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Brain imaging is essential to the clinical care of patients with stroke, a leading cause of disability and death worldwide.
Whereas advanced neuroimaging techniques offer opportunities for aiding acute stroke management, several factors,
including time delays, inter-clinician variability, and lack of systemic conglomeration of clinical information, hinder their
maximal utility. Recent advances in deep machine learning (DL) offer new strategies for harnessing computational
medical image analysis to inform decision making in acute stroke. We examine the current state of the field for DL
models in stroke triage. First, we provide a brief, clinical practice-focused primer on DL. Next, we examine real-world
examples of DL applications in pixel-wise labeling, volumetric lesion segmentation, stroke detection, and prediction of
tissue fate postintervention. We evaluate recent deployments of deep neural networks and their ability to automatically
select relevant clinical features for acute decision making, reduce inter-rater variability, and boost reliability in rapid
neuroimaging assessments, and integrate neuroimaging with electronic medical record (EMR) data in order to support
clinicians in routine and triage stroke management. Ultimately, we aim to provide a framework for critically evaluating
existing automated approaches, thus equipping clinicians with the ability to understand and potentially apply DL
approaches in order to address challenges in clinical practice.
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Neuroimaging techniques, such as computed tomogra-
phy (CT) and magnetic resonance imaging (MRI),

are used for early identification, diagnosis, treatment, and
outcome prognostication of acute stroke. Neuroimaging
can help physicians to differentiate stroke from stroke
mimics,1–3 assess the presence and severity of intracranial
hemorrhage (ICH),1,2 identify the location of vascular
occlusions,4,5 determine the degree of reversibility of
ischemic injury,6,7 and identify the best candidates for
acute interventions like thrombectomy and

thrombolysis.8–10 Segmentation and parameterization of
neuroimages can be used to quantify regions of irrevocably
damaged and at-risk salvageable tissue, which can better
elucidate possible treatment options depending on the
time since the stroke onset.11,12

Despite the utility of neuroimaging in acute stroke
management and the availability of several automated,
neuroimaging-based platforms for stroke diagnosis and
treatment, the full potential of robust, fully automated,
and universal applications of neuroimaging in stroke triage
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has not yet been attained. This is likely because neuroim-
aging analysis is a complex process and several factors hin-
der its utility in acute clinical decision making: (1) an
inability to obtain rapid, accurate information about
neuroimages without tedious manual segmentation11,13;
(2) heterogeneity in pathology and other clinical factors
which affect prognosis, such as patients’ age, stroke sever-
ity, baseline status at stroke onset, and tissue response to
ischemic infarction11,14,15; and (3) intra- and inter-
clinician variability in the interpretation of scans.14,16–18

Contemporary medical practice is now generating
more clinically relevant information than ever before, in
the forms of continuously accumulating biomedical imag-
ing data, physiological metric information, and electronic
medical records (EMRs). However, the enormity and
complexity of these data mean that humans cannot effi-
ciently determine the predictive relevance of this multi-
dimensional medical information to inform clinical
decision making.

Recent advances in machine learning (ML) have
enabled computational medical image analysis at a large
scale and present opportunities to harness these massive
medical datasets to inform medical practice across various
domains.19–21 ML is a branch of artificial intelligence
(AI) wherein algorithms are trained to parse large pools of
data in order to learn informative features and identify
meaningful patterns without explicit instructions. ML
requires structured input data, which defines relevant,
task-specific features for differentiating criteria of interest.
However, due to the complexity and variety of pathologi-
cal manifestations in neuroimaging, manual selection of
relevant features, as utilized in ML, may not be feasible
for accurately characterizing the heterogeneous and evolv-
ing presentation of disease. Fortunately, the rising preva-
lence of large datasets and robust infrastructure has re-
invigorated ML, resulting in the subfield of deep learning

(DL), where feature engineering is pushed onto the
model. Thus, DL models emerge as potential options for
assessment of medical images without a priori informa-
tion. DL algorithms use multiple computational layers
(“deep”) to progressively extract higher-level features from
raw input (Fig 1). One subtype of deep neural networks
(DNNs) suited for such image processing tasks are con-
volutional neural networks (CNNs), which compute spa-
tial relations between different areas of pixels within an
image. CNNs use convolutional layers, which consist of
sets of filters, to pass information from each layer to subse-
quent layers (Fig 2). Another relevant class is that of recur-
rent neural networks (RNNs), which have connected
nodes that form a directed graph along a temporal
sequence. RNNs use their internal state, or “memory,” to
process inputs of variable length and take historical infor-
mation into account.

DL models have been applied to facilitate
surveillance and analysis of acute stroke neuroimages,
offering solutions for lesion segmentation and
quantification,11,17,22–34 early stroke detection,18,35–46

selection of candidates for therapeutic intervention,9,47–49

and prediction of short- and long-term functional out-
comes.9,47–50 Existing automated applications for clinical
settings, such as Viz.ai and RapidAI, have been developed
for a variety of tasks, including identifying large vessel
occlusions (LVOs), diagnosing ischemic and hemorrhagic
stroke, and assessing salvageable brain tissue. However,
these methods require further improvements to their accu-
racy and sensitivity, are often still heavily reliant on clini-
cian review, may not integrate into other data streams
available to physicians, and are generally limited by the
lack of standardization and systematic comparison for vali-
dation. Regardless, the continued development of predic-
tive models offers the possibility of routine support, or
objective second opinions based on broad clinical and

Figure 1: The basic structure of an artificial neural network (ANN) is composed of an input layer, output layer, and hidden
layer(s). A series of nonlinear transformations are applied to layer inputs in order to construct internal representations of
information which are then used to generate task-specific output decisions.

