ ~Q X X x p( , ) to our model 
pipeline, such that our prediction for y is no longer a deterministic value, but a 
random variable with conditional distribution |~P Y X( ) so that we can properly 
characterize the prediction uncertainty caused by the corruption process.

Instead of learning this denoising step explicitly, we draw an analogy from the 
denoising autoencoder and model the joint distribution ~P Y X X( , , ) instead. 
Specifically, in addition to the assumptions (1) and (2) listed above, we also assume 
(3) that the true distribution |~P X X( ) lies in the semiparametric family Q defined 
by its first moment Q= | = | =~ ~ ~Q X X x p E X p X{ ( , ) ( ) ( )}.

We model ~P Y X X( , , ) using the decomposition below:

= | |~ ~ ~Q Y X X Q Y X f Q X X p P X( , , ) ( , ) ( , ) ( )f p( , )

where |Q Y X f( , ) denotes the model for the reconstruction process that we 
described earlier, |~Q X X p( , ) is the denoising operator that we seek to learn, and 
~P X( ) is the empirical distribution of corrupted images. We note that we can com-

bine the models for denoising and reconstruction processes together by collapsing 
the first two terms on the right-hand side into one term, which gives:

= |~ ~ ~Q Y X X Q Y X X f p P X( , , ) ( , , ( , )) ( )f p( , )

We note that =Y f X( ) is a deterministic and homeomorphic mapping of X, so 
| = |~ ~Q Y X X f p Q Y X f p( , , ( , )) ( , ( , )) is the predictive distribution of output image y 

given the noisy input ~x, which is exactly our estimator of interest. Consequently, 
the model can be written as:

= |~ ~ ~Q Y X X Q Y X f p P X( , , ) ( , ( , )) ( )f p( , )

This completes the definition of our model for the joint distribution.
In the actual training stage, we usually took advantage of the fact that perfect 

input images x are available, and train the model with �x that we generated from 
| =~P X X x( ). That is to say, the joint distribution of ~Y X X( , , ) observed in training 

data admits the form:

= | |~ ~P Y X X P Y X P X X P X( , , ) ( ) ( ) ( )

The training proceeds by minimizing the Kullback–Liebler divergence between 
observed probability ~P Y X X( , , ) and our model ~Q Y X X( , , ):
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D ||~ ~P Y X X Q Y X X{ ( , , ) ( , , )}f pKL ( , )

with respect to the function-valued parameters (f, p). As the Kullback–Liebler 
divergence converges towards 0, |~Q X X p( , ) converges to |~P X X( ), the denoising 
projection, and at the same time |~Q Y X f p( , ( , )) converges to |~P Y X( ).

There exists a rich literature46–50 on explicitly learning the stochastic projection 
p, diffeomorphism g, and the local coordinate chart φ. However, we notice  
that since Cφ φ ∈ ∞p g( , , , )f x  (where C∞ denotes the set of infinitely differentiable  
functions), φ φ= −� � �f g pˆ

f x
1   as a whole is a continuously differentiable function  

on a compact subset of Rn2, and can therefore theoretically be approximated by 
the universal approximation theorem51.
Practical considerations. While the idealized conception of the universal approxi
mation theorem requires an infinite number of hidden nodes to achieve a perfect 
representation of an arbitrary continuous function52, it has been demonstrated 
that practical neural network implementations with finite hidden layers achieve 
a bounded approximation error for functions on a compact set, which applies to 
all domain transform functions that govern contemporary imaging systems21,53,54. 
Furthermore, the system representation for state-of-the-art image reconstructions 
are discrete models that can be described exactly by a fully connected network 
(for example, in the simplest case, an inverse discrete Fourier transform matrix 
is applied to Nyquist sampled data). In addition, many inverse encoding models 
for image reconstruction can be represented using limited support (for example, 
SENSE reconstruction of uniformly or CAIPIRINHA (controlled aliasing in 
parallel imaging results in higher acceleration) staggered undersampled data results 
in a block diagonal inverse encoding, TV smoothness constraint for compressed 
sensing (Poisson matrix) produces a semiseparable inverse encoding with linear 
complexity, and so on). Using a discrete/finite neural network, AUTOMAP aims 
to expand upon these analytic models for image reconstruction.

