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Abstract

Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging

(MRI) are techniques widely utilized by many scientific fields, but their applications

are often limited by short spin relaxation times and low sensitivity. This thesis

explores two novel forms of NMR addressing these issues: nuclear spin singlet states

for extending spin polarization lifetime and nitrogen-vacancy centers for sensing small

samples.

Part I presents studies of nuclear spin singlet states in organic molecules, begin-

ning with a theoretical description of the singlet and related dressed quantum states

before proceeding to the development of new techniques for singlet state spectroscopy.

The long lifetimes and unique properties of singlet states makes them of interest for

the storage of spin polarization, the study of slow dynamic processes, and the deter-

mination of molecular structure. Requirements for the creation of spin-locked singlet

states are investigated and a model is derived for singlet state lifetime as a function of

spin-locking power. A pulse sequence for targeting chemical species in complex mix-

tures, called “Suppression of Unwanted Chemicals using Contrast-Enhancing Singlet

States” (SUCCESS), is then demonstrated for a number of biomolecules. Applica-

tions of singlet states in nearly-equivalent spins are explored, including the creation,

manipulation, and readout of singlet states using a new technique called Spin-Lock
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Abstract

Induced Crossing (SLIC), and the transfer of polarization between singlet states. Fi-

nally, J-coupling spectroscopy using the SLIC pulse sequence is demonstrated at very

low magnetic fields.

Part II presents the detection of NMR spectra from small numbers of nuclei in

a nanoscale volume on a diamond surface using shallow nitrogen-vacancy (NV) cen-

ters as sensors. A theoretical description is developed for the NMR signal and the

technique is demonstrated for proton, fluorine, and phosphorus NMR in a variety

of samples. The method is then extended to micron-scale imaging of nuclear spin

concentrations over a wide field of view, the determination of nitrogen-vacancy center

depth, and the measurement of thin film thickness.
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Chapter 1

Introduction to Nuclear Spin

Singlet States

Nuclear spin relaxation was recognized as a critical behavior of nuclear spin sys-

tems from the very beginning of nuclear magnetic resonance (NMR) spectroscopy. In

1942, Prof. Cornelius Gorter of the University of Amsterdam conducted an experi-

ment to measure an NMR signal in lithium chloride and potassium fluoride crystals

at liquid helium temperatures [1]. After many days searching for a signal without

success, he concluded that NMR on bulk samples was not possible. A few years later,

after Purcell, Bloch, and colleagues succeeded in detecting bulk NMR signals [2, 3],

Gorter figured out why his name was not among them: his samples were too pure!

The spin-lattice relaxation times of his samples were on the order of minutes, which

prevented his spin system from effectively exchanging energy with his apparatus.

The spin-lattice relaxation time, denoted T1, describes the rate at which a spin

system exchanges energy with its physical surroundings, or lattice. This parameter
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sets limits on NMR experiments at both short and long timescales. A long T1 can

make experiment times unreasonable, as one must wait for the system to relax between

successive measurements. Fortunately for most users of NMR spectroscopy, the spin-

lattice relaxation time for liquids is on the order of seconds to minutes, and it can be

controllably shortened with paramagnetic agents. On the other hand, a short T1 can

be a liability for experiments in which polarization must be preserved for long periods,

such as in metabolic studies using hyperpolarized tracers and in measurements of slow

processes, such as diffusion, chemical exchange, and coherence transfer mediated by

weak couplings [4–7]. For decades, T1 was seen as a fundamental maximum limit for

experiment lengths that could only be increased using nuclei with lower gyromagnetic

ratios, which are less sensitive to the environment but also more difficult to detect.

Early on, it was realized that interactions between spins could produce new spin

states with different properties than the individual component spins. One such spin

state with an extremely slow relaxation rate was discovered in molecular hydrogen [8].

The nuclear spins of a hydrogen molecule can pair into one of two spin-isomers,

para- or ortho-hydrogen, with different physical properties. In para-hydrogen, the

nuclear spins form an antisymmetric spin singlet state with total spin 0, whereas

in ortho-hydrogen the spins populate three symmetric spin triplet states with total

spin 1. Because the energy difference between the states is very small, at room

temperature the population of each state is approximately equal, with 3/4 of hydrogen

molecules in one of the three triplet states and 1/4 in the singlet state. However, at

low temperature para-hydrogen is more stable and predominates. The two forms

of hydrogen interconvert extremely slowly under normal conditions, as the strongest
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relaxation mechanisms are unable to act between states of differing symmetry. This

made it difficult to store liquid hydrogen for uses such as rocket fuel. At cryogenic

temperatures, significant energy is released as ortho-hydrogen slowly relaxes to para-

hydrogen, which left unchecked creates significant boiloff of the hydrogen. A solution

was found in a catalyst that speeds up the interconversion during liquefaction [9].

Analogous singlet states were known to exist in other molecules with pairs of

identical nuclear spins, but the singlet states cannot be addressed or detected directly

with radiofrequency (RF) transitions and were generally ignored. The field of research

was reawakened by Malcolm Levitt and coworkers, who showed that singlet spin states

could be prepared in pairs of non-identical nuclei and preserved by moving the sample

to a low magnetic field [10–12] or by spin-locking with a resonant RF field [13]. In

both cases, resonance frequency differences between spins are suppressed to levels

smaller than the spin-spin coupling, which causes the eigenstates to rearrange into

singlet and triplet states. Just as para-hydrogen converts to ortho-hydrogen at a very

slow rate, spin-locked singlet states were often found to relax at rates much slower

than 1/T1; singlet states with lifetimes up to 37 T1 have been measured in thermally-

polarized samples [13–17]. These long-lived states were subsequently used to study

slow processes such as diffusion, chemical exchange, and conformational dynamics in

vitro [18–20].

Further advances allowed extended lifetimes to be achieved without awkwardly

moving the sample to low field or applying microwave power for extensive time pe-

riods. Tayler et al. showed that for “nearly-equivalent spins,” in which spin-spin

coupling is significantly stronger than the resonance frequency difference, the small

3



Chapter 1: Introduction to Nuclear Spin Singlet States

admixture of triplet state allows magnetization to be transferred to the singlet state

using an appropriate pulse sequence [21]. Feng et al. demonstrated a similar technique

to create singlet states in identical nuclear spins on molecules with the appropriate

symmetries [22]. Warren et al. showed that singlet states could also be formed by

performing a chemical reaction to symmetrize the molecule and remove resonance

frequency differences [23].

Despite the large repertoire of techniques for their manipulation, singlet states

have not yet been extensively utilized for NMR spectroscopy, nor have they been ex-

ploited for clinical magnetic resonance imaging (MRI) applications. A major concern

is that the RF power required for singlet state preparation and preservation in many

demonstrations to date has been too high for human use. Moreover, while singlet

state lifetimes of proton pairs can extend an order of magnitude longer than T1, they

are still generally shorter than T1 for 13C nuclei used in metabolic studies [4]. Part I

of this thesis attempts to address such issues with new theoretical and experimental

work on both spin-locked and nearly-equivalent singlet states.

The thesis begins by explaining the formation of nuclear spin singlet states, start-

ing from basic NMR principles, in Chapter 2. The description differs slightly from

previous works in its use of the dressed state formalism to describe the spin system

during spin-locking. In Chapter 3, this formalism is used to predict the behavior

of the spin-locked singlet state lifetime as a function of spin-locking power, which

is explored experimentally to determine the RF power requirements for singlet ex-

periments. Spin-locked singlet states are also utilized as part of a quantum filter to

target molecules in a mixture when the target signals are hidden beneath a strong
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spectral background. This scheme, titled SUCCESS for “Suppression of Unwanted

Chemicals using Contrast-Enhancing Singlet States,” makes use of the singlet state’s

symmetry properties rather than its extended lifetime, and is therefore applicable

even to molecules whose singlet states are short-lived.

Chapter 4 describes novel techniques for the manipulation of nearly-equivalent

singlet states. The dressed state formalism is used to derive a new pulse sequence

for the transfer of magnetization between singlet and triplet states using Spin-Lock

Induced Crossing (SLIC). SLIC is shown to provide a more efficient way to prepare the

singlet state in nearly-equivalent spin pairs. It is then employed on multiple spin pairs

to transfer polarization between two independent singlet states, which both allows for

the measurement of small J-coupling differences whose detection is normally limited

by spin-lattice relaxation and also opens the possibilities of creating a decoherence-

free subspace for the storage of quantum information. Finally, SLIC is extended to

more complex strongly-coupled spin states to perform J-coupling spectroscopy at low

magnetic fields without the need for heteronuclei.
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Chapter 2

The Quantum Origins of the

Nuclear Spin Singlet State

This chapter presents the basic NMR theory needed to understand the properties

of the nuclear spin singlet state and describes the conditions under which spin singlet

states arise. The Hamiltonian and density matrix theory from this chapter will be

used in subsequent discussions to derive pulse sequences for singlet state creation and

to explore singlet relaxation properties. More extensive NMR theory can be found in

references [24–27].

2.1 NMR Basics

Nuclear magnetic resonance is based on the manipulation and detection of nuclear

spin states. Spin is a property of elementary and composite particles that describes

the intrinsic angular momentum carried by the particle [28]. Particles with nonzero
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spin include electrons, protons, neutrons, and photons. Unlike classical angular mo-

mentum, which results from a massive object rotating about an axis, spin angular

momentum is an intrinsic property of the particle with no direct analogue in classical

mechanics. Nevertheless, massive particles with non-zero spin possess a magnetic

dipole moment just as a rotating charge does. Uncharged composite particles, such

as the neutron, can also possess a magnetic moment because they are composed of

charged particles (quarks) with nonzero spins and orbital angular momentum. Since

the magnetic moment couples the particle to magnetic fields, the spin states can be

controlled with external static and dynamic magnetic fields in a magnetic resonance

experiment.

The total spin angular momentum of a particle or nucleus is described by the spin

quantum number I, which is a fundamental property of the particle unaffected by

electric or magnetic fields in its environment. (Note that I is typically used for nuclear

spins and S for electron spins; however, in this chapter I refers to any type of spin.)

I takes some value n/2, where n is an integer. For example, the electron, proton, and

neutron all have spin quantum number 1/2, while the 14N nucleus has spin quantum

number 1. When nuclei are constructed from protons and neutrons, the net spin is

determined by the way the component spin vectors pair together. Sometimes spins

pair up in the nuclear ground state to form spin-0 nuclei, as in the case of 12C and

16O. Nuclei with spin have values of I ranging from 1/2 to 7, with even higher spin

states possible for excited nuclear energy levels. This thesis will mainly concern itself

with spin-1/2 nuclei, as they possess only a magnetic dipole moment. Higher-spin

nuclei also possess higher moments, such as the electric quadrupole and magnetic
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octupole, which couple them to electric field gradients and magnetic field gradients,

respectively.

While the spin quantum number I describes the strength of the magnetic dipole

moment, the secondary spin quantum number mi is needed to describe its direction.

It specifically describes the projection of angular momentum along an axis i of the

spin system, and it takes a value from the range −I,−I +1, ..., I− 1, I. Unlike I, the

value of mi can be manipulated in a magnetic resonance experiment with the proper

application of magnetic fields.

The quantum numbers I and mi are eigenvalues of the spin system determined

by the action of angular momentum operators on the spin eigenstates. There are

three angular momentum operators, Îi, where i = x, y, z, which measure the angular

momentum projected along each axis. The total angular momentum operator, Î,

is the sum of the angular momentum operators for the three axes, such that Î =

Îxx̂ + Îyŷ + Îzẑ. It is more convenient to work with the scalar operator Î2 = Î · Î,

which allows us to define the angular momentum eigenvalue as

Î2|I,mi〉 = h̄2I(I + 1)|I,mi〉, (2.1)

where h̄ is the reduced Plank constant. As a result of the uncertainty principle, the

eigenvalues of Î2 and Îi can only be known simultaneously for one axis, called the

principle axis, which is generally chosen to be parallel to an applied static magnetic

field and is labeled z. The angular momentum eigenvalue for axis z is given by

Îz|I,mz〉 = h̄mz|I,mz〉. (2.2)

In this coordinate system, the operators Îx and Îy are not associated with their

own eigenstates, but they instead produce interactions among the angular momentum
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eigenstates |I,mz〉. These operators are therefore best represented by the raising and

lowering operators:

Îx =
Î+ + Î−

2
(2.3)

Îy =
Î+ − Î−

2i
, (2.4)

where

Î+|I,mz〉 = h̄
√

(I −mz)(I +mz + 1)|I,mz + 1〉 (2.5)

and

Î−|I,mz〉 = h̄
√

(I +mz)(I −mz + 1)|I,mz − 1〉. (2.6)

The magnetic dipole moment that results from a particle’s spin is given by the

expectation value of the angular momentum vector:

〈µ〉 = gq

2m
〈Î〉, (2.7)

where µ is the magnetic moment, g is the g-factor of the particle, q is the charge,

and m is the mass of the particle. The g-factor takes the value g = −2.002 for the

electron, g = −3.826 for the neutron, and g = 5.586 for the proton. For nuclei, the

g-factors are calculated based on the number and pairings of protons and neutrons as

well as contributions from orbital angular momentum and strong interactions within

the nucleus.