2 Volume 00, No. 0

ANNALS of Neurology



imaging information, which can accelerate critical decision
making in the stroke triage workflow and improve out-
comes for patients with stroke.

DNNs constitute an excellent toolkit for addressing
clinical challenges. Available clinical data must inform the
selection of network architectures, training strategies, and
model objectives. Simply reusing generic models on cus-
tom data might not yield high performance; such models
might be idiosyncratically susceptible to biases in the
training data, ultimately resulting in poor reliability. The
present review aims to inform clinicians about the current
state of the field for DL models in acute stroke manage-
ment. We examine real-world examples of DL applica-
tions for acute stroke management in the domains of
pixel-wise labeling, volumetric lesion segmentation, stroke
detection, and prediction of functional outcomes and tis-
sue fate postintervention. Finally, we explore future direc-
tions for the clinical applications of DL in acute stroke
management.

Stroke Detection
Methods for Stroke Detection
Rapid detection of time-sensitive pathologies, such as acute
stroke, results in improved clinical outcomes.7,8 For patients
with suspected ischemic stroke, early detection with neuro-
imaging allows for the faster exclusion of ICH and other
stroke mimics, as well as rapid segmentation and prediction

of tissue fate outcome. For patients with suspected ICH,
early detection allows clinicians to assess the need for urgent
neurosurgical interventions.43 However, these processes are
slowed by the time required for neuroimage acquisition and
clinical interpretation. Treatment decisions cannot be made
until the extent of lesioned tissue and likelihood of success-
ful reperfusion or surgical intervention is determined.
Moreover, alongside lagging imaging analysis times, manual
stroke detection suffers from discrepancies between raters18

and inter-rater variability for Alberta Stroke Program Early
CT score (ASPECTS) assessments that are used to assess
early ischemic changes on non-contrast CT (NCCT) brain
images.51–53

Streamlining the process of stroke detection may
not only decrease time from presentation to treatment
and reduce mortality related to stroke but may also
increase the accuracy and reliability of neuroimaging
and EMR analysis for stroke detection. Automated sys-
tems for distinguishing between stroke types and classi-
fying patient priority as “urgent” or “routine” based on
neuroimaging data and clinical data in EMRs may be
helpful as supportive aides for human expert diagnosis.
DL techniques are well-suited to automate stroke detec-
tion, as they can perform well despite variations in the
presentation of various pathologies by incorporating
multiple types of relevant clinical data into decision
making.

Figure 2: Convolutional neural networks (CNNs) compute using learned spatial relations between different areas of pixels within
an image. First, the input image is re-dimensioned and passed to the first convolutional layer as input. Here, a filter, or kernel, is
overlaid on pixels of the input image. The filter is rastered across the input image, multiplying its values with the original pixel
values of the image. Results of the multiplication are summed into a single value for each receptive field, known as a feature, or
activation, map. The first convolutional layer typically detects low-level features, such as curves or edges. Subsequent
convolutional layers, however, are fed activation maps from preceding layers, which represent locations in the original image
where certain low-level features are present. Convolving these activation maps generates activation maps representing higher-
level features, such as combinations of features. Deeper convolutional layers identify more complex features; thus, at the
network’s end, filters may be able to activate for the high-level features of interest, such as identifying dogs or handwritten
digits. Pooling layers down sample features (for example, a max pooling layer would return the maximum values in features
within a region); then, the pooled feature map matrix is flattened into a single column, which is processed in the fully connected
layer. The fully connected layer accepts the outputs of the preceding layer (the activation maps of complex features) and
identifies which complex features most strongly correlate to a particular class that is being identified by the CNN (“tumor”,
“infarct”, etc.). Finally, the network determines the probability that the image corresponds to that class in order to generate a
task-specific output decision.
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DNNS for Acute Ischemic Stroke Detection
Several approaches have been developed for potentially
incorporating computer-assisted diagnosis (CAD) into
clinical practice by using DNNs to detect acute neurologi-
cal illness from NCCT and CT angiography (CTA) imag-
ing. In a broad application of DNNs for acute ischemic
stroke (AIS) detection, Titano et al (2018) deployed a 3D
CNN modeled on ResNet-50 architecture in a simulated
clinical environment and tasked it with determining
whether an image contained acute neurological illness,
and, if so, whether the illness was critical or noncritical.
When deployed in a prospective trial, the model was able
to significantly prioritize urgent studies, which appeared
earlier in the queue than routine cases in the prioritized
list.35 Another useful modality in AIS detection is 4D
CTA, which permits visualization of cerebral hemodynam-
ics. In tandem with CT perfusion (CTP) imaging, these
can be used to identify candidates for endovascular ther-
apy outside of the 6-hour time window after which poten-
tial benefit is significantly reduced and risk of fatal
bleeding increased.47,54 Mejis et al (2020) applied a 3D
CNN architecture for analyzing 4D CTA for image-level
detection of arterial occlusions, accomplished by deriving
a normalized time-to-signal (nTTS) map of the 4D-CTA
in order to capture temporal information in a downsized
3D space. The model performed well, displaying relatively
high sensitivity and specificity, with three false negative
results and 18 false positive results in an independent con-
secutive test set of 279 cases. The improved speed of both
models, and the accuracy of LVO detection demonstrated
by Meijs et al, suggest that DNNs can be applied in clini-
cal environments in order to distinguish between urgent
and routine clinical cases, assist clinicians in differentiating
AIS from other vascular pathologies, and even suggest eli-
gible patients for thrombectomy.36