The features identified in the AUTOMAP training process are not generated 
to create maximal distinction between certain categories of objects or subjects, as 
is common for many image classification tasks. Instead, our loss function forces 
minimization of pixelwise error and thus prioritizes reconstruction accuracy. As a 
result, our features are constrained to serve that purpose (note the resemblance of 
the deconvolutional kernels of Fig. 3h to Gabor-like edge detectors). This training 
approach makes AUTOMAP much less likely to produce ‘hallucinatory behaviours’ 
that arise from the use of finely tuned category-specific feature representations (as 
exploited by Google’s DeepDream system55).

Given knowable systematic defects in the acquisition chain that can be 
modelled in the signal encoding (for example, measurable magnetic resonance 
gradient timing delays56,57), an appropriate training set can be generated to allow 
AUTOMAP to compensate these acquisition nonidealities without manually 
designed postprocessing requiring expert knowledge. However, as with other 
reconstruction methods, untrained and unaccounted-for acquisition errors (for 
example, subject motion or voltage or current spikes in hardware) will produce 
errors in the reconstruction with the current implementation of AUTOMAP. 
Ideally, to detect and compensate for these and other unpredictable or object-de-
pendent artefacts such as X-ray scattering in computed tomography or chemical 
shift in MRI would probably require incorporating a more sophisticated discrim-
inator network58 into AUTOMAP, similar to those used in generative adversarial 
networks to quantitatively evaluate the quality of the reconstructed image and 
iteratively adapt the reconstruction process via modification of the AUTOMAP 
network weights to reduce artefacts.

However, in this current implementation, AUTOMAP reconstruction is stable 
in the presence of typical sampling trajectory variation during an MRI acquisi-
tion (Fig. 5a–f). Extending our evaluation to another class of encoding errors, we 
performed a simulated motion corruption experiment using the TAMER motion 
encoding model59. For standard multi-shot MRI acquisitions, patient motion 
between each imaging shot creates discrepancies in the encoding that often result 
in large ringing and blurring artefacts. As can be seen in Fig. 3, AUTOMAP extracts 
important data interdependency relationships and it is important to examine the 
robustness of these under realistic patient imaging situations. Using T2-weighted 
data (from the acquisition associated with Fig. 5g) we have simulated motion cor-
ruption using a realistic motion trajectory that was measured during an fMRI scan 
of a patient with Alzheimer’s disease. Specifically, in-plane motion variation was 
applied between each imaging shot to create representative artefacts which would 
be seen during a 2D Turbo Spin Echo acquisition with turbo factor 4. The fully 
sampled data were processed using AUTOMAP and the standard Fourier trans-
form reconstruction. As can be seen in Extended Data Fig. 4, AUTOMAP does 
not exhibit instability in the presence of data corruption owing to patient motion 
and shows comparable artefact level and structure to standard reconstructions.

The role of expert knowledge in the AUTOMAP reconstruction framework 
requires careful consideration, especially for future developments into extended 

applications. In this paper, our emphasis on withholding domain-specific knowl-
edge is to explore the extreme case where expert knowledge is removed from the 
system where possible; thus our results are representative of what is probably a 
conservative limit on performance gains of introducing machine learning into 
the domain transform problem; we expect the appropriate integration of human 
domain-expert knowledge to AUTOMAP to yield even greater performance.