All values of mz are energetically degenerate unless there is a field present. A

magnetic field breaks the symmetry of the spin system due to its interaction with

the magnetic dipole moment. The energy of a magnetic dipole moment in a static

magnetic field B0 is

E = −µ ·B0. (2.8)
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For convenience, we will define the principle axis (z-axis) to be parallel to B0, so

that Bx = By = 0, and eigenstates are defined by the Îz operator. This allows us

to correspond each angular momentum eigenstate |I,mz〉 with an energy eigenstate

E(mz). The energy is

E(mz)|I,mz〉 = Ĥ0|I,mz〉 = − gq

2m
ÎzBz|I,mz〉 = − gq

2m
h̄mzBz|I,mz〉. (2.9)

For particles with I > 1/2, electric field gradients normally contribute significantly

to the spin state energy as well due to the electric quadrupole moment.

Throughout this work, we will often find it most convenient to represent energy

in terms of frequency with units of Hz, kHz, etc., implicitely dropping Planck’s con-

stant, h=energy/frequency. One must also be mindful that the gyromagnetic ratio is

typically written in terms of rad/s:

γn =
gq

2m
(2.10)

We will more commonly use the resulting resonance frequency ω0 = γnB0 in rad/s or

ν0 = γnB0/2π in Hz. Then the energy eigenstates are given by

E(mz)|I,mz〉 = −ν0Îz|I,mz〉. (2.11)

In organic molecules, the resonance frequencies of the nuclei differ from that of an

isolated nucleus. The predominant cause is diamagnetic shielding from surrounding

electrons. The resonance frequency νi for nucleus i can be calculated from its chemical

shift δi by

νi = (1− δi)ν0, (2.12)

where ν0 is the resonance frequency of a reference spin in field B0. The chemical shift

δ is most commonly written in units of parts per million (ppm).
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2.2 Rotating Frame Approximation

All quantum systems evolve in time according to the time-dependent Schrödinger

equation

d

dt
|ψ(t)〉 = −iĤ|ψ(t)〉, (2.13)

where |Ψ(t)〉 is a spin wavefunction. For a spin system, the wavefunction is written

as a linear combination of the spin eigenstates of the system: |ψ(t)〉 =
∑

j cj(t)|φj〉,

where the constants are normalized such that
∑

j |cj(t)|2 = 1. Solutions for cj(t) can

be found by solving

d

dt
|ψ(t)〉 = −iω0Îz|ψ(t)〉. (2.14)

The solution is

|ψ(t)〉 = exp(−iω0tÎz)|ψ(0)〉, (2.15)

where |ψ(0)〉 is the initial state of the spin system. In terms of the eigenstates, the

time-dependent equation can be expressed as

|ψ(t)〉 =
∑

j

cj exp(−iω0tÎz)|φj〉, (2.16)

where cj is now independent of time.

The time dependence of the system can make calculations inconvenient. One can

simplify the analysis by working in a rotating reference frame matched to the spin

precession. This requires a transformation that makes the spin wavefunction time

independent. The transformation is accomplished by writing a new wavefunction

|ψ(t)〉′ = exp(iωrottÎz)|ψ(t)〉 = exp(−i(ω0 − ωrot)tÎz)
∑

j

cj|φj〉. (2.17)
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It is evident that if ωrot = ω0, then the new wavefunction has no time dependence.

The corresponding transformation for the Hamiltonian is

Ĥ′ = exp(iωrottÎz)Ĥ exp(−iωrottÎz)− ωrotÎz. (2.18)

The first term is simply a rotating version of the original Hamiltonian. The second

term represents the energy shift of the system resulting from the rotation. Because Îz

commutes with itself, when Ĥ0Îz = ω0Îz, transformation to the rotating frame simply

shifts the energy such that Ĥ0
′
Îz = (ω0 − ωrot)Îz.

Now consider the spin system in the presence of an applied near-resonant RF field

of amplitude B1. If the field is applied at the rotating-frame frequency, ωrot, then the

Hamiltonian is

ĤRF =
νn
2

(

cos(ωrott+ φ)Îx + sin(ωrott+ φ)Îy

)

, (2.19)

where φ is the phase of the RF field and νn = −γnB1 is called the nutation frequency or

Rabi frequency. The expression can be rewritten in terms of exponentials. There is a

theorem [27] stating that if three operators undergo cyclic commutation ([Â, B̂] = iĈ,

[B̂, Ĉ] = iÂ, and [Ĉ, Â] = iB̂) then

exp(−iαÂ)B̂ exp(iαÂ) = B̂ cosα + Ĉ sinα. (2.20)

Since the angular momentum projection operators follow a cyclic commutation rule,

one can write

ĤRF =
νn
2
exp(−i(ωrott+ φ)Îz)Îx exp(i(ωrott+ φ)Îz). (2.21)

Now when the full Hamiltonian Ĥ0 + ĤRF is converted to the rotating frame by

substitution into Eq. 2.18, it is easy to see that the result is a time-independent
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operator

Ĥ′ =
νn
2
exp(−iφÎz)Îx exp(iφÎz) + (ω − ωrot)Îz, (2.22)

which is written more conveniently as

Ĥ′ =
νn
2

(

Îx cosφ+ Îy sinφ
)

+ (ω − ωrot)Îz. (2.23)

Thus a resonant RF field Hamiltonian can also be made independent of time, greatly

simplifying the analysis of pulse sequences. Throughout this work we will generally

be working in the rotating reference frame.

2.3 Density Operators: Pure and Mixed States

Consider the spin wavefunction for a single spin-1/2 nucleus, |ψ〉 = c1|φ1〉+c2|φ2〉.

If neither c1 nor c2 is zero, the spin is in a superposition state, as it can be found

in either of the eigenstates. If an experiment could be conducted to detect the spin

eigenstate, there would be a probability p1 = |c1|2 of measuring the state |φ1〉 and

probability p2 = |c2|2 of measuring |φ2〉. Nevertheless, a measurement of the state |ψ〉

would always have an expectation value of 1, and so the spin system is considered to

be in a pure state.

The same measurement results could be obtained if the system were in state |φ1〉

for part of the measurement time and |φ2〉 for part of the time, or if some fraction

of identical spins were in state |φ1〉 while others were in |φ2〉. The system would

then be said to reside in a mixed state. To represent this statistical information,

it is convenient to employ the density matrix formalism. A density matrix ρ can

be constructed from operators Âij such that the expectation value 〈Âii〉 gives the
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probability for the spin system to be in eigenstate |φi〉. It is easily seen that such

operators are defined by

Âii = pii|φi〉〈φi|, (2.24)

where pii is the probability of finding the system in eigenstate |φi〉 and |φi〉〈φi| is

the corresponding matrix operator for the state. Note that these operators lie along

the density matrix diagonal. Coherent superposition states also contain off-diagonal

matrix elements. For example, the probability that the system is in the superposition

|ψ〉 = (|φ1〉+ |φ2〉)/
√
2 is

Âψ = pψ|ψ〉〈ψ| =
pψ
2

(|φ1〉〈φ1|+ |φ1〉〈φ2|+ |φ2〉〈φ1|+ |φ2〉〈φ2|) . (2.25)

The density matrix can represent both mixed states and pure states equally well. The

purity of the density matrix is given by

γ = tr(ρ2), (2.26)

where a value of 1 represents a pure state, and 1/D is a fully mixed state for a D x

D dimensioned density matrix.

All matrix operators can be mapped to combinations of the spin operators Îx, Îy,

Îz, and identity. For example,

|φ1〉〈φ1| = Îz + 1/2. (2.27)

We will commonly write both spin states and Hamiltonians in terms of their cor-

responding matrix operators. For example, the Hamiltonian h̄ω0Îz for a spin-1/2

system can be written as

Ĥ =
1

2
h̄ω0 (| ↓〉〈↓ | − | ↑〉〈↑ |) , (2.28)
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where | ↑〉 represents the spin state aligned with B0 and | ↓〉 represents the spin state

anti-aligned with B0. This can be conveniently represented as the matrix

Ĥ = −h̄







ω0

2
0

0 −ω0

2






, (2.29)

which acts on the vector

|ψ〉 =







c↑| ↑〉

c↓| ↓〉






. (2.30)

2.4 Multiple Spins and Spin-Spin Interactions

Thus far we have considered a single isolated spin. When multiple spins are

present, new behavior can arise as a result of spin-spin interactions. Spins interact

predominantly via magnetic dipole-dipole coupling, leading to both coherent and

incoherent evolution of the spin system. Incoherent evolution causes relaxation and

decoherence. Here we discuss how interactions produce coherent evolution that can

change the physical properties of the spin system.

To keep track of the spin state of a multi-spin system, it is convenient to define

product states that describe the different combinations of states obtainable. For

example, a system with two spin-1/2 nuclei has product states | ↑↑〉, | ↑↓〉, | ↓↑〉, and

| ↓↓〉. Spin-spin interaction terms contain products of single-spin operators and will

therefore connect product states and drive evolution between them, just as single spin

operators drive evolution of individual spin states. Product states have a magnetic

quantum number that is a linear combination of the individual quantum numbers for

their component spins, thus product states of two spin-1/2 nuclei can possess mz = 1,

mz = −1, or mz = 0, which are found from the application of the operator Î1z + Î2z
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on the product state. Product states also have a total magnetic quantum number

given by the operator Î2 = (Î1 + Î2)
2. For two spin-1/2 nuclei this is expressed as

Î2|I,mz〉 = h̄2I(I + 1)|I,mz〉 =h̄2
(

3

2
+ 2Î1 · Î1

)

|I,mz〉 (2.31)

=h̄2
(

3

2
+ 2Î1z Î2z + Î+1 Î

−
2 + Î−1 Î

+
2

)

|I,mz〉. (2.32)

All spin-spin interactions are mediated by magnetic dipole-dipole coupling be-

tween spin magnetic moments. The interaction has two parts: a tensor “dipolar” term

describing the coupling between distant spins, and a scalar “contact” term describing

the coupling between spins with overlapping wavefunctions. All spins interact via the

dipolar component, but the contact term does not play a role in direct interactions

between nuclei, since two nuclear wavefunctions do not overlap for the low-energy

systems discussed in this thesis. However, the contact term does produce strong

electron-nucleus interactions when the electron has s-orbital character, the only case

in which the electron wavefunction overlaps a nucleus. Two nuclei can interact via

the contact interaction in second-order via an electron whose wavefunction overlaps

both nuclei. This is called J-coupling (or scalar coupling) and plays a significant role

in molecular spin systems.

The dipolar component of the Hamiltonian between two spins, 1 and 2, is

ĤDD = −µ0γ1γ2h̄
2

4π

(

3(Î1 · r12)(Î2 · r12)
r512

− Î1 · Î2

r312

)

, (2.33)

where r12 is the vector connecting the locations of the two spins in space, r12 is

the distance between the spins, γi is the gyromagnetic ratio of spin i, and µ0 is the

permeability of free space. The Hamiltonian is conveniently written in terms of the
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single spin operators using the “dipolar alphabet”:

ĤDD =
µ0γ1γ2h̄

2

4πr312
(Â+ B̂ + Ĉ + D̂ + Ê + F̂ ), (2.34)

where

Â = (1− 3 cos2 θ)Î1z Î2z

B̂ = −1

4
(1− 3 cos2 θ)(Î+1 Î

−
2 + Î−1 Î

+
2 )

Ĉ = −3

2
sin θ cos θ exp(−iφ)(Î1z Î+2 + Î+1 Î2z)

D̂ = −3

2
sin θ cos θ exp(iφ)(Î1z Î

−
2 + Î−1 Î2z)

Ê = −3

4
sin2 θ exp(−2iφ)(Î+1 Î

+
2 )

F̂ = −3

4
sin2 θ exp(2iφ)(Î−1 Î

−
2 ). (2.35)

The angles θ and φ describe the angles in spherical coordinates between the z axis

and r12.

Each component of the dipolar term has a different type of effect on the spins. The

term Â simply perturbs the energy of the eigenstates, whereas the other terms connect

product states, with B̂ connecting product states of the same magnetic quantum

number mz, Ĉ and D̂ connecting those one quantum number apart, and Ê and

F̂ connecting those two quantum numbers apart. The trigonometric terms cause

components to dominate or disappear depending on orientation. For instance, at

the magic angle θ = arccos(
√

1/3) = 54.74◦, terms Â and B̂ become zero. For an

ensemble of spins with random orientations, dipolar coupling produces energy shifts

that broaden the resonance line significantly.

Fortunately, in liquid state NMR at moderate magnetic fields small molecules

tumble at GHz rates, and the angles between spins average to zero within the spin
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precession time. Dipolar coupling is therefore eliminated as a source of line broadening

for liquids, although it still contributes to spin-lattice relaxation, spin-spin relaxation,

and decoherence. In solids, the dipolar coupling can be decreased by spinning the

sample at the magic angle to artificially produce reorientation.