To perform early detection and rapid quantification
of acute ischemic lesions using magnetic resonance
(MR) images, Do et al (2020) developed a classifier
algorithm using a recurrent residual convolutional neural
network (RRCNN) to distinguish between diffusion-
weighted imaging (DWI) MRI slices belonging to low
(1–6) and high (7–10) DWI-ASPECTS groups.39 An
RRCNN contains a residual unit, which allows the net-
work to train deep architectures by incorporating skip
connections, or shortcuts to surpass certain layers; in the-
ory, the recurrent residual convolutional layers permit fea-
ture accumulation on temporal tasks, which should
improve performance on segmentation tasks.55 These
CNNs benefit from the reduction in imaging parameters
as a result of data preprocessing and normalization, maxi-
mizing image contrast and permitting the models to fully
benefit from multi-contrast MRI39,40 in the detection and

diagnosis of AIS. Together, these results suggest that
DNNs may be able to assume an ancillary role in stroke
triage by providing rapid assessments of neuroimaging and
assisting clinicians in acute clinical decision making.39

DNNS for ICH Detection
Several successful CNNs have been developed for the
detection of ICH. Grewal et al (2017) developed RADnet
to identify ICH from 2D NCCT slices, and obtained a
positive predictive value (precision) comparable to that of
radiologists.41 In the same year, Prevedello et al (2017)
developed another DL algorithm for detecting hemor-
rhage, mass effect, and hydrocephalus from NCCT.42

Mirroring the success of the CT-based triage system
developed by Titano et al (2018),35 Arbabshirani et al
(2018) developed a 3D CNN architecture trained on head
CT images to recategorize “routine” head CT scans as
“stat” if ICH was detected.56 When applied in real time
as a radiology workflow optimization tool, the network
was able to upgrade 94 out of 347 “routine” studies to
“stat,” 60 of which were declared to have ICH present by
an expert radiologist; 5 new ICH cases from outpatients
were detected. Despite imaging-based challenges facing
the models—Prevedello et al’s model under-detected sev-
eral urgent findings, possibly as a result of slice
thickness—these models’ performances are beginning to
approach those of radiologists, providing evidence for the
potential ability of DL algorithms to detect ICH in a clin-
ically meaningful manner.

Recent studies have improved upon previously
devised strategies for detecting ICH. Kuo et al (2019)
developed PatchFCN (CNN trained on NCCT image
“patches,” or subsections, extracted from whole images),44

and Ojeda et al (2019) evaluated the performance of a
proprietary CNN architecture developed by Aidoc (Tel
Aviv, Israel), one of the first DNNs to receive US Food
and Drug Administration (FDA) clearance.46 Both models
performed at a level comparable to experts, even identify-
ing some abnormalities missed by expert radiologists.
Moreover, the Aidoc proprietary CNN achieved an overall
accuracy of 98% when model output was reviewed by
three expert radiologists.44,46 Whereas Aidoc’s CNN
benefited from its robust invariance as a result of its large
training dataset, PatchFCN was able to produce compara-
ble results by using strong supervision on a smaller train-
ing dataset, as well as smaller subsections of images versus
full images.44 This suggests that massive amounts of train-
ing data are not necessarily required to construct accurate,
reliable models for relatively simple tasks, such as ICH
detection; data augmentation techniques, which increase
the amount of input data without necessarily increasing
the contextual or semantic data—including cropping,
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flipping, translation, and patch extraction—can also assist
in training DNNs on relatively small datasets. Further-
more, the success of Aidoc’s model in a real-world, high-
volume clinical setting represents a meaningful achieve-
ment in using CAD to improve triage and routine
workflow, accounting for the heterogeneity in case presen-
tation without controlling for center-specific factors, such
as scanner type and image acquisition parameters.46

Another useful feature in the detection of ICH is the
delineation between its subtypes—intraparenchymal hemor-
rhage, intraventricular hemorrhage, subdural hematoma,
extradural hematoma, and subarachnoid hemorrhage—of
which require different treatment methods and often necessi-
tate rapid surgical intervention.43 Chilamkurthy et al (2018)
constructed a 2D CNN for the automated detection of ICH
and its subtypes, calvarial fractures, midline shift, and mass
effect with NCCT. Despite additional imbalance in the train-
ing dataset, such as the under-representation of extradural
hematoma and the generation of possibly ambiguous or con-
founding labels through natural language processing (NLP)-
based label extraction, this model is one of the first to use
DNNs for the identification of ICH inNCCT.43 The winners
of the 2019 Radiological Society of North America Intracranial
Hemorrhage Detection Challenge, also deployed a 2D CNN
with three 2D classifier pipelines—single slices with 3 win-
dows, 3 spatially adjacent slices with one window, and a com-
bination of the 2—from bone, subdural, and brain imaging.
This sequential model was able to identify ICH and delineate
subtypes. Further increasing the complexity and representa-
tional power of the 2D CNN, Ye et al (2019) and Lee et al
(2019) used modified CNNs for the detection of ICH and its
5 subtypes, also using slices from NCCT.18,45 Ye et al (2019)
used a joint CNN-RNN architecture wherein the CNN
extracts useful features from image slices, whereas the RNN is
used to extract useful features on a subject level. Unlike the
deep convolutional neural networks (DCNNs) used by Lee
et al, which are limited by the single-institution data upon
which they were trained, the CNN-RNN’s dual-pronged
structure increases its robustness, allowing it to generate diag-
noses for images collected at separate locations with different
scanners and imaging parameters.18

Together, these models suggest the potential for com-
parable performance marked improvement in sensitivity
comparable to expert raters, dependent on more robust
training datasets. However, both models struggled with
detection of subarachnoid hemorrhage and extradural
hematoma, the former of which is an especially challenging
subtype of ICH to diagnose, and the latter of which is con-
sistently underrepresented in training and test datasets.18,45

Future models should seek to train on more balanced, het-
erogeneous datasets in order to improve rates of accurate
identification of less common ICH subtypes (Table 1).