One particular area in which we anticipate benefits from expert knowledge is in 
the scaling of AUTOMAP to reconstruct higher-resolution images more efficiently. 
Given the current densely connected layer architecture, the number of weights in 
these layers scale by n2 (compared to the fast Fourier transform complexity of the 
order of nlogn, for example), which can be problematic as memory and compu-
tation are limited resources. However, it is important to note the role that locality  
and separability play in image reconstruction. When considering standard MRI 
reconstruction methods, locality can be easily observed by examining the point 
spread function that defines the interaction between imaging voxels60–63. This 
strong locality is an important property because it relates to the stability of solving 
the inverse problem, and has the added advantage of often resulting in nearly or 
fully decoupled reconstruction problems. As has been demonstrated in the recent 
MRI literature, decomposition methods such as the alternating direction method 
of multipliers (ADMM) have been used effectively to combine smaller semisep-
arable reconstruction problems to solve larger fully coupled optimizations (for 
example, maximum likelihood)64,65. In the presence of hardware limitations, we 
expect the AUTOMAP framework to be directly employed on domain decom-
posed subsets to perform larger reconstructions. This would simply require the 
training of networks that describe the influence of subsets of acquired data to 
overlapping subsets of voxels. Given the success of methods that take advantage 
of locality properties (Schwarz alternating method/domain decomposition in lin-
ear algebra, Dantzig–Wolfe decomposition for linear programming, ADMM for 
convex optimization, and so on), we do not envision this being a limiting factor 
for AUTOMAP. In this light, the ability of AUTOMAP to accurately and robustly 
represent an inverse encoding model for the reconstruction of real-world multi-
channel data (Fig. 5g–k) will allow it to serve as a core building block for large-
scale reconstructions through the use of domain decomposition, variable splitting 
and alternating direction methods. Finally, clinically oriented implementations of 
AUTOMAP would probably be focused on a particular imaging modality or class 
of acquisitions within a modality, and would thus allow for limiting the universality 
of the network to obtain compact representations that can be generated though 
network compression methods such as pruning66,67.
Data availability. The generic natural images used for training are available from 
the ImageNet database (http://www.image-net.org/). The brain images used for 
training and evaluation were obtained from the MGH-USC HCP database (https://
db.humanconnectome.org/).
Code availability. Source code is available from the corresponding author upon 
reasonable request.
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Extended Data Figure 1 | Reconstruction performance of AUTOMAP 
in low-signal-to-noise-ratio regimes. Reference brain images were 
encoded into sensor-domain sampling strategies with high levels of 
additive white Gaussian noise and reconstructed using both AUTOMAP 
and conventional approaches: a–e, spiral k-space encoding compared 
with conjugate-gradient SENSE reconstruction with NUFFT regridding; 

f–j, Radon projection encoding compared with model-based iterative 
reconstruction. Image magnitude signal-to-noise ratios (SNRs) and error 
maps (with root mean squared error calculations) with respect to reference 
ground truth images are also shown. For each encoding experiment, both 
error maps are windowed to the same level.
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Extended Data Figure 2 | Effect of training corpus on image 
reconstruction. a–c, AUTOMAP was trained using sensor-image pairs of 
Cartesian Fourier encoded corpora derived from either ImageNet, HCP 
brain images, or random-valued Gaussian noise without any real-world 
image structure. Each trained network was then used to reconstruct a 

noise-corrupted Cartesian k-space brain dataset. The signal-to-noise 
ratio (SNR) of the reconstructed images is shown. The apparent intensity 
discontinuity in the region above the eyes is due to the masking process 
used to de-identify the data in the HCP protocol (see Methods for more 
details).
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Extended Data Figure 3 | Training curves of optimizer loss convergence. 
Mean squared error (MSE) loss was minimized with stochastic gradient 
descent using the RMSProp algorithm and plotted here against training 
epoch count for: a, Cartesian Fourier encoding on IMAGENET corpus; 

b, spiral Fourier encoding on IMAGENET corpus; and c, Cartesian 
undersampled Fourier encoding on HCP brain corpus. The validation 
error tracks the training error without upward divergence, demonstrating 
a stable training regime with good bias-variance tradeoff.
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Extended Data Figure 4 | Reconstruction of motion-corrupted MRI. 
a, T2-weighted reference image acquired at 3 T with a turbo spin-echo 
sequence. b, Three-dimensional motion trajectories measured during 
an Alzheimer’s patient study. c, d, These motion trajectories were used 
to corrupt the k-space of this reference image, and it was reconstructed 
without motion compensation using inverse Fourier transform (c) 

and AUTOMAP (d). Both images show comparable artefact level and 
structure, demonstrating the stability of AUTOMAP reconstruction in 
the presence of unanticipated subject motion. A/P refers to anterior and 
posterior translational motion, L/R refers to left and right translational 
motion.
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Extended Data Figure 5 | Reconstruction of PET scanner data. a–d, Human FDG PET sinogram data (a) was reconstructed using (b) filtered back 
projection (FBP), (c) OP-OSEM and (d) AUTOMAP.
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