The contact Hamiltonian between an electron and nucleus is

Ĥcontact = −2

3
µ0γeγnh̄

2|Ψ(0)|2Î1 · Î2, (2.36)

where |Ψ(0)|2 is the electronic wavefunction probability density at the nucleus and γe

and γn are the electron and nuclear gyromagnetic ratios, respectively. The electron-

mediated J-coupling interaction between two nuclei can be calculated from pertur-

bation theory based on the contact interactions of each nucleus with the electronic

wavefunction. In general, the interaction is described by a tensor connecting the two

spin operators:

ĤJ = Î1 · Ĵ · Î2. (2.37)

However, in the liquid state any anisotropy is averaged away by fast rotations, and

one typically writes

ĤJ = J Î1 · Î2 = J

(

Î1z Î2z +
Î+1 Î

−
2 + Î−1 Î

+
2

2

)

. (2.38)

The coupling strength J is a function of a number of structural parameters, including

the bond order, bond angles, and the nuclear species involved. Note that the contact

and scalar interactions can shift the energy of any product state but can only connect

spin states with the same quantum number mz.

When coupling connects product states, the bare-spin product states are no longer

constants in time and are no longer the eigenstates of the system. The system is best
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described by new “dressed” eigenstates that are linear combinations of the bare-spin

product states. The new eigenstates can be found by diagonalizing the Hamilto-

nian matrix. For example, consider a system of two spin-1/2 nuclei with resonance

frequencies ν1 and ν2 interacting via J-coupling. The spin wavefunction is

|ψ〉 =





















c↑↑| ↑↑〉

c↑↓| ↑↓〉

c↓↑| ↓↑〉

c↓↓| ↓↓〉





















, (2.39)

and the Hamiltonian matrix for these states can be written as

Ĥ = h





















−ν1+ν2
2

+ J
4

0 0 0

0 ν2−ν1
2

− J
4

J
2

0

0 J
2

ν1−ν2
2

− J
4

0

0 0 0 ν1+ν2
2

+ J
4





















. (2.40)

Diagonalization of this matrix produces a new Hamiltonian containing only energy

terms:

Ĥ = h





















−ν1+ν2
2

+ J
4

0 0 0

0

√
J2+(ν2−ν1)2

2
− J

4
0 0

0 0 −
√
J2+(ν2−ν1)2

2
− J

4
0

0 0 0 ν1+ν2
2

+ J
4





















. (2.41)
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The eigenstates of the new Hamiltonian are

|T−〉 = | ↑↑〉

|φ0〉 = sin
θJ
2
| ↑↓〉+ cos

θJ
2
| ↓↑〉

|T+〉 = | ↓↓〉

|φS〉 = cos
θJ
2
| ↑↓〉 − sin

θJ
2
| ↓↑〉, (2.42)

where θJ is a mixing angle defined as

θJ = arctan

(

J

∆ν

)

, (2.43)

and ∆ν = ν1 − ν2. Note that because the J-coupling interaction only connects the

two states with mz = 0, only those two product states are mixed into new dressed

eigenstates. When J ≫ |∆ν|, these two dressed states become

|φ0〉 = |T0〉 =
| ↑↓〉+ | ↓↑〉√

2
,

|φS〉 = |S0〉 =
| ↑↓〉 − | ↓↑〉√

2
. (2.44)

The antisymmetric combination |S0〉 is the singlet state, while the remaining three

states are triplet states. Singlet and triplet describe the total angular momentum

quantum number of the states, which is I = 0 for the singlet and I = 1 for the

triplets.

Product states can also be dressed by single-spin operators acting on spins individ-

ually, for example through RF driving. If a spin-locking RF field is set to the average

resonant transition frequency of the two spins (such as that given by eq. 2.21), the

20



Chapter 2: The Quantum Origins of the Nuclear Spin Singlet State

rotating frame Hamiltonian for the bare-spin product states becomes

Ĥ = h





















J
4

νn
2

νn
2

0

νn
2

ν2−ν1
2

− J
4

0 νn
2

νn
2

0 ν1−ν2
2

− J
4

νn
2

0 νn
2

νn
2

J
4





















. (2.45)

Here νn is the effective spin nutation (Rabi) frequency resulting from the RF field,

which drives single-quantum spin transitions. If we assume that J-coupling is small

but non-zero, then diagonalizing this Hamiltonian yields four spin-locked eigenstates

given by

|φ+〉 =
1

2
[(| ↑↓〉+ | ↓↑〉) + sin θSL(| ↑↑〉+ | ↓↓〉) + cos θSL(| ↑↓〉 − | ↓↑〉)]

|φ0〉 =
1√
2
(| ↑↑〉 − | ↓↓〉) (2.46)

|φS〉 =
1√
2
[sin θSL(| ↑↓〉 − | ↓↑〉)− cos θSL(| ↑↑〉+ | ↓↓〉)]

|φ−〉 =
1

2
[(| ↑↓〉+ | ↓↑〉)− sin θSL(| ↑↑〉+ | ↓↓〉)− cos θSL(| ↑↓〉 − | ↓↑〉)] .

The mixing angle θSL is controlled by the ratio of the spin-lock nutation frequency

to the chemical shift splitting:

θSL = arctan

(

2νn
∆ν

)

. (2.47)

At very large nutation rates (νn ≫ ∆ν), i.e., high RF spin-locking power, the spin-
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locked eigenstates simplify to

|φ+〉 =
1

2
(| ↑↓〉+ | ↓↑〉+ | ↑↑〉+ | ↓↓〉)

=
1√
2
|T0〉+

1

2
(|T−〉+ |T+〉) (2.48)

|φ0〉 =
1√
2
(| ↑↑〉 − | ↓↓〉) = 1√

2
(|T−〉 − |T+〉) (2.49)

|φS〉 =
1√
2
(| ↑↓〉 − | ↓↑〉) = |S0〉 (2.50)

|φ−〉 =
1

2
(| ↑↓〉+ | ↓↑〉 − | ↑↑〉 − | ↓↓〉)

=
1√
2
|T0〉 −

1

2
(|T−〉+ |T+〉). (2.51)

Note that the spin-locked singlet state |φS〉 corresponds to |S0〉 in this limit of large

spin nutation frequency, whereas the three spin-locked triplet states are each mixtures

of triplet states |T0〉, |T+〉, and |T−〉.

Figure 2.1 shows the eigenstates and interactions for two spins under three sets

of conditions: bare-spin product states, strong J-coupling, and strong resonant RF

spin-locking. Note that in the presence of strong interactions, the new dressed-state

energy levels are determined by the bare-spin interactions and the dressed states are

coupled by the bare-spin energy differences. This swapping of energy and interaction

terms is the basis for many phenomena studied in this thesis.

Although our examples have considered pairs of spin-1/2 nuclei, the definition

of a singlet includes any correlated spin state with total angular momentum I =

0, which can encompass larger numbers of spins as well as higher-spin nuclei. For

example, a four-spin state representing the product state of two singlets, |S0〉1|S0〉2,

is also a singlet state, as is the state (|T+〉1|T−〉2 − |T0〉1|T0〉2 + |T−〉1|T+〉2)/
√
3. The

possible singlet states for any set of spins can be found from a table of Clebsch-Gordan
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Figure 2.1: A system containing two spins with resonant transition frequencies ν1
and ν2 can be represented by four spin eigenstates. (A) In the bare-spin energy basis,
there are four product states, and J-coupling or RF spin-locking interactions can drive
transitions among the states (green and red arrows, respectively). (B) If the two spins
are coupled strongly by scalar coupling (J ≫ ∆ν, the chemical shift splitting), the
product states are dressed into singlet and triplet states. Chemical shift differences
can drive transitions between singlet and triplet. (C) Under strong RF spin-locking
field (νn > 5∆ν), the product states are dressed into a singlet and three triplet states
different from the scalar coupling case. Singlet-triplet transitions are again driven by
chemical shift differences.
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coefficients, although whether they actually define an eigenstate of the spin system

will depend on the couplings among the spins.

We have shown that the nuclear spin singlet state can appear in two cases: large

scalar coupling and strong RF spin-locking. While strong dipole-dipole coupling also

produces dressed states, the dipole-dipole Hamiltonian’s symmetry does not allow it

to produce a singlet state. We will now turn our attention to experiments on singlet

states created by strong spin-locking.
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Singlet States Produced by

Spin-Locking

3.1 Effects of Spin-Locking Power on Singlet State

Lifetime

The idea that singlet states could be produced from pairs of magnetically in-

equivalent nuclei was first conceived and demonstrated by Malcolm Levitt and col-

leagues [10, 13]. Such inequivalent nuclear spins cannot form ideal, long-lived singlet

states naturally, as the different local environments of the nuclear spins leads to rapid

conversion to the triplet state and thus coupling to the environment, i.e., the singlet

state is not an eigenstate of the system. Nonetheless, as Levitt et al. showed, a prop-

erly designed RF pulse sequence can prepare spins in a singlet state, which is then

preserved from triplet interconversion by the application of a continuous resonant
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RF field. This “spin-locking” field forces the average Hamiltonian of the two nuclear

spins to be effectively equivalent, causing the singlet state to become an eigenstate

of the system, as was shown in section 2.4. While the spin-locked singlet technique

is applicable for a large variety of molecules [13–15, 20, 29], the large continuous RF

power employed in spin-locking experiments to date implies an RF specific absorption

rate (SAR) that is likely prohibitive for animal and human studies [30, 31].

Specifically, guidelines state that the SAR for a head image should not exceed 3.2

W/kg over a 6 minute period and should not exceed 6.4 W/kg over any 10 second

period [31]. Although the actual SAR created by an MRI experiment must be calcu-

lated based on head and coil geometries, an estimate can be found by approximating

the head as a sphere in a simple solenoidal coil. One can show [32] that the power

dissipated by a linear AC magnetic field of amplitude BRF with resonance frequency

ν is

Pdiss =
π3D5σν2B2

RF

120
, (3.1)

where σ is the conductivity of the brain, 0.4 S/m, and D is the head diameter. One

must be careful to note that BRF is twice the apparent B1 field measured by the spin

nutation frequency, because it also includes the counter-rotating polarization that

does not contribute to the nuclear spin evolution.

Previous spin-locked singlet experiments used B1 = 82 µT in a 9.4 T magnet [14].

Assuming a head diameter of 15 cm with a corresponding mass of 1.8 kg, the SAR

would be 19 kW/kg! Even if one scales B0 to a 1.5 T magnet typically found in the

clinic and scales B1 proportionally, SAR would be 12 W/kg, which would allow for

only a 1/4 duty cycle.
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With the goal of reducing the RF SAR to reasonable levels, we sought to find the

minimum RF power required to preserve a spin-locked singlet state created from an

arbitrary pair of spin-1/2 nuclei. We report measurements of singlet state lifetime

for a variety of organic molecules and as a function of RF spin-locking field strength.

We find that the measured RF power required to preserve a singlet state agrees well

with the predictions of a simple theoretical model with inputs from the molecule’s

NMR spectrum. We also present measurements of a singlet-triplet coherence with

an extended lifetime that does not require the use of RF spin-locking for preserva-

tion. Moreover, our findings demonstrate that for many molecules of interest, singlet

lifetimes many times longer than T1 can be achieved with much weaker RF spin-

locking fields than have been used to date – more than an order of magnitude smaller

than in previous studies – leading to both an RF power and an SAR more than 100

times lower. This result suggests that in vivo application of long-lived singlet NMR

might be possible in biomolecules with the appropriate properties, despite limitations

imposed by RF SAR.

3.1.1 Spin-Locking Pulse Sequence

The lifetime of a spin-locked singlet state can be measured with a simple exper-

iment consisting of three stages: singlet state preparation, spin-locking, and singlet

state readout. The long-lived singlet population is prepared most efficiently (up

to 50% conversion) via a three-pulse sequence previously described by Levitt [33].

For the entirety of the sequence, the NMR transmitter frequency is set between the

resonant frequencies of the two protons in the pair, so that the sum of resonance
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frequencies in the rotating frame is zero. For thermally polarized spins, the system is

initially in a state I1z+I2z. A π/2 pulse with phase x (i.e., positive rotation about the

x-axis) is performed and followed by a delay τ1, a π pulse, and a second delay τ2, to

produce the coherence 2I1yI2z−2I1zI2y. A π/2 pulse with phase -y then produces the

state −(2I1yI2x − 2I1xI2y) = i(I+1 I
−
2 − I−1 I

+
2 ), which is a zero-quantum coherence. A

final delay τ3 shifts the coherence phase to produce I+1 I
−
2 + I−1 I

+
2 . This zero-quantum

coherence represents the population ρST = |T0〉〈T0| − |S0〉〈S0| in the singlet-triplet

basis. When J ≪ ∆ν, the optimal delays are τ1 = 1/(4J), τ2 = 1/(4J) + 1/(2∆ν),

and τ3 = 1/(4∆ν). However, in cases where J-coupling is strong, the values must

be computed from a model of the system’s spin dynamics to take second-order ef-

fects into account. We used Levitt’s SpinDynamica [34] package for Mathematica to

simulate our systems and approximate optimal values. Figure 3.1a shows the spin

dynamics during the preparation sequence before the application of spin-locking.