Stroke Lesion Segmentation
Methods for Lesion Segmentation
Segmentation and quantitative assessment of CT, CTA,
CTP, and MR neuroimages are critical for the diagnosis,
monitoring, treatment, and investigational research of
stroke.1–5 For acute ischemia, characteristics of the infarct
core and penumbra can be used to predict disease progres-
sion and identify candidates who would benefit from
revascularization.6–10 For ICH, neuroimaging can identify
the hematoma, quantify its volume, and characterize its
location.1,2 Precision of clinical decision making is depen-
dent on the timely, accurate extraction of relevant infor-
mation from neuroimaging.

However, quantitative analysis of brain lesions via
manual segmentation of 3-dimensional images is tedious,
time-consuming, and expensive. Manual segmentation is
expensive in terms of time, and even simple measurement
methods are affected by inter-rater variability and error.18,51–
53 Accurate segmentation is hindered by the extreme hetero-
geneity in lesion shape, size, location, and evolution.11,14,15

Furthermore, the imaging modalities used to visualize lesions
often suffer from low signal-to-noise ratios (SNRs) and arti-
facts. Thus, clinicians often adopt qualitative measures, such
as visual inspection, to determine the presence or absence of
any acute traumatic intracranial abnormality,57,58 midline
shift exceeding 5 mm,57,58 or intracranial hematoma exceed-
ing 25 cubic centimeters57—or less-precise measures, such as
approximate lesion volume, to inform clinical decision mak-
ing.59 However, incorporation of quantitative, rather than
qualitative, imaging features has been linked to significant
improvements in the prediction of clinical outcomes over a
variety of injury severity levels.59

Automated segmentation and quantification methods
may assist physicians in critical decision making by acquiring
more precise measurements of injury. Such strategies can take
advantage of statistical regularities across patient populations in
order to rapidly identify and provide information about ische-
mic and hemorrhagic lesions in patients with suspected stroke,
ultimately decreasing the time between image acquisition and
therapeutic intervention without sacrificing precision.
Although automated methods are unlikely to replace physi-
cians in interpreting images and making treatment decisions,
their ability to operate on larger scales and provide time-
sensitive clinical information with greater reliability and repro-
ducibility can help inform physicians’ decision making
processes.

DNNS for Lesion Segmentation
Prior attempts to solve the problems of automated lesion
semantic and volumetric image segmentation and quantifi-
cation have been met with various degrees of success. Ear-
lier works conceptualized lesion segmentation as an
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Table 1. Overview of a Selection of DL Algorithms for Lesion Detection and Segmentation Highlighted in
the Text

Problem Author Specific Task Architecture Input Pros Cons
Improvements in

Practice

Detection Titano et al.
(2018)

Detection of
acute
neurological
illness

CNN 2D CT slices Average inference
time of 134 ms—
150 times faster
than that of
humans

High false-alarm
rate

Able to
significantly
prioritize urgent
studies, which
appeared earlier in
queue

Mejis et al.
(2020)

Detection of
intracranial
ACA
occlusions

CNN 3D time-to-
signal (TTS)
representation
of 4D CTA

nTTS permits
higher precision
with respect to
arrival and
acquisition times

No direct
localization of the
occlusion

First method for
detection of
intracranial
anterior
circulation
occlusions using
4D-CTA

Do et al.
(2020)

Binary
classification
of ASPECTS
scores

CNN-RNN 2D DWI
MRI slices

Recurrent residual
layers permit
feature
accumulation on
temporal tasks

Classification of
binary ASPECTS
scores, rather than
individual regions

May serve as an
ancillary tool for
assisting in
treatment
decisions

Grewal et al.
(2017)

Detection of
ICH

CNN 2D CT slices 3D context from
neighboring slices
can improve
prediction ability

Requires
improvement in
prediction
precision

Performance
comparable to
radiologists;
higher recall than
2/3 radiologists in
analysis

Arbabshirani
et al. (2018)

Classification
of images as
“routine” or
“stat”

CNN 2D CT slices Detected cases
from
heterogeneous
dataset with a
variety of
conditions

Requires
improvement in
specificity and
sensitivity

When
implemented into
clinical workflow,
significant benefit
on time to
diagnosis in
outpatients

Kuo et al.
(2019)

Detection of
ICH

CNN 2D CT
patches

Classification
comparable to
experts and robust
abnormality
localization

Requires more
training data to
mitigate random
effects and boost
accuracy

High sensitivity
and specificity;
screening tool
with low
proportion of false
positives

Ye et al.
(2019)

Detection and
classification
of ICH and
subtypes

CNN-RNN 2D CT slices RNN captures
feature info from
consecutive slices,
adding context

Prevalence of
ICH in dataset
higher than that
in real clinical
setting

Classification
performance
generally superior
to avg. of junior
radiology trainees

Segmen-
tation

Kamnitsas
et al. (2017)

Segmentation
of brain
lesions

CNN 2D CT slices Dual pathway
architecture
incorporates both
local and larger
contextual
information

Differences in
scanner type and
acquisition
protocols impact
images

Generic, FCN
structure
applicable to dif.
lesion seg. tasks
w/o major
adaptations
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abnormality detection problem, and designed models to
compare pathological tissue with healthy counterparts in
order to identify anomalous regions.22,23 Presently, super-
vised CNN-based models have moved to the forefront of
biomedical image segmentation.4,28,31,60 Deep methods
permit the incorporation of novel network modules, such
as the U-Net,61 attention modules,62 and dense
connectivity,4 to retain input specificity while improving
model performance.