A long-lived coherence (LLC), as well as mixtures of the LLC and the singlet, can

also be produced via a simpler two-pulse selective inversion sequence by removing

the spin-echo component of Levitt’s sequence. After the first π/2 pulse with phase x

and the delay τ1, the proton magnetizations become antialigned along the x-axis of

the Bloch sphere. A π/2 pulse with phase -y then creates the population difference

I1z − I2z. In the singlet-triplet basis, this represents the coherence ρLLC = |T0〉〈S0|+

|S0〉〈T0|. However, J-coupling also leads to the formation of some i(I+1 I
−
2 − I−1 I

+
2 ).

The second delay, τ2, can be used to choose the amount of I+1 I
−
2 +I−1 I

+
2 , and thus long-

lived singlet population, to mix with the long-lived coherence. Figure 3.1b shows the

spin dynamics during the LLC preparation sequence before the application of spin-
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locking. Note that either sequence can produce different mixtures of singlet and LLC

depending on the time at which the RF spin-locking is first applied.

     a                                                               b
ρ

ST

τ
1                 

τ
2
 τ

1                
 

ρ
LLC

ρ
ST

ρ
LLC

Figure 3.1: (a) Three-pulse sequence used to prepare the singlet-enhanced superpo-
sition ρST by choosing the correct values for the delays. After the preparatory pulses,
the amount of ρST oscillates. (b) Two-pulse sequence used to create either a pure
long-lived coherence, ρLLC , or a mixture of ρLLC and ρST .

Following singlet state preparation, continuous RF spin-locking is applied for time

τ4. When the spin-locking is sufficiently strong, the singlet state becomes an eigenstate

of the system and is therefore preserved from coherent evolution into other spin

states. During this time, the singlet state relaxes with characteristic time TS. Factors

affecting singlet state relaxation will be discussed below.

To read out the singlet state, the RF spin-locking is removed and the system

is allowed to evolve for a delay τ5 before a π/2 pulse with phase x is applied and

the free induction decay (FID) signal is acquired. Magnetization that was stored

in the singlet state produces a unique antiphase signature (one peak positive, one

peak negative). Figure 3.2 shows a complete sequence using this readout technique.

Alternatively, the preparation sequence can be applied in reverse, omitting the final

π/2 pulse. This transfers any polarization remaining in the singlet state back into
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Figure 3.2: (a) The singlet-enhanced superposition state ρST is initialized via a 3-
pulse preparation sequence. (b) A long-lived coherence (LLC) between the singlet
and triplet states ρLLC , as well as mixtures of the singlet and LLC states, are initial-
ized via a 2-pulse preparation sequence. Both preparation sequences are followed by
application of the RF spin-locking field and a signal acquisition pulse.

transverse magnetization, after which the FID is immediately acquired. The result

is then a spectrum identical to a conventional π/2-FID acquisition, but with lower

intensity. This technique will be discussed further in the next section. In either case,

to remove any remaining triplet polarization, phase cycling is applied such that the

experiment is repeated with both the first and last π/2 pulses applied with phase -x

rather than x.

3.1.2 Singlet Relaxation as a Function of RF Power

In the singlet state, the total angular momentum quantum number is zero, and

there is no net magnetic dipole moment. Hence interactions with the environment

are weak and the rate of interconversion between singlet and triplet states is very

slow, often much slower than the spin-lattice relaxation rate 1/T1. On the other

hand, the triplet states have non-zero magnetic moments and couple strongly with

the environment. Relaxation among the triplet states occurs on the timescale T1.
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Many relaxation mechanisms are forbidden by symmetry from converting the sin-

glet state to triplet states. For example, magnetic dipole-dipole interactions between

the singlet’s two spins cannot couple the antisymmetric singlet state to the symmetric

triplet states (Fig. 3.3). Since this intra-pair interaction is often the dominant driver

of relaxation, the typical result is a singlet population with a lifetime TS many times

longer than the spin-lattice relaxation time T1. Dipole-dipole interactions between

the singlet spin pair and more distant spins can also lead to relaxation, but the sin-

glet is protected from dipolar fluctuations common to both singlet spins: i.e., in the

far-field the net dipole moment of the singlet is zero. Thus singlet state relaxation

must instead occur through differential interactions on each spin of the singlet; these

include chemical shift anisotropy (CSA), spin rotation (SR) due to collisions between

molecules, and magnetic quadrupole interactions with a third spin [29, 35–38].

Since these three singlet relaxation mechanisms respond differently to the applied

static magnetic field and temperature, the dominant effect can be determined ex-

perimentally. CSA has a strong magnetic-field dependence with a lifetime scaling as

TCSA ∝ 1/B2
0 [35]. Spin rotation collisions result in a lifetime scaling non-linearly with

temperature as TSR ∝ exp(E/kBT ) ∝ E
kBT

[35]. Magnetic quadrupole interactions,

on the other hand, produce a singlet lifetime scaling linearly with temperature in the

extreme-narrowing regime (when molecular rotation rates are much greater than the

Larmor frequency). As demonstrated below, for the molecules used in the present

study, the quadrupolar mechanism dominates singlet state relaxation, i.e., TS ≈ TQ.

Magnetic quadrupole relaxation results from the two spins of the singlet interact-

ing differently with a third spin. This relaxation mechanism was modeled at high
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magnetic field by Tayler et al. [29], who derived an expression for the enhancement

of the singlet lifetime1:

TS
T1

=
3b212

2
∑

j>2

(b21j + b22j − b1jb2j(3 cos
2 φ1j2 − 1))

. (3.2)

Here spins 1 and 2 compose the singlet while j represents another nearby spin;

bjk = γ2n/r
3
jk is a measure of the dipolar coupling strength between spins; and φ1j2 is

the angle between the vectors connecting 1 with j and 2 with j. In principle, there

is no limit to the singlet lifetime enhancement given the proper molecular geome-

try. However, in practice, other relaxation mechanisms gain importance if magnetic

quadrupole relaxation is highly suppressed. In a previous study, equation 3.2 was

found to agree well with measurements of singlet state lifetimes using high RF spin-

locking power [29].

A detailed theoretical analysis of the singlet’s lifetime during RF spin-locking

has been given by Pileio and Levitt, who performed exact numerical calculations for

the relationship between singlet lifetime and RF power [35, 36]. Here, we develop

an approximate model that leads to a simple calculation of the measured singlet

lifetime at a given spin-locking nutation frequency. Our model can easily be fit

to measurements of singlet lifetime at a number of RF field strengths so that the

maximum singlet lifetime can be extracted.

In the case that ∆ν = |ν1 − ν2| ≫ J , there is little mixing of the bare spin-

pair eigenstates. In this case unitary transformations, via the three-pulse sequence

described in section 3.1.1, can transfer initial thermal spin polarization to the singlet

1Ref. [29] contains a typesetting error in which the summation has been taken over the whole
expression rather than only the denominator.
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Figure 3.3: A system containing two spins with resonant transition frequencies ν1
and ν2 can be represented by four spin eigenstates. (A) For weak spin coupling,
relaxation occurs via magnetic dipole-dipole interactions due to zero-, single-, and
double-quantum transitions (with rates W0, W1, and W2). (B) If the two spins are
coupled strongly by scalar coupling (J ≫ ∆ν, the chemical shift splitting), the bare-
spin eigenstates are dressed into singlet and triplet states. The triplet states still
interact via dipole-dipole interactions (solid lines), but singlet-triplet transitions are
forbidden (dashed lines). (C) Dressing of the product states can also be induced by
a strong RF spin-locking field (νn > 5∆ν), which produces a singlet state and three
mixtures of triplet states. Singlet-triplet transitions are again forbidden. The new
triplet states exhibit transition rates W ′

1 and W ′
2.
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state with at most 50% efficiency by creating the singlet-triplet population difference

[33]

ρST =|T0〉〈T0| − |S0〉〈S0| (3.3)

=| ↑↓〉〈↓↑ |+ | ↓↑〉〈↑↓ |. (3.4)

Similarly, the two-pulse sequence can transfer initial thermal spin polarization into a

long-lived coherence between the singlet and triplet states with density matrix

ρLLC =|S0〉〈T0|+ |T0〉〈S0| (3.5)

=| ↑↓〉〈↑↓ | − | ↓↑〉〈↓↑ |. (3.6)

A similar long-lived coherence has previously been studied as a way to extend T2

[39, 40].

For both ρST and ρLLC , population in the singlet state will be rapidly intercon-

verted with the triplet states on a timescale ∼ 1/∆ν, providing strong coupling to the

environment and thus rapid relaxation to the thermal state. However, as described

in section 2.4, a strong on-resonance RF field can effectively maintain the singlet-

enhanced superposition state ρST [13, 33] by making |S0〉 and |T0〉 eigenstates of the

system.
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Consider again the dressed states formed by strong spin-locking:

|φ+〉 =
1

2
(| ↑↓〉+ | ↓↑〉+ | ↑↑〉+ | ↓↓〉)

=
1√
2
|T0〉+

1

2
(|T−〉+ |T+〉) (3.7)

|φ0〉 =
1√
2
(| ↑↑〉 − | ↓↓〉) = 1√

2
(|T−〉 − |T+〉) (3.8)

|φS〉 =
1√
2
(| ↑↓〉 − | ↓↑〉) = |S0〉 (3.9)

|φ−〉 =
1

2
(| ↑↓〉+ | ↓↑〉 − | ↑↑〉 − | ↓↓〉)

=
1√
2
|T0〉 −

1

2
(|T−〉+ |T+〉). (3.10)

The spin-locked singlet state |φS〉 corresponds to |S0〉 in the limit of large spin nuta-

tion (i.e., large RF spin-locking field), whereas the three spin-locked triplet states are

each mixtures of the states |T0〉, |T+〉, and |T−〉. In this case, the initial density matrix

ρST is described well by equation 3.3. The singlet, |S0〉, is well-protected by the RF

spin-locking field, and after a short initial period during which the triplet states equi-

librate, the remaining |S0〉 component relaxes exponentially with the characteristic

time predicted by equation 3.2.

In the high-RF-power regime, the long-lived coherence ρLLC is a sum of coherences

containing |φ+〉, |φ−〉, and |φS〉, which experience decoherence due to both dipole-

dipole interactions and inhomogeneities in the RF spin-locking field.

If instead very small RF spin-locking power is applied (νn ≪ ∆ν), the singlet

component of ρST rapidly interconverts with the central triplet state, |T0〉. When no

RF power is applied, ρST is a zero-quantum coherence that precesses in the transverse-

plane, with a lifetime up to 3.25 T1 if inter-pair dipole-dipole interactions are the sole

relaxation mechanism [26]. The addition of a small amount of RF power quickly
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decreases the lifetime of the ρST coherence because the RF field efficiently drives

single-quantum transitions but creates very little long-lived singlet component.

In the low-RF-power regime, the long-lived coherence ρLLC is well-described by

equation 3.6 as a population difference between the two central bare-spin eigenstates.

The conventional two-spin dipole-dipole relaxation model of Solomon [25, 41] predicts

that in most cases TLLC = 3T1 (see appendix A.1).

For intermediate RF spin-locking power (νn ≈ ∆ν), a more complex analysis is

required. For an arbitrary RF power, the initial state ρST can be represented as

ρST =| ↑↓〉〈↓↑ |+ | ↓↑〉〈↑↓ |

=
cos2 θSL

2
(|φ+〉〈φ−| − |φ+〉〈φ+|+ |φ−〉〈φ+| − |φ−〉〈φ−|)

+
cos θSL sin θSL√

2
(|φ−〉〈φS| − |φ+〉〈φS|+ |φS〉〈φ−| − |φS〉〈φ+|)

+
1

2
(|φ+〉〈φ+|+ |φ+〉〈φ−|+ |φ−〉〈φ+|+ |φ−〉〈φ−|)

− sin2 θSL|φS〉〈φS|, (3.11)

where the four spin-locked eigenstates are given by equation 2.46. Recall that

θSL = arctan
2νn
∆ν

. (3.12)

At moderate RF powers (νn > ∆ν), ρST is still mainly composed of the population

|φS〉〈φS| and mixed triplet states. However, the eigenstate |φS〉 no longer consists

solely of the singlet |S0〉. It also contains a triplet component cos θSL(|T−〉+|T+〉)/
√
2,

which interacts with |φ0〉 via a double-quantum transition, with relaxation rate scaling

as cos2 θSL. The triplet component also interacts with |φ+〉 and |φ−〉 via single-

quantum transitions, with relaxation rate scaling as cos2 θSL; and via double quantum

transitions, with relaxation rate scaling as cos2 θSL sin
2 θSL.
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The above scaling of the relaxation of ρST suggests a model for the measured

singlet lifetime as a function of RF spin-locking power:

1

TS,measured
=

1

TL
cos2 θSL +

1

TS
(3.13)

=
1

TL

1

1 + (2νn/∆ν)2
+

1

TS
, (3.14)

where TL is the lifetime at low RF power and TS is the maximum singlet lifetime,

typically achieved at high RF power. Significantly, this model predicts that the

measured singlet lifetime reaches 95% of its maximum value when the nutation rate

νn is approximately 5 ∆ν.

Relaxation of the long-lived coherence ρLLC can be modeled using a similar anal-

ysis. In terms of the spin-locked eigenstates, we have:

ρLLC =| ↑↓〉〈↑↓ | − | ↓↑〉〈↓↑ |

=cos θSL(|φ+〉〈φ+| − |φ−〉〈φ−|)

+
sin θSL√

2
(|φS〉〈φ+|+ |φ+〉〈φS|+ |φS〉〈φ−|+ |φ−〉〈φS|). (3.15)

At low RF spin-locking powers, the long-lived coherence is mainly composed of

|φ+〉〈φ+| − |φ−〉〈φ−|, and these two eigenstates interact with one another via a zero-

quantum transition. However, as the RF power is increased, these states begin to mix

with |T+〉 and |T−〉, which opens up double-quantum transitions with relaxation rates

scaling as sin4 θSL. A double-quantum transition with |φ0〉 also becomes available,

with relaxation rate scaling as sin2 θSL. The latter relaxation rate increases more

quickly with RF power and dominates at small θSL.
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The above scaling suggests a simple model for the ρLLC relaxation rate:

1

TLLC,measured
=

1

TRF
sin2 θSL +

1

TLLC
(3.16)

=
1

TRF

(2νn/∆ν)
2

1 + (2νn/∆ν)2
+

1

TLLC
, (3.17)

where 1/TLLC is the relaxation rate at zero RF power and 1/TRF is the additional

relaxation rate due to the applied RF power.

We find that our model for the measured singlet lifetime agrees well with the

detailed treatment of Pileio and Levitt (see eq. 43 in [35]), which contains terms

up to eighth power in cos θSL. Our model includes only lowest-order terms, but

satisfactorily describes the measured relationship between singlet lifetime and RF

power, as described below. The two models deviate most at low RF powers (νn <

∆ν/2), where higher-order terms in cos θSL make larger contributions. Pileio and

Levitt’s numerical calculations for the relationship between singlet lifetime and RF

power describe the singlet relaxation rate by

1

TS
≈
−b2jkτc
160

[6(4 cos(θ∆) + cos(2θ∆)− 17)

+
√

6(281 + 360 cos(θ∆) + 196 cos(2θ∆) + 24 cos(3θ∆) + 3 cos(4θ∆))
]

, (3.18)

where bjk is the dipolar coupling strength, τc is the rotational correlation time of the

molecule, and θ∆ is the difference in tilt angles, which is defined as

θ∆ = arctan(νj/νn)− arctan(νk/νn). (3.19)

Here, νn is the nutation frequency induced by the RF field, while νj and νk are the

resonance frequencies of the two spins. Note that this definition of θ∆ differs from

that given in eq. 24 of ref. [35], because eq. 43 requires a measurement of the tilt angle
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away from the singlet-triplet basis rather than away from the Zeeman basis. Figure

3.4 compares the results of our simple model and the model of Pileio and Levitt for

the dependence of the singlet state lifetime enhancement as a function of νn relative

to the chemical shift difference ∆ν = |ν1−ν2| for a maximum singlet lifetime of 10 T1.

There is insignificant difference between the results of the two models once νn > ∆ν.
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Figure 3.4: Comparison of the model given by eq. 3.16 and eq. 43 of ref. [35] for a
singlet with lifetime TS = 10 T1. The prefactor b

2
jkτc is set to 2/(3T1), its value in the

extreme-narrowing regime. A value of TL = 1.15T1 gives the best agreement between
models. The models deviate most at very low RF powers, where higher-order terms
become important.

3.1.3 Experimental Results

We performed NMR studies at 4.7 T of proton pair singlet states in a number of

small organic molecules using a wide range of RF spin-locking powers. We chose citric

acid and p-hydroxybenzoic acid, as Pileio et al. had previously studied these using
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high RF power [14]. Additionally, we studied aspartic acid, trans-1,4-cyclohexanediol,

and glycerol formal as examples of molecules with a range of structures.

Solutions of citric acid, aspartic acid, p-hydroxybenzoic acid (p-HBA), and 1,4-

cyclohexanediol (1:1 cis:trans mixture, but creating singlet on trans isomer) were

prepared in D2O, with the addition of sodium hydroxide where necessary for dis-

solution. Glycerol formal was studied neat. Concentrations and conditions can be

found in Table 3.1. All reagents were purchased from Sigma-Aldrich. All samples

were prepared in 10 mm diameter NMR sample tubes and bubbled with nitrogen gas

for three minutes. Spectra were acquired on a 200 MHz Bruker AMX spectrometer

without sample spinning using a 1H-BB dual-channel probe.

Table 3.1: Sample preparations for the study of long-lived states.

Molecule Concentration NaOH Concentration Solvent
citric acid 0.26 M 0 D2O
p-hydroxybenzoic acid 0.29 M 0.50 M D2O, H2O
aspartic acid 0.020 M 1.0 M D2O
1,4-cyclohexanediol 0.41 M 0 D2O
glycerol formal neat 0 neat

Our experimental protocol (Fig. 3.2) initialized proton pairs into one of three

different states: the singlet-triplet population difference ρST , a long-lived coherence

between singlet and triplet ρLLC , or a mixture of the two. Experiments shown in

Fig. 3.2 were run on each compound using varying lengths for τ4. Pulse sequence

parameters can be found in Table 3.2. Between 8 and 32 averages were used to provide

sufficient signal-to-noise. The intensity of each peak was then measured and plotted

against τ4. The resulting data were fit with a single exponential time decay. Multiple

datasets were collected using different RF power levels for spin-locking. The RF power
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Table 3.2: Delays, in ms, for pulse sequences used in the experiments: τ1 − τ2 − τ3 −
τ4 − τ5
Molecule Singlet Coherence Mixture
citric acid 12.5-3.7-6.0-τ4-6.0 12.0-17.0-τ4-15.5 12.0-12.0-τ4-12.0
p-hydroxybenzoic acid 29.3-31.5-1.14-τ4-1.14 2.0-3.75-τ4-1.25 30.0-1.25-τ4-1.25
aspartic acid 11.8-8.0-3.5-τ4-4.0 - 7.4-7.0-τ4-3.7
1,4-cyclohexanediol - - 4.2-3.0-τ4-2.0
glycerol formal - - 31.0-15.0-τ4-15.0

was characterized by measuring the nutation frequency induced by the RF B1 field,

which was calibrated by performing single-pulse experiments with increasing pulse

lengths and measuring the frequency of the resulting sinusoidal curve. T1 relaxation

rates were measured with a conventional inversion-recovery experiment [27].

In all molecules studied, we measured the singlet (ρST ) lifetime to increase with

the applied RF power, reaching a plateau at the maximum singlet lifetime, TS, when

νn > 5∆ν. In contrast, we found that the lifetime of the long-lived coherence decreases

from its maximum value of TLLC with the application of RF power. Both of these

cases are well-modeled by equations 3.13 and 3.16 above. When we created a mixture

of ρST and ρLLC , the measured lifetime was that of the state with the longest lifetime

at a given RF power, although the measured amplitude was lower as the contribution

from the faster-relaxing state was quickly lost. We individually fit the two regimes of

the mixed-state lifetime-vs.-RF-power measurements with the corresponding models

for ρST and ρLLC , which provided a good characterization of the system’s behavior, as

shown in Fig. 3.5a-c and Fig. 3.6a-b. Note that for each molecule studied, we found

that the shortest mixed-state lifetime occurs near νn ≈ ∆ν/2. Results for maximum

singlet and LLC lifetimes (TS and TLLC) are summarized in Table 3.3.

We also investigated possible mechanisms for proton-pair singlet relaxation. First,
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Figure 3.5: Measurements of the lifetimes of the singlet state, long-lived coherence
(LLC), and a mixture of the two as a function of the effective RF spin-locking field
B1 for proton pairs in small organic molecules. Also shown are fits to models for the
singlet and LLC lifetimes, as described in the main text. (A) Citric acid, TL = 500
ms and TRF = 600 ms; (B) p-hydroxybenzoic acid, TL = 2 s and TRF = 7 s; (C)
glycerol formal, TL = 250 ms and TRF = 1 s; RF power is quantified by the induced
nutation frequency about the B1 field. Molecular structures are shown, protons of the
singlet(s) are circled, and values for chemical shifts (∆ν) and spin-lattice relaxation
times (T1) are indicated.

Table 3.3: Measured values of spin-lattice, singlet, and long-lived coherence (LLC)
relaxation times.

Molecule T1(s) TS(s) TS/T1 TLLC(s) TLLC/T1
citric acid 0.58± 0.03 4.5± 0.3 7.8± 0.7 1.5± 0.1 2.6± 0.2
p-HBA in D2O 2.9± 0.1 16± 2 6.2± 0.8 7.3± 0.7 2.5± 0.3
p-HBA in H2O 2.3± 0.1 5.8± 0.2 2.5± 0.1 3.9± 0.1 1.7± 0.1
aspartic acid 0.83± 0.03 7.48± 0.3 9.0± 0.5 2.3± 0.4 2.8± 0.5
1,4-cyclohexanediol 1.34± 0.02 3.9± 0.9 2.9± 0.7 2.90± 0.01 2.16± 0.03
glycerol formal 0.68± 0.01 1.91± 0.03 2.81± 0.06 1.37± 0.02 2.01± 0.04

we compared our measurements with those at other magnetic fields to probe the

importance of chemical-shift anisotropy (CSA) relaxation (see Table 3.3). Our result

of TS = 4.5 s and 7.8-fold lifetime enhancement over T1 for citric acid at 4.7 T is

consistent with a previous measurement of 4.81 s and 7.6 T1 at 9.4 T [14]. Due to

hardware limitations, there was insufficient RF power to attain the maximum singlet

lifetime for p-hydroxybenzoic acid. Nevertheless, a fit to data at finite RF power gave
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Figure 3.6: Measurements of a mixture singlet state and long-lived coherence as
a function of the effective RF spin-locking field B1 for proton pairs in small organic
molecules. Also shown are fits to models for the singlet and LLC lifetimes, as described
in the main text. (A) Aspartic acid, TL = 800 ms and TRF = 3.5 s; (B) trans-1,4-
cyclohexanediol, TL = 350 ms and TRF = 3.6 s; RF power is quantified by the induced
nutation frequency about the B1 field. Molecular structures are shown, protons of the
singlet(s) are circled, and values for chemical shifts (∆ν) and spin-lattice relaxation
times (T1) are indicated.

TS = 16 s and 5.5 T1, which is consistent with previous measurements [14]. Since

these singlet state lifetimes do not significantly depend on magnetic field strength,

we conclude that CSA is not a primary mechanism of singlet relaxation.

To distinguish between the spin-rotation and magnetic quadrupole relaxation

mechanisms, we performed singlet lifetime measurements at several sample tempera-

tures. The temperature was controlled by supplying hot air to the probehead. Blown

air was heated with a Hotwatt cartridge heater controlled by an Omron tempera-

ture control box, and the temperature of the sample was monitored with a resistance

temperature detector (RTD) in the probehead. We found that the singlet lifetime

increases linearly with temperature, which identifies the magnetic quadrupole relax-

ation mechanism as dominant in such proton-pair singlet state molecules (see ap-
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pendix A.3).

Note that most previous proton-pair singlet measurements were conducted using

deuterated solvents, which should result in weaker singlet-solvent interactions and

larger enhancements of singlet state lifetime. To test whether such lifetime enhance-

ment changed in a normally protonated solvent, we studied p-hydroxybenzoic acid in

both D2O and H2O. We found that the enhancement of both the singlet and LLC

lifetimes were significantly lower in H2O (see Table 3.3). The enhancement is likely

higher in D2O due to the substitution of deuterium for the phenolic proton as well as

reduced dipolar interactions with nearby solvent protons.

3.1.4 Discussion

The above experimental results and associated modeling establish an operational

spin-locking condition νoptn ≈ 5∆ν to realize maximum singlet lifetime with minimal

RF power. In the context of this operational condition, we can reassess the past

work by Levitt and colleagues using high-power RF spin-locking fields [13, 14, 33].

As shown in Table 3.4, most of the previous experiments employed νn ≫ 5∆ν, i.e.,

they used much higher RF power than was needed to achieve a long singlet state

lifetime, no doubt to achieve the longest lifetimes possible. For example, for citric

acid Pileio et al. [14] used νn = 3.5 kHz, whereas ∆ν = 72 Hz at 9.4 T, which is

an order-of-magnitude higher spin-locking field than would be necessary for a typical

long-lived singlet experiment.