Although 2D models are typically less demanding in
terms of memory, training time, and dataset requirements,
3D models can sometimes make learning easier for a
CNN and are capable of using 3D contextual information
present in volumetric data, better equipping them to per-
form multiscale semantic segmentation.4 Winners of the
public Ischemic Stroke Lesion Segmentation (ISLES)
competition, designed to facilitate the creation of accurate,
reproducible advanced data analysis techniques for locali-
zation of lesioned tissue, represent the state of the field for
3D segmentation. In 2015, Kamnitsas et al (2017) won
with DeepMedic, a 3D CNN which utilized a hybrid
scheme between patch training — training on “patches,”
or subsections, extracted from whole images — and dense
training on the whole image. DeepMedic correctly seg-
mented 34 of 36 of cases, which consisted of 3D fluid-
attenuated inversion recovery (FLAIR), T2-weighted turbo
spin echo (T2w TSE), T1-weighted turbo field echo/turbo
spin echo (T1w TFE/TSE), and diffusion-weighted
(DWI) MR images, and obtained a Dice coefficient of
0.59 � 0.31.17 This model utilized a fully connected con-
ditional random field (CRF), a statistical modeling
method which can incorporate context63 for biomedical
data.17

Recent models use fully convolutional layers incor-
porated into stacked encoder-decoder models. In these
models, convolutional and pooling encoder layers first
compress input into a latent space representation. Later,
upsampling decoder layers predict segmentation output
from this representation. Subsequent ISLES winners have
capitalized on the efficacy of the U-Net, based on
encoder-decoder, for biomedical image semantic and volu-
metric image segmentation.29,30,61 To address the trade-
off between localization accuracy and image context,64

Ronneberger et al (2015) devised the U-Net, a CNN with
2 paths: a contracting path to capture context, and an
expanding path to perform upsampling and increase locali-
zation. The U-Net uses an “overlap-tile” strategy, which
allows the network to predict the image part by part by
breaking it down into overlapping tiles. Pixels at the
boundaries of these tiles are extrapolated by mirroring the
neighboring tiles. This strategy is especially effective
because it allows the network to segment arbitrarily large

images without experiencing slowdown from high GPU
memory demands.61 Additionally, when data augmenta-
tion is performed with elastic deformations mirroring the
deformations observed in pathological imaging, the U-Net
grows invariant to such warping, allowing the network to
reach high levels of accuracy with relatively few annotated
training images.61

The U-Net has become a popular architecture for
biomedical semantic and volumetric image segmentation;
modified U-Nets have been used for segmenting and quan-
tifying lesions in acute stroke for a variety of imaging
modalities (DWI and FLAIR MRI, NCCT, CTA, and
CTP), input formats (whole-head images and image slices),
and dimensions (2D and 3D).2,27,32,33,65 Cutting-edge
segmentation methods combine U-Nets with both novel
and common strategies, such as pyramid scene parsing
networks,34 which extract global context information
through region-based context aggregation29; and deep resid-
ual attention modules,66 which extract high-quality features
from input images.27 Presently, the most robust DNNs are
those with features including dense connectivity to boost
gradient flow in the network,4 image sampling that balances
the data distribution, and smaller convolutional kernels for
greater discriminative ability17 (Table 1).

Stroke Outcome Prognostication
Methods for Prognostication
For both ischemic and hemorrhagic stroke, prediction of
the benefits of therapeutic and surgical interventions in
terms of mortality and functional outcome are critical for
medical decision making. For ischemic stroke, several recent
clinical trials have found mechanical thrombectomy to be a
safe, effective therapy within 6 hours of stroke
symptom onset (MR-CLEAN,67 ESCAPE,68 EXTEND-
IA,69 SWIFT-PRIME,9 REVASCAT,70 and THRACE71).
Furthermore, clinical trials suggest that perfusion levels of
brain tissue can be used to select candidates for therapeutic
intervention outside of the traditional time windows for
treatment (DEFUSE9,47 and EXTEND48). Safe, reliable
prediction of expected tissue salvage in patients with ische-
mic stroke is crucial for selection of candidates who would
most benefit from mechanical thrombectomy, especially
those who could achieve revascularization outside of the tra-
ditional 6-hour time window for reperfusion interven-
tions.49 One early investigation into stroke outcome
prognostication found a relationship between time to recan-
alization and recanalization status: for every hour until
thrombolysis in cerebral infarction (TICI), the likelihood of
infarction increased by 18.9% until 0/2a recanalization
(no perfusion restored to less than two-thirds of perfusion
restored), and by 33.2% for every hour until TICI 2b/3
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recanalization (complete perfusion restored, ranging from
slow to normal filling speed).50 These findings further
emphasized the need for rapid intervention for AIS.

Despite the fact that ICH is the most severe form of
stroke, few trials have examined the benefits of medical
treatment and surgical intervention on mortality and func-
tional outcome in hemorrhagic stroke. The ICH score is a
commonly used metric for grading the severity of
presentations,72 but along with other outcome prognostica-
tion models for ICH, it has not been proven beneficial for
improving patient outcomes.73 Furthermore, alongside the
complexity and progression of ICH, most predictive models
fail to account for common changes in the clinical care of
patients with ICH, such as the withdrawal of care, do-not-
resuscitate orders (DNRs), and end-of-life palliative
care.73,74 As ICH-related mortality approaches 50%,75,76

the lack of applicable models for outcome prediction in
ICH belie their necessity. Advanced neuroimaging analy-
sis may offer insights into which patients are likely to ben-
efit from therapeutic interventions and which patients are
likely to experience adverse, life-threatening risks77 or
poor functional outcomes. Understanding the likelihood
of various clinical outcomes allows clinicians and family
members to make more informed decisions for care in
acute stroke, taking into account realistic expectations for
patients’ post-stroke health and functionality.

DNNS for Outcome Prognostication
In ischemic stroke, DL models using tissue information
from symptom onset to predict tissue fate typically use
perfusion map information – time to peak (TTP), cerebral
blood flow (CBF), cerebral blood volume (CBV), and
time-to-maximum perfusion (Tmax).

49,78,79 Early attempts
focused on creating CNNs for ischemic lesion evolution
by operating not only on a voxel-by-voxel basis, but also
by incorporating data in the area surrounding a target
location in order to improve prediction accuracy. How-
ever, such models were limited by the selection of specific
2D lesion slices as inputs, a process which disregards
lesion heterogeneity and prevents the network from
modeling interplay between lesion appearance and other
clinical factors discernible on neuroimaging.79 More
robust, recent models have been trained on all voxels of
interest in neuroimaging78 and include attention gates to
focus on target structures.80 Their success likely stems
from the realistic clinical variability in the training and test
datasets, which allows the models to harness the interplay
between various biomarkers present in acute and follow-
up imaging in ischemic stroke.

Presently, there are few ML applications, and even
fewer DNNs, that incorporate both neuroimaging and
other clinical data for tissue fate and functional outcome

prediction. For ischemic stroke, McKinley et al (2017),
winners of the ISLES 2015 acute stroke outcome/
penumbra estimation (SPES) task, based their predictions
on a multitude of relevant clinical data: clinical parameter
details, such as TICI score, modified Rankin scale (mRS),
time since stroke (TSS), and time to treatment (TTT);
acute imaging details, such as (antibody-drug conjugate
[ADC]) maps, raw 3D and 4D perfusion data and maps;
and follow-up stroke imaging. They implemented 2 joint
models and random forests, which output the mean pre-
diction of an ensemble of decision trees, to predict out-
come in the event of good response to therapy, as well as
the natural course of the stroke, on a voxel-by-voxel basis
using compound spatial information from multimodal
MRI. Their model correctly identified 20 of 20 cases and
obtained a Dice coefficient of 0.82 � 0.08.49 Attempting
the novel task of predicting mRS from neuroimaging and
clinical data, 2016 winners Maier et al (2017) extracted
information about the states of the ischemic lesion, sur-
rounding tissue, and remainder of the brain to train
regression random forests (RRFs) to predict mRS scores
for patients after 90 days. Their model correctly predicted
90-day mRS in 19 of 19 cases with an average absolute
error of 1.05 � 0.62.28

In a pilot study that investigated the prediction of func-
tional outcomes following tPA in ischemic stroke using DL,
Bacchi et al (2020) developed a CNN for mRS-based classifi-
cation and a general artificial neural network (ANN) for clini-
cal data-based classification (demographic information, time
from stroke onset to presentation, National Institutes of
Health Stroke Scale [NIHSS] at presentation, clinical vari-
ables, such as blood pressure and blood glucose at presenta-
tion, and the medical history).81 Their findings suggested
that combined predictive DNN models were more effective
at outcome prediction 24 hours after presentation than com-
mon prognostication score calculations such as THRIVE82

and HIAT.83 Although this study demonstrates proof of con-
cept that DNNs incorporating both clinical and neuroimag-
ing information can potentially be used to predict patient
outcomes, further studies are required to refine models for
deployment in acute clinical decision making, such as for
selecting patients for clinical trials and novel interventions.
These studies provide evidence for the potential for ML and
DL-based algorithms as supportive tools to streamline con-
ventional neuroimaging analysis procedures and to improve
prognostication in clinical settings (Table 2).

Discussion
The aim of DNNs, and the ML applications upon which
they are based, is to extract the maximum amount of pre-
dictive power from the available multidimensional clinical
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information. The almost intractable burden of manually
sorting through countless clinical variables to identify the
key parametric combinations which influence the desired
clinical support system illustrate the difficulty of such a
task for a human. Despite the potential value of advanced
neuroimaging techniques coupled with clinical informa-
tion for assisting clinicians in the diagnosis, localization,
and treatment of acute stroke, the contributions of neuro-
imaging in acute stroke management are tempered by
time delays between presentation and treatment,35,36,43

inter-clinician variability in clinical assessment of
neuroimaging,18,51–53 and the lack of systemic conglomer-
ation of clinical information to generate robust predic-
tions. The DL models presently surveyed offer developing

solutions to many of these challenges. They enable rapid
assessments of meaningful neuroimaging data,35,36

whereas reducing inter-rater variability and boosting
assessment standardization and reliability.18,44 Moreover,
they allow for automatic selection and demonstration of
relevant clinical features for acute stroke decision mak-
ing18,45 and harness the massive amounts of neuroimaging
data and EMRs generated in clinical settings to aid clini-
cians in routine and triage stroke management.35,84

Several options exist for types of available clinical
support systems. DNNs can be used for fully automated
processes; hybrid processes, which allow clinicians to man-
ually survey and, if needed, edit outputs; and routine deci-
sion support. Some automated detection algorithms could

Table 2. Overview of a Selection of DL Algorithms for Outcome Prognostication Highlighted in the Text

Problem Author
Specific
Task Architecture Input Pros Cons

Improvements
in Practice

Prognost-
ication

McKinley
et al.
(2017)

Estimation
of
penumbral
volume

Random
forest

2D DWI, T1,
T2 MRI slices
- ADC maps,
raw 3D/4D
perfusion data
- Clinical data

Able predict
tissue risk for
new patients
with respect to
treatment
success

Requires
improvement
in sensitivity
and precision

Can yield more
accurate pred.
of tissue-at-risk
than expert
rater using lin.
thresholded
maps

Maier
et al.
(2017)

Prediction
of lesion
and clinical
outcome

Random
forest

- ADC/PWI
maps, raw 4D
perfusion data
- Clinical data

Hemispheric
dif. measure to
makes use of
PWI maps;
lesion and local
features
extracted

Fast to train,
but can be
slow to create
predictions due
to large
number of
trees