Furthermore, we note that similarly low RF powers will be required for practical in

vivo singlet-state creation in a wide variety of molecules using clinical MRI scanners,
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where the static magnetic field is commonly between 1.2 and 7 T; see example values

for νoptn at 1.5 T given in Table 3.4. For example, at 4.7 T glycerol formal’s protons

have a frequency difference ∆ν ≈ 16 Hz; hence νoptn ≈ 80 Hz is sufficient to achieve

significant singlet-state lifetime enhancement. For common biomolecules such as citric

acid and aspartic acid, νoptn < 100 Hz at 1.5 T, which is well within the spin-locking

regime commonly used in clinical MRI [42, 43]. Using equation 3.1, a 60 Hz spin-

lock would produce a power dissipation of 140 mW/kg implying that it can be safely

applied indefinitely in vivo. Alternatively, the long-lived coherence can be utilized

without the need for any spin-locking if only moderate lifetime enhancements are

required.

In summary, our measurements and theoretical description show that for many

molecules long-lived nuclear spin singlet states and singlet-triplet coherences can be

created using RF spin-locking powers that are more than two orders of magnitude

lower than in previous studies and that the effectiveness of the spin-locking can be

accurately predicted from spectral parameters. These insights will be useful in the

development of new applications for singlet states in vivo, where the RF specific-

absorption rate (SAR) must be minimized.

Table 3.4: Comparison of the chemical shift; optimal spin nutation frequency for RF
spin-locking, νoptn ≈ 5∆ν; and values of νn used in previous experiments. Also listed
are values for νoptn for a clinical MRI scanner.

Molecule ∆ν (B0 field) νoptn νn, previous νoptn at 1.5 T
citric acid [14] 72 Hz (9.4 T) 360 Hz 3500 Hz 57 Hz
p-HBA [14] 445 Hz (11.75 T) 2224 Hz 3500 Hz 284 Hz
aspartic acid [17] 100 Hz (11.75 T) 500 Hz 2500 Hz 64 Hz
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3.2 SUCCESS: Suppression of Undesired Chemi-

cals with Contrast-Enhancing Singlet States

While the previous section explored the long-lived nature of the singlet state, this

section will explore its spherically-symmetric nature, which can be employed as a way

to isolate the singlet state signal. Because the singlet state has I = 0, it is invariant

to rotation, i.e., R̂(x, y, z)|S0〉 = |S0〉. This is not the case for any other state with

I > 0. By summing measurements after a set of carefully-chosen rotations, it is

possible to remove the signal from states with I > 0 while retaining the singlet state

signal. This is called polyhedral phase cycling and was first demonstrated for the

singlet state by Pileio et al. [44]. It is also possible to replace or supplement phase

cycling with gradient pulses to remove I > 0 states, as demonstrated in ref. [45].

Both techniques are considered examples of quantum filters, which have been used

extensively in NMR to isolate signals from selected quantum coherences.

NMR spectroscopy provides a quantitative, non-destructive measure of chemical

concentrations in complex mixtures both in vitro and in vivo. In many samples,

the spectral lines are narrow while the range of resonance frequencies is broad, and

there is little overlap of spectral lines. However, mixtures of biomolecules, such as

blood, urine, and brain tissue, often contain a large number of compounds with many

spectral lines overlapped by a few dominant metabolites [46–50]. Furthermore, some

abundant metabolites, such as glutamine and glutamate, have such similar structures

that their spectra are nearly identical and are difficult to resolve from one another.

In these cases, no amount of signal averaging can improve the resolution.
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While improved resolution can be achieved using higher-field instruments, this is

often a costly solution, especially for MRI. An alternative solution employs quan-

tum filters to remove undesired spectral components and to select those of interest.

Quantum filtration works by creating a quantum coherence in a target spin system

and then applying phase cycling or gradient filters to selectively suppress the coher-

ences in either the target or the background spins [26]. Common applications include

water and fat suppression as well as metabolite-specific enhancement in magnetic res-

onance spectroscopy, amino-acid-specific enhancement in protein spectroscopy, and

metabolic analysis of blood and urine [51–61]. Nevertheless, quantum filters have had

limited success differentiating the signals of similarly-structured molecules where the

chemical shifts and coupling parameters are nearly identical [62, 63]. The spectral

similarity makes it difficult to selectively produce the desired quantum coherence on

only one type of molecule.

In this section, we demonstrate a technique called SUCCESS, or “Suppression of

Undesired Chemicals using Contrast-Enhancing Singlet States,” in which spin-locking

and a singlet quantum filter are used to isolate the signal from a target molecule. We

create and select nuclear spin singlet states on the target formed in pairs of coupled

protons or pairs of coupled methylene groups. The multi-pulse sequence required to

create, preserve, and measure the singlet state produces strong contrast even when the

spectra of two molecules nearly overlap, as is the case in mixtures of glutamine and

glutamate, and aspartate and N-acetylaspartate. SUCCESS also produces excellent

suppression of signals from spin systems in which no singlet state can be created.

Current quantum filters utilize coherences comprised of superposition states pre-
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cessing in the transverse plane and characterized by mx and my [26]. For example,

a double-quantum filter selects (or rejects) all double quantum coherences, which

consist of two or more spin-1/2 nuclei in an mx +my = 1 state, for example I1xI2x.

However, states can also be selected or rejected based on their total spin quantum

number, I. For instance, a singlet state with I = 0 can be selectively passed through

a filter while a triplet state with I = 1 is removed.

Spin-locked singlet states have the additional benefit that continuous RF irra-

diation used to preserve the singlet simultaneously drives triplet states and other

uncoupled spins to saturation more quickly than T1. We can utilize this feature as a

contrast mechanism by implementing the basic SUCCESS pulse sequence shown in

Fig. 3.7a, which consists of three steps: (1) Prepare target spins in a singlet state,

while minimizing singlet character in any other groups of spin. These singlets might

be prepared on a specific molecule in a mixture, or a specific group within a larger

molecule. (2) Apply a resonant RF field to preserve the spin singlet state and drive all

other spin states to saturation. (3) Convert the singlet polarization back into trans-

verse magnetization for readout. The spectrum should then consist only of peaks

from any target spins prepared as a singlet state.

In real systems, the applied RF field contains a limited power across a limited

bandwidth, so that saturation of the background spin systems is often incomplete.

Background suppression can be improved using the polyhedral, spherically-symmetric

phase cycle developed by Pileio et al., which removes all non-singlet signals [44]. The

addition of phase cycling leads to the SUCCESS sequence shown in Fig. 3.7b. The

highest-order coherences removed by the phase cycle depends on the number of steps
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chosen, as the closer one approximates a sphere the better one isolates the singlet. We

chose a 24-step cycle that removes states up to I = 3, which is sufficient for molecules

with up to 6 protons. Alternatively, a gradient filter can be implemented by applying

x, y, and z gradients in succession to “spoil” non-singlet magnetization.

One further complication is that background molecules may contain singlet-producing

groups with spectral components overlapping the target. Fortunately, the efficient

preparation of a spin-locked singlet state requires a pulse sequence with three properly-

chosen delays that depend on the scalar coupling and chemical shifts of each molecule.

We find that through careful selection of these delays, a singlet can be created in the

target molecule only. For example, the simulation results shown in Fig. 3.7c and 3.7d

show that by properly selecting τ2 and τ3, a large amount of singlet can be produced

in aspartate while at the same time little singlet is produced in N-acetylaspartate.

3.2.1 Proton Experiments

The SUCCESS technique was tested in vitro on three target molecules that are

important brain metabolites: aspartate, threonine, and glutamine. The spectra of

these molecules are overlapped by peaks from N-acetylaspartate, myo-inositol, and

glutamate, respectively. The test mixtures are listed in Table 3.5. Each consisted

of a target molecule and the interfering background substance dissolved in a pH 7.0

phosphate buffer. Concentrations were chosen to reflect typical ratios found in vivo

but at higher absolute concentration. A control solution was also created for each

target and background molecule alone in pH 7.0 phosphate buffer. Reagents were

purchased from Sigma-Aldrich.
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Figure 3.7: (a) Basic SUCCESS pulse sequence: The NMR transmitter frequency, ν0,
is placed at the average resonance frequency of the two target protons, at a chemical
shift δav. The first three pulses then create a mixture of singlet and triplet states
in the target spins. Continuous RF power, also applied at the average resonance
frequency of the protons for time τ4, preserves the singlet state while driving other
states toward saturation. Finally, two of the first three pulses are repeated in reverse
order to return the remaining singlet population into transverse magnetization for
readout. (b) To improve suppression of non-singlet states, two filtering pulses can be
added as part of a spherically-symmetric phase cycle. (c) and (d) Simulated intensity
maps for aspartic acid and N-acetylaspartic acid show that pulse sequence delays can
be chosen to create singlet mainly in one molecule and not in the other. The red cross
marks the parameters used in the demonstration, which were chosen as a compromise
between signal intensity and strong contrast. Higher contrast can be achieved with
slightly longer values of τ2 and τ3, but with lower target signal intensity.
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1H NMR spectra were obtained using a Bruker 4.7 T vertical bore spectrometer

with a 10 mm diameter probe. A transmitter power of 100 W required a π/2 pulse

length of 26 µs and a π pulse length of 46 µs. Exponential apodization was applied

to all spectra with either 0.5 Hz or 1.0 Hz line-broadening constants. Spectra of the

mixtures and controls were first obtained with a “one-pulse” sequence by applying

a π/2 pulse and acquiring an FID. Spin-lattice relaxation times of the molecules

were measured in control solutions using an inversion recovery sequence. Measured

J-couplings and peak positions of each molecule were then used to calculate optimal

delays τ1, τ2, and τ3 for singlet creation on the target. Singlet lifetimes were measured

in the controls using the SUCCESS sequence in Fig. 3.7b by varying the relaxation

delay τ4. The 24-step phase cycle was used with parameters given in Table 3.6.

SUCCESS spectra were acquired of each mixture, and the delays were experimentally

optimized to produce the best contrast enhancement for the target molecule. Identical

SUCCESS spectra were acquired for control solutions.

The effectiveness of the quantum filter was quantified in terms of the contrast

enhancement, or the ratio

CE =
CR
CS

(3.20)

where CR is the contrast in a regular scan and CS is the contrast in a SUCCESS scan.

The contrast is defined as the intensity of the target peak divided by the intensity

Table 3.5: Sample concentrations for proton SUCCESS demonstrations.

Target Molecule (mM) Background Molecule (mM)
aspartic acid 3.0 N-acetylaspartic acid 11.4
threonine 50.0 myo-inositol 50.0
threonine 5.0 myo-inositol 50.0
glutamine 40.0 monosodium glutamate 80.0
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Table 3.6: 24-step phase cycle used for SUCCESS.

Step φ1 φ3 φ4 Acquisition
1 0 0 180 0
2 90 0 180 180
3 180 0 180 0
4 270 0 180 180
5 90 90 180 180
6 180 90 180 0
7 270 90 180 180
8 0 90 180 0
9 180 180 270 0
10 270 180 270 180
11 0 180 270 0
12 90 180 270 180
13 270 270 0 180
14 0 270 0 0
15 90 270 0 180
16 180 270 0 0
17 0 0 90 0
18 90 0 90 180
19 180 0 90 0
20 270 0 90 180
21 180 180 180 0
22 270 180 180 180
23 0 180 180 0
24 90 180 180 180
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of the interfering background peak. For molecules with multiple peaks, the contrast

was calculated for each set of target and background peaks that overlap.

We first tested SUCCESS on aspartate (ASP), which has a typical concentration of

3 mM in the brain. It contains a pair of protons, attached to a common carbon atom,

whose long-lived singlet state has previously been investigated [17]. Its acetylated

form, N-acetylaspartate (NAA), also exists in the brain at a concentration 3-6 times

higher [50, 64–66]. The geminal protons of interest in both molecules produce a

second-order spectral structure in the 2-3 ppm chemical shift range, with further

splitting caused by a third nearby proton, whose peak appears near 4 ppm (Fig. 3.8a-

b). In the control solutions, the singlet state lifetimes, TS, were 5.6±1 s and 4.5±0.3 s

for ASP and NAA, respectively, while spin-lattice relaxation times, T1, were 1.3±0.2

s and 0.99±0.06 s for the proton pairs in ASP and NAA, respectively. Note that the

singlet state lifetimes are around half the value obtained in [17], likely because we

used water rather than D2O as the solvent and did not remove dissolved oxygen.

The one-pulse spectrum of the mixture is dominated by NAA, and only the ASP

peaks near 2.8 ppm are visible (Fig. 3.8c). Using an appropriate set of pulse sequence

parameters, we achieved a SUCCESS spectrum with residual NAA magnetization of

only 4% its original intensity in the control solution. The same SUCCESS sequence

applied to the ASP control produced a spectrum that appeared similar to its one-

pulse spectrum, but with a signal strength 25% its the original intensity (Fig. 3.8d-e).

The result was contrast enhancement of 6 or greater for all ASP peaks compared with

NAA. The SUCCESS spectrum of the mixture (Fig. 3.8f) appeared nearly identical

to that of the ASP control, except for the weak residual NAA signal near 2.5 ppm.

53



Chapter 3: Singlet States Produced by Spin-Locking

Moreover, the water signal was suppressed by a factor of 6.5.

We next targeted the amino acid threonine (THR), which occurs at concentrations

of around 500 µM in the brain [67, 68]. Threonine does not possess a pair of geminal

protons, so the singlet must instead be created on the vicinal protons attached to

carbons two and three. The target proton peaks lie near 3.6 and 4.2 ppm (Fig. 3.9a),

and the downfield proton is strongly coupled to a methyl group (δ = 1.25ppm), which

produces a multiplet splitting pattern. A singlet lifetime, TS, of 2.0±0.3 s and spin-

lattice relaxation times, T1, of 2.0±0.2 s and 2.2±0.1 s were measured for the vicinal

protons. The singlet lifetime is actually shorter than T1 because the interactions

with the methyl group are strongly asymmetric with respect to the singlet spins.

Interactions with the methyl group also lead to a SUCCESS spectrum that looks

significantly different from the one-pulse spectrum. For example, the 4.2 ppm peak

is inverted (Fig. 3.9e).

The upfield target proton is overlapped by peaks from the common metabolite

myo-inositol (spectrum shown in Fig. 3.9b), which occurs in the brain at concentra-

tions of 4-12 mM [50, 64]. At a 10:1 myo-inositol:threonine concentration ratio, the

myo-inositol peaks completely cover the upfield threonine peak and make it unre-

solvable in our spectrometer. Even at a 1:1 concentration ratio the threonine peak is

difficult to resolve (Fig. 3.9c-d). The optimized SUCCESS sequence suppressed the

myo-inositol peaks to less than 0.7 % of their original intensity, while it preserved 12%

of the threonine signal (Fig. 3.9e-f). The result was an average contrast enhancement

of 17 times. When applied to the sample with equal concentrations of threonine and

myo-inositol, the SUCCESS sequence reduced the intensity of myo-inositol so greatly
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Figure 3.8: Spectra are shown for conventional (a-c) and SUCCESS (d-f) scans per-
formed on solutions of N-acetylaspartate, aspartate, and their mixture. The SUC-
CESS scan of the mixture is nearly identical to that of aspartate alone. The target
protons for singlet formation are indicated on each structure, with a solid line indicat-
ing the desired singlet, and a dashed line indicating the undesired singlet. SUCCESS
parameters were δav = 2.71 ppm, τ1 = 9 ms, τ2 = 20.3 ms, τ3 = 11.5 ms, τ4 = 1 s,
and νn = 385 Hz, line broadening 0.5 Hz.
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that only the threonine peak was evident (Fig. 3.9g). When performed on the sample

with a 10:1 concentration ratio, the resulting spectrum exhibited a threonine peak

slightly more intense than myo-inositol, which allowed the previously hidden peaks

to be identified (Fig. 3.9h). The water peak was suppressed by a factor of 32.

Finally, we applied SUCCESS to a mixture of glutamine (GLN) and glutamate

(GLU). The typical glutamate concentration is twice that of glutamine in the brain

(8 mM and 4 mM respectively) [50, 64, 67, 69]. These molecules have largely over-

lapping spectra that make individual measurements difficult [70], as well as similar

chemical shifts and J-coupling strengths that make the application of quantum filters

challenging. A number of spectral-editing techniques and quantum filters have been

used to attack this problem [54, 62, 63, 71–74], but none has become a routine and

reliable way to measure glutamine concentration.

Each molecule contains two methylene groups that can be viewed as pairs of

strongly-coupled, unresolvable protons. A third lone proton couples to one of the

methylene groups. The spectra therefore exhibit a complex splitting pattern (Fig.

3.2.1a-b), with methylene group peaks between 1.8 and 2.6 ppm, and the lone proton

peak at 3.7 ppm. A mixture of the two metabolites produces a spectrum with many

poorly-resolved peaks, and the upfield methylene groups cannot be resolved at all (Fig.

3.2.1c). Each methylene group is already strongly mixed into singlet and triplet states,

but the resulting singlets cannot be easily manipulated for utilization in the quantum

filter. Instead, a four-spin singlet state can be created by mixing the triplet states of

the two methylene groups. This singlet is preserved by RF power just like a two-spin

singlet, and it can be selectively created depending on the pulse sequence parameters,
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Figure 3.9: Spectra are shown for conventional (a-d) and SUCCESS (e-h) scans per-
formed on solutions of myo-inositol, threonine, and two mixtures. The target pro-
tons for singlet formation on threonine are indicated. SUCCESS parameters were
δav = 3.87 ppm, τ1 = 40 ms, τ2 = 52 ms, τ3 = 1.85 ms, τ4 = 200 ms, and νn = 790
Hz, except for frame (g), where τ2 = 72 ms and τ3 = 4.8 ms, line broadening 0.5 Hz.
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but it does not possess an extended lifetime. Its symmetry does allow it to pass

through the polyhedral singlet filter. Lifetimes of 0.70±0.09 s and 0.80±0.1 s were

measured for this singlet in glutamate and glutamine, respectively. The measured T1

times were 1.11±0.02 s and 0.92±0.02 s for glutamate, and 1.24±0.05 s and 1.01±0.04

s for glutamine. The singlet-state lifetimes were shorter than the spin-lattice lifetimes

of their constituent methylene groups because dipole-dipole interactions within each

methylene group are still allowed by symmetry and lead to relaxation. Nevertheless,

the singlet lifetime is sufficiently long for SUCCESS to be effective.

SUCCESS parameters were experimentally optimized to obtain high contrast for

glutamine. The glutamate signal was suppressed so that only 0.86% of its original

intensity remained. In contrast, 5.7% glutamine signal was recovered, resulting in a

contrast enhancement between 3 and 7 times. The SUCCESS spectrum of glutamine

(Fig. 3.2.1d) appeared similar to the conventional spectrum, whereas that of gluta-

mate consisted mainly of a single peak that was not fully removed (Fig. 3.2.1e). The

SUCCESS spectrum of the mixture appeared similar to that of glutamine, except for

the residual glutamate peak at 2.3 ppm (Fig. 3.2.1f). This residual peak did not in-

terfere with any glutamine peaks, and so the positions of the upfield methylene peaks

of glutamine were now measurable. The water signal was suppressed by a factor of

13.

We found that higher signal from glutamine could be obtained by moving the

transmitter frequency ∼ 40 Hz upfield from the average value, to δav = 2.05 ppm, for

the whole sequence and by applying a different set of delays. This created the same

level of contrast while preserving 15% of the glutamine signal (Fig. 3.2.1a-c). Water
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suppression was also higher, with a peak 38 times weaker than in a one-pulse scan.

3.2.2 Phosphorus Experiments

Phosphate-containing compounds play a critical role in biology as energy trans-

porters. Since 31P is a spin-1/2 nucleus like the proton, singlet states can be created

from 31P pairs allowing for the implementation of the SUCCESS sequence. As the

structures in Fig. 3.12b show, both nicotinamide adenine dinucleotide (NAD+) and

adenosine disphosphate (ADP) contain a pair of coupled phosphorus nuclei, and it

should be possible to create a spin-locked singlet on both. In contrast, adenosine

triphosphate (ATP) contains three phosphorus nuclei and should not possess a sin-

glet state. Here, we demonstrate the isolation of the ADP and NAD+ spectra in the

presence of ATP.

We performed 31P SUCCESS measurements on a mixture containing 30 mM ATP,

3 mM ADP, and 3 mM NAD+ in a pH 7.0 phosphate buffer. Continuous wave

decoupling was applied to the proton channel throughout the pulse sequence to remove

splittings from proton-phosphorus J-coupling. Figure 3.12a shows a spectrum of the

mixture measured with a π/2-FID sequence. ATP and ADP exhibit a splitting pattern

indicating that the 31P resonance frequency differences are significantly greater than

the 31P-31P J-coupling (additional ATP peaks at -20 ppm are not shown). For ADP,

JPP = 21.2 Hz while ∆ν = 128.9 Hz. NAD+ exhibits a second-order spectrum,

indicating ∆ν ∼ J , and one of its peaks lies directly beneath an ATP peak. For

NAD+, JPP = 20.2 Hz while ∆ν = 24.2 Hz.

Figures 3.12c and d show the results after applying the SUCCESS sequence to
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Figure 3.10: Spectra are shown for conventional (a-c) and SUCCESS (d-f) scans
performed on solutions of glutamate, glutamine, and their mixture. The SUCCESS
scan of the mixture is similar to that of glutamine alone, except for residual glutamate
signal near 2.3 ppm. The target protons for singlet formation are indicated on each
structure, with a solid line indicating the desired singlet, and a dashed line indicating
the undesired singlet. SUCCESS parameters were δav = 2.23 ppm, τ1 = 22 ms,
τ2 = 15 ms, τ3 = 11.1 ms, τ4 = 500 ms, and νn = 385 Hz, line broadening 1 Hz.
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Figure 3.11: Spectra are shown for SUCCESS scans performed on solutions of gluta-
mate, glutamine, and their mixture, in which the RF transmit frequency was shifted
away from the average resonance frequency by 40 Hz, to δ = 2.05 ppm. Glutamine
signal dominates the spectrum of the mixture. Delays were τ1 = 18 ms, τ2 = 9 ms,
τ3 = 4.5 ms, τ4 = 100 ms, and νn = 385 Hz, line broadening 1 Hz.
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target NAD+. Approximately 50% of the NAD+ signal is retained, compared with

only 1.2% of the ATP signal, resulting in a factor of 42 enhancement for NAD+ signal

contrast. Figures 3.12e and f show the results after applying the SUCCESS sequence

to target ADP. Approximately 39% of the ADP signal is retained, compared with

only 2.6% of the ATP signal, resulting in a factor of 15 enhancement for ADP signal

contrast.

While the phosphorus pairs provided excellent singlet states for SUCCESS, these

singlets did not exhibit an extended lifetime. For lifetime measurements, we created

50 mM solutions of ADP and NAD+ in pH 7.0 phosphate buffer. We found that for

ADP, TS ≈ 0.2T1, while for NAD+, TS ≈ 0.5T1. The short singlet lifetimes indicate

strong relaxation from nearby spins interacting asymmetrically with the phosphorus

nuclei, especially for ADP. At pH 7, the protons of both the ADP-β and the NAD+

phosphate groups are dissociated, but one proton remains attached to the ADP-α

phosphate group relatively strongly, likely driving relaxation. As a test, a basic 50

mM ADP solution was prepared in 0.5 M sodium hydroxide solution. This increased

the dissociation of the α phosphate’s remaining proton, thereby increasing T1, TS,

and TS/T1 significantly. Table 3.7 summarizes the measured relaxation parameters.

Table 3.7: Measured values of spin-lattice and relaxation times for phosphorus spin
pairs.

Molecule T1(s) TS(s) TS/T1
ADP-α neutral 2.6± 0.2 0.49± 0.03 0.19± 0.02
ADP-β neutral 2.45± 0.08 0.532± 0.009 0.22± 0.01
ADP-α basic 3.9± 0.2 3.9± 0.7 1.0± 0.07
ADP-β basic 7.7± 0.3 4.2± 0.3 0.55± 0.04
NAD+ neutral 2.87± 0.08 1.35± 0.01 0.47± 0.01
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ATP
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NADa

c

b
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Figure 3.12: SUCCESS spectra for phosphorus NMR in ATP, ADP, and NAD+. (a)
Conventional spectra are shown for a solution of ATP, ADP, and NAD+. Structures
of the molecules are shown in (b). The SUCCESS scan of the mixture targeting
NAD+ (c, d green line) shows excellent suppression of the ATP signal while retaining
50% of the NAD+ signal. SUCCESS parameters were δav = −11.675 ppm, τ1 = 15.5
ms, τ2 = 16 ms, τ3 = 12.5 ms, τ4 = 100 ms, and νn = 615 Hz. The SUCCESS scan of
the mixture targeting ADP (e, f green line) similarly shows strong ATP suppression.
SUCCESS parameters were δav = −10.74 ppm, τ1 = 12.02 ms, τ2 = 17.16 ms,
τ3 = 2.57 ms, τ4 = 100 ms, and νn = 615 Hz. All spectra were acquired with CW 1H
decoupling at 150 Hz nutation frequency.
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3.2.3 Improving Singlet Creation/Readout Efficiency

The three-pulse singlet creation/readout pulse sequence can produce an ideal den-

sity matrix ρ = |S0〉〈S0| − |T0〉〈T0| when the two target nuclei of the spin pair are

well-isolated from other spins. However, if a third spin couples to one or both spins

of the pair, it perturbs the spin evolution of the target spins and reduces the creation

of singlet state. One way to counter this effect is to split the π pulse of the echo

into two π/2 pulses separated by a short delay. The short delay is chosen so that the

interfering spin precesses 180◦ during its duration. This causes the perturbation from

the interfering spin to have the opposite sign during τ2 and τ1, thereby minimizing

its effect over the course of the sequence. Figures 3.13a and b show the modified

SUCCESS sequence with and without polyhedral phase cycling, respectively.

We tested the modified sequence on threonine, since its singlet state is strongly

affected by the adjacent methyl group. Using a 84 mM solution of threonine in pH

7.0 phosphate buffer, we found that with the full modified SUCCESS sequence, 38%

of threonine magnetization could be transferred to singlet state, spin-locked, and

returned to transverse magnetization for readout. Conversely, only 0.65% of myo-

inositol magnetization was preserved using the same sequence. Performing SUCCESS

on a mixture containing 8.4 mM threonine and 84 mM myo-inositol revealed strong

contrast enhancement that made the threonine peaks clearly identifiable (Fig. 3.13d),

much more so than in Fig. 3.9h. Moreover, the threonine peak at 3.55 ppm was

properly phased rather than inverted.
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Figure 3.13: The modified SUCCESS pulse sequence is shown without (a) and with
(b) polyhedral phase cycling. Note that the π pulses have been replaced with two
π/2 pulses spaced by time τ5. Spectra are shown for a conventional spectrum (c)
performed on a solution of threonine and myo-inositol. The SUCCESS scan of the
mixture targeting threonine (d) shows excellent suppression of themyo-inositol signal.
SUCCESS parameters were δav = 3.87 ppm, τ1 = 44 ms, τ2 = 48 ms, τ3 = 1.87 ms,
τ4 = 200 ms, τ5 = 0.95 ms and νn = 790 Hz, line broadening 0.5 Hz.
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3.2.4 Discussion

While most singlet-state experiments have used specially-designed or selected

molecules to produce singlet state lifetimes as long as possible, the singlet state can

actually be prepared in nearly any coupled pair of protons. In many cases, sur-

rounding spins will perturb the singlet and cause it to relax on the timescale 1/T1,

but within this timeframe the singlet exists as a unique quantum state that can be

preserved and filtered.

In many ways, the singlet state is no different from other quantum coherences;

proton pairs can form double and zero-quantum coherences, which have both been

used for a large number of quantum filter and spectral editing applications. However,

the singlet has unique requirements for its creation and preservation that give SUC-

CESS greater selectivity. Three delays must be properly chosen rather than two for

a typical zero-quantum coherence [26, 58]. Moreover, the preservation of the singlet

requires RF power to be applied at a proper resonance frequency and at a sufficient

intensity [33, 35, 75, 76]. Both singlet creation and preservation are most effective

when the NMR transmitter frequency for the spin-locking field is set at the average

chemical shift of the target spins. Singlets in other spin groups will be created and

preserved less effectively. To properly preserve the singlet, the RF spin-locking fre-

quency should also be at least 5 times higher than the resonance-frequency difference

between target protons [75]. By using weaker spin-locking, singlets in molecules with

widely-separated spectral peaks can be rejected in favor of those with more closely-

spaced peaks. Additionally, since frequency differences due to chemical shift decrease

as B0 is lowered, lower-field spectrometers can use weaker spin-locking fields resulting

66



Chapter 3: Singlet States Produced by Spin-Locking

in lower RF specific absorption rates (SAR) [75].

The requirements for good singlet creation can also be a limitation. As the target

proton pair is coupled to more surrounding protons in a molecule, the efficiency of

singlet creation as well as the singlet purity decrease. In an ideal proton pair, at most

50% of the magnetization can be transferred to the singlet state, while the other

half is transferred to the triplet state. In aspartate, the coupling strength to the

third proton is around half the coupling strength between the target spins, so that

nearly 50% transfer can still be achieved. However, in threonine, coupling with the

neighboring methyl group is nearly the same strength as the coupling between the

target protons. Simulations of the basic SUCCESS sequence show that the maximum

amount of magnetization transferred to the singlet is reduced to only 25%. Although

the modified SUCCESS sequence can improve the singlet preparation for some cases,

it will become less effective as more perturbing spins are added.

Also consider that the highest contrast is not always achieved with the parameters

that produce maximal target intensity. For example, myo-inositol contains an even

number of protons that can form states with singlet character, and the best contrast

for threonine is achieved when the delays minimize the amount of myo-inositol singlet

created. With these parameters, only 20% of threonine magnetization is transferred

into the singlet state. Moreover, RF power must remain on for a sufficiently long

time to let the system evolve and to saturate triplet states. During this time, there

is some singlet relaxation. These various polarization losses mean that the contrast

improvements afforded by SUCCESS come with a tradeoff in experiment time or

imaging resolution. Using delays optimized for the best singlet creation, the SUC-
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CESS sequence requires either four times more scans, or voxels of twice the volume,

to achieve the same signal-to-noise (S/N) ratio as one-pulse scans.

One method for improving the contrast enhancement might be to utilize gra-

dient filters either alone or in conjunction with phase cycling. These have been

demonstrated in measurements of singlet state lifetime to help remove residual triplet

states [45]. One must take care that the specific gradient scheme chosen properly re-

moves all other zero-quantum coherences and z-axis magnetization, as these require

more than simple gradient crusher pulses for elimination.

The results presented here demonstrate that the SUCCESS quantum filtration

technique utilizing nuclear singlet states can create strong and specific contrast en-

hancement in NMR spectroscopy, and it can improve the measurement of a number

of brain metabolites, especially glutamine. Moreover, it highlights the ubiquity of

singlet states and demonstrates one of their applications other than extended-lifetime

studies. The SUCCESS technique promises to improve MR-based metabolic mea-

surements and the diagnosis of disease without resorting to increasingly high-field

spectrometers.
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Singlet States in Nearly-Equivalent

Spins

In chapter 2, we showed that when J-coupling between two spins is much stronger

than the resonance frequency difference, i.e., J ≫ δν, then the singlet state is nat-

urally one of the eigenstates. Such a spin pair is ideal for extending polarization

lifetime because the singlet state does not require spin-locking for preservation. How-

ever, magnetization cannot be directly transferred to and from the singlet state using

a conventional RF pulse, because the singlet-triplet transition is forbidden. In this

chapter, we describe ways to access the singlet state via pulse sequences that employ

pulse trains or weak spin-locking. We apply these sequences to measurements of J-

coupling and singlet state relaxation in small organic molecules. We then extend the

technique to larger spin groups and demonstrate that singlet order can be transferred

between spin pairs, allowing us to perform NMR experiments in a singlet-singlet

subspace.
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4.1 SLIC: Spin-Lock Induced Crossing

Tayler and Levitt demonstrated that for a pair of nearly-equivalent spins, triplet/singlet

polarization transfer can be achieved using a series of π pulse trains in which the

pulse timing is synchronized to the J-coupling strength between nuclei [21]. This

“M2S” sequence takes advantage of the small amount of mixing between singlet and

triplet states that is present whenever ∆ν > 0. Feng and Warren also showed that

the M2S sequence can create singlet states in certain heteronuclear systems even

when ∆ν = 0 [22]. These results hold promise for creating hyperpolarized singlet

states without the need for a symmetry-breaking chemical reaction or continuous

spin-locking. However, in all results to date, the polarization transfer to the spin sin-

glet state only occurs during the final third of the M2S sequence, and before this stage

the spin polarization occupies states subject to conventional spin-lattice relaxation.

We show that better triplet/singlet polarization transfer efficiency can be achieved

by replacing the M2S pulse trains with a continuous spin-lock whose nutation fre-

quency is matched to the J-coupling between the target nuclear spins. At this spin-

locking strength, the energy levels of the singlet state and one triplet state become

equal in the rotating frame, which we call the “spin-lock induced crossing” (SLIC). Po-

larization transfer can occur for the duration of spin-locking, which minimizes polar-

ization loss from triplet state relaxation and thus provides better efficiency for singlet

state creation than the M2S technique. SLIC is analogous to the Hartmann-Hahn con-

dition for polarization transfer between two magnetically inequivalent nuclear spins,

except that for SLIC the nuclei are nearly identical and their spin symmetry subspaces

are inequivalent [77].
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We experimentally compare M2S and SLIC using liquid-state NMR of the tripep-

tide molecule phenylalanine-glycine-glycine (phe-gly-gly), which contains two nearly-

equivalent proton spin pairs in which to prepare singlet states. We find that for these

two proton spin pairs, singlet state creation with SLIC is 19% and 75% more efficient

than with M2S. We also demonstrate the utility of SLIC for characterizing singlet

state lifetimes as well as small J-couplings and chemical shift differences between

nearly-equivalent nuclear spins.

4.1.1 M2S Sequence

A pair of spin-1/2 nuclei are considered “nearly-equivalent” when J ≫ ∆ν. Un-

der these conditions, the spin eigenstates are described by equations 2.42 and 2.43.

Because ∆ν > 0, |φS〉 and |φ0〉 do not perfectly describe singlet and triplet states,

but have significant singlet and triplet character. This causes |φS〉 to behave nearly

like an ideal singlet state in terms of relaxation rate and symmetry properties, but its

small triplet admixture ensures that there is still a Hamiltonian term connecting it

to the triplet states. This Hamiltonian term produces evolution in the singlet-triplet

basis that the M2S sequence harnesses to transfer magnetization between triplet and

singlet states [21].

Figure 4.1a shows the M2S experimental protocol used to create a nuclear spin

singlet state from triplet state polarization and then return the singlet state to trans-

verse triplet state (i.e., measurable) polarization after an evolution time, τevolve. Fig-

ure 4.1b gives a simulation of spin state and coherence dynamics during singlet state

preparation with M2S if relaxation is ignored [34]. The first π/2 pulse creates trans-
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verse magnetization of the form I1x+ I2x = |T+〉〈T0|+ |T0〉〈T+|+ |T−〉〈T0|+ |T0〉〈T−|.

The first pulse train, consisting of n1 π pulses, is synchronized such that |S0〉 and

|T0〉 are swapped, resulting in the singlet-triplet coherence I1y − I2y = i(|T+〉〈S0| +

|S0〉〈T+|+ |T−〉〈S0|+ |S0〉〈T−|). A second π/2 pulse converts it to the long-lived co-

herence I1z − I2z = i(|T0〉〈S0| + |S0〉〈T0|. The second pulse train, consisting of n2 π

pulses, rotates the singlet-triplet coherence into a singlet-triplet population difference

|S0〉〈S0| − |T0〉〈T0| with relaxation time TS [39, 75].

The number of pulses required for the M2S sequence increases as the resonance

frequency difference (∆ν) between the two nearly-identical nuclear spins decreases and

hence the singlet state becomes closer to ideal. The ideal pulse sequence parameters

are τ = 1/4J , n1 = π/2θ, and n2 = π/4θ, where θ = arctan(∆ν/J) is the mixing

angle away from the singlet-triplet basis. With these values, we find that the time

required for maximum singlet state creation is

tM2S,max ≈
3π

8∆ν
=

1.18

∆ν
(4.1)

In many cases, the required M2S pulse sequence time approaches or exceeds T1 of

the nuclear spins. Note that the singlet-triplet coherences produced during the first

2/3 of the pulse sequence have a lifetime of at most T2/3 ≈ T1/3 (for liquid-state

NMR of small molecules), and significant spin polarization can be lost before it is

transferred to the singlet state.

4.1.2 SLIC Sequence

Figure 4.1c shows the SLIC pulse sequence used to create a nuclear spin singlet

state from triplet state polarization and return the singlet state to transverse triplet
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Figure 4.1: Simulated comparison of M2S and SLIC techniques applied to singlet
state creation, evolution, and readout for a proton spin pair with chemical shift δ =
3.71 ppm in the phe-gly-gly molecule. Guide lines connect points in the sequence with
corresponding times in the simulation. (a) Schematic of M2S experiment: Following
an initial π/2 pulse to create transverse triplet polarization, the M2S pulse sequence
creates singlet state population by applying pulse trains with appropriate length and
pulse spacing synchronized with the proton pair’s J-coupling and resonance frequency
difference. The system then evolves over τevolve, and the M2S sequence is applied in
reverse order to convert singlet population back to transverse triplet polarization for
inductive NMR detection. (b) Simulation of M2S experiment: Transfer, in a series
of stages, of transverse (x-axis) triplet polarization to singlet-triplet coherences and
finally to singlet and triplet state populations of equal magnitudes. Transfer to the
singlet state population only occurs in the final 1/3 of the M2S preparation sequence.
(c) Schematic of SLIC experiment: Transverse triplet polarization is created via an
initial π/2 pulse and is then transferred to singlet state population by the applica-
tion of spin-locking with νn = J for period τSL. For spin-locking, the transmitter
frequency is set to the average resonance frequency of the nearly-equivalent spin pair.
The system then evolves for τevolve and an identical spin-lock converts singlet popu-
lation back to transverse triplet polarization for detection. (d) Simulation of SLIC
experiment: Transfer of transverse