Competitive
lesion seg.
results in
outcome
prediction and
as well as seg.
in acute/semi-
acute stroke

Wang
et al.
(2019)

Prediction
of mRS at
two
timepoints

Random
forest

- Demographic
characteristics
- Laboratory
studies
- CT imaging
findings

Predictors of
30-day
mortality in
the ICH score
contributed to
predicting
1-month
outcome

Small sample
size; did not
include early
hematoma
growth/edema
extension info

Optimal
prediction
based on few
attributes; can
be recorded
easily without
extra clinical
loading

Nawabi
et al.
(2021)

Prediction
of
functional
outcome

Random
forest

- Radiomic
features
extracted from
consensus
ROIs on 2D
CT slices
- ICH score

Quantitative
imaging
features
provide a high
discriminatory
power in
outcome
prediction

Manual ROI
definition still
implies a
certain degree
of observer
dependence

Performs
equally rel. to
multi-
dimensional
scoring systems;
may assist
clinical trials
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serve as a beginning foothold for DNNs in clinical prac-
tice. On an individual level, the goal of incorporating DL
algorithms into medical decision making in this manner is
to make clinical care and diagnosis faster and more reli-
able; on an institutional level, these approaches are applied
with the aims of reducing inefficiencies in the clinical
workflow and addressing inequities in health care. As
automated diagnostic and prognostic tools are integrated
into patient care, the structure and nature of stroke man-
agement will evolve with emerging challenges and solu-
tions. The traditional role of a physician is to accurately
diagnose pathology based on limited evidence, in limited
time, and determine the best treatment strategy among
many options for a specific patient. Ideally, the prediction
generated by a DL algorithm serves as an additional
datapoint for a clinician to consider in medical decision
making. However, in cases of disagreement in diagnosis,
the issue emerges of how much weight a physician should
assign to an algorithm’s diagnosis, and, furthermore, how
to characterize and address this conflict, considering that
the DNN has not been trained in the same manner and
according to the same standards as a human physician.
Although the inputs and outputs of DNNs are generally
easily understood, the complex mechanisms underlying
changes to weights in hidden layers pose a significant chal-
lenge to interpretation by humans, leading to DNNs’
common description as “black boxes.”85 Despite develop-
ments in increasing the transparency and comprehensibil-
ity of DNNs, opacity persists in the forms of corporate
confidentiality, user-side technical illiteracy, and complex-
ity of algorithmic representations of data.86 In considering
the role DL applications play in supporting clinical deci-
sion making, one must consider the relationship between
the algorithm and clinician. Without certainty that a deci-
sion produced by a DL algorithm qualifies as
“knowledge,” which may be difficult to ascertain without
insight into the process behind a given output, overriding
decisions made by clinicians in deference to those made
by algorithms lacks proper epistemic support.86 One
potential working solution may be the visualization of
clinically relevant factors in AI-based decision-making. For
example, the gradient-weighted class activation mapping
(Grad-CAM) technique generates coarse localization maps
demonstrating the level of importance of individual neu-
rons in output generation in a network’s final con-
volutional layer.87 Such displays, hiding the complexity of
the ML from the clinician but displaying the results in a
clinically relevant form, enable a physician to accept or
reject automated diagnostics based on whether the class
activation maps make biological and medical sense. As DL
algorithms become more explainable, and relevant stan-
dards which appeal to epistemic norms of informed

consent are established, the role of a DL algorithm as a
“peer” may be renegotiated; presently, however, physi-
cians, and the human approach to clinical care, involving
information gathering, integration, interpretation, and
diagnosis, are unlikely to be “replaced” by DNNs.

The question persists: what are, and should be, the
consequences of ignoring the algorithm’s decision? The
potential emergence of “defensive medicine,” deferring to
automated applications’ decisions out of fear of being
marked as acting imprudently,86 portends the risk of
devaluing physicians’ training and knowledge in medical
decision making. The ethical and legal responsibilities
associated with artificial intelligence are muddied by the
multifaceted structure of decision making, especially in sit-
uations where an algorithm generates an incorrect deci-
sion, or one that leads to an unfavorable outcome. The
burden of responsibility may lie with the developers of the
algorithm, the compilers of the dataset the algorithm was
trained on, the physician who incorporated available evi-
dence and made the final decision, the health care institu-
tion that introduced algorithmically generated predictions
into clinical decision making, or some intractable combi-
nation of these agents. In evaluating the ethics of DL-
based clinical care, a restructuring of traditional notions of
responsibility may need to take place. Overall, ethical and
regulatory concerns must be considered in three broad cat-
egories: data sourcing, product development, and clinical
deployment.88 Ethical data sourcing requires companies to
be compliant with data protection guidelines in their and
constituent patients’ countries of residence, especially in
cases where datasets contain sensitive data subject to
unique regulatory provisions based on patient populations
or data types. Ethical product development requires DL
algorithm developers to explicitly combat healthcare dis-
parities by compiling training datasets which accurately
represent true rates of epidemiology and modes of preva-
lence in source and target populations. Finally, ethical
clinical development and deployment requires physicians
to play a key role in the introduction of DL algorithms in
clinical practice, patients to be informed about the use of
novel AI-based systems in their care, and for administra-
tive systems to be established to systematically assess the
efficacy of DL algorithms in real-time clinical settings.
The latter may precipitate the need for artificial intelli-
gence professionals in clinical settings to test, certify, and
retest artificial intelligence diagnostic platforms as they are
introduced and updated, as a system where clinicians
alone are responsible to judge the accuracy and reliability
of such algorithms would be fraught with trouble. Ulti-
mately, for DL to have value in medical decision making,
physicians’ and patients’ autonomy must be protected,
and future deployments of DL algorithms in clinical
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practice must emphasize and move toward increased
transparency.

Critically, the potential of DL techniques in decision
support for acute stroke must be evaluated based on the
level of performance is acceptable in clinical care. Many of
the best-performing models in lesion segmentation and
quantification, stroke detection, and stroke outcome prog-
nostication fail to reach the gold standard area under the
receiver operating characteristic curve (AUC; which con-
veys how well a classification model can delineate between
classes) of >0.90. This suggests that the majority of DNNs
require further development before being deployed in clin-
ical settings. However, because patient outcomes after
therapeutic intervention are extremely variable and often
directly related to lesion size at presentation, it is difficult
for DL algorithms to attain or surpass gold standard met-
rics, even with excellent training and test data.77 However,
the aim of most DNN applications in clinical settings is
to aid, rather than to replace, clinicians. Therefore, models
capable of reaching AUC values comparable to those of
clinicians may improve clinical care simply by offering sec-
ond opinions.

A common study limitation in DNN application for
stroke management has been data heterogeneity. Variabil-
ity in pathological presentation, scanner model, and neu-
roimaging parameters is often not represented in a
balanced manner in training datasets, which reduces
model generalizability to data collected at other centers.
Future studies should pool data from multiple institutions,
collected with various imaging acquisition techniques and
clinical parameters, for more robust training datasets and
algorithm standardization. Typically, academic hospitals
strive be the first to publish papers on data collected from
clinical trials, and thus only share data after studies are fin-
ished and publications have been written. However, this
process often prevents data from being used by others for
analysis for years, minimizing the potential widespread
utility of novel datasets. Furthermore, stricter privacy laws,
such as the EU General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act
(CCPA), are covering more of the world’s personal infor-
mation.89 Scientific societies and regulatory agencies,
researchers, and developers should maximize efforts to take
advantage of the opportunities big data provides for
improving health care while prioritizing the agency and
rights of patients to control their own personal informa-
tion. This may be potentially accomplished through
involving patients or patient advocacy groups in study
design. Additionally, developers of DL-based models use
patient-level data to develop their algorithms, raising the
issues of whether patients should be compensated for their
contributions, however indirect to company profits, and if

this data should be openly available for research by other
companies and institutions. In a review of data sharing
initiatives in healthcare, Hulsen (2020) discusses the
BigData@Heart platform of the Innovative Medicines Ini-
tiative (IMI), which compiled potential conditions for data
sharing, including (1) only sharing health data for scien-
tific research, (2) in de-identified form, (3) after approval
from a designated review committee, (4) observing appro-
priate measures for data security in compliance with appli-
cable laws and regulations.89,90 Ultimately, the goal of
data sharing is to encourage collaboration between
researchers, enable independent confirmation of results,
promote the testing of novel hypotheses, and reinforce the
credibility of conclusions drawn from completed clinical
trials, all goals which will be possible only through an
emphasis on patient rights and agency. A key element in
ethical, accessible clinical development of DL-based tools
is the engagement of physicians in deployment. An often-
neglected bottleneck in applying of DL-based diagnostic
systems is the importance of physician “buy-in.” Engaging
physicians in automated approaches requires making clear
how DL models can augment and extend their clinical
practice. Early adopters should strive to emphasize how
automated tools can improve practice efficiency, increase
patient safety and positive outcomes, and reduce physician
burnout. Furthermore, it is critical that technology is easy
to learn how to use, and for physicians to feel involved in
the integration process. Easy access to training, resources,
and results will likely facilitate the adoption of technology
into practice. Physicians and healthcare leaders alike must
not only understand the benefits and limitations of AI,
ML, and DL-based tools, but be equipped with the
knowledge to evaluate and assess these tools as
“consumers,” rather than be dependent on marketing and
institutional pressure to determine their applicability in
their own practice. Informed, critical inquiry and con-
structive criticism are vital to gaining maximal potential
use from DL algorithms in improving clinical care for
patients. Training rooted in evidence-based medicine,
Cornelius et al (2021) posit the importance of topics in
study design, epidemiology, and biostatistics, must be
brought to the forefront of clinical care in order to enable
trainees to evaluate medical literature and understand how
to benefit from DL applications in their own practice.91

Systematic changes are required in medical curricula to
equip future and present physicians to critically evaluate
developing technologies, with an emphasis on high-level
principles, including the terminology used in ML and
DL, optimal models for different kinds of clinical and
imaging datasets, types of clinical problems AI-based strat-
egies are most useful for solving, and performance trade-
offs of different kinds of models. When evaluating clinical
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applications of artificial intelligence, physicians should be
able to determine whether the results of a study are valid,
if the datasets used were representative of heterogeneity
and prevalence of epidemiology in given populations of
interest, what ground truth data were used to train the
algorithm, if the study design and algorithm used was
appropriate for the kind of question asked, what bench-
marks were used to test and validate the model, and if the
findings are applicable to their own patient populations.
Literacy in these elements, achievable through an empha-
sis on research methods and statistics courses, will enable
more realistic integration of DL applications into clinical
workflows. Alongside technical training in ML literacy, it
is paramount to emphasize thinking through the ethical
issues that naturally arise when incorporating artificial
intelligence into medical decision making, specifically with
the aim of preserving humanity in medicine.92 As the role
of a physician co-evolves with that of technology, so does
the relationship between physicians and patients. It is crit-
ical to encourage medical trainees to regularly evaluate and
re-assess their roles as empathetic decision makers, care-
takers, and educators throughout their changing careers,
especially in tandem with understanding the role and
potential for artificial intelligence in improving patient
care. Further developments should be pursued in DNNs
to maximize their benefits in acute stroke care and allow
for faster, more accurate, and more comprehensible stroke
detection, lesion segmentation, and tissue outcome prog-
nostication for improved patient outcomes.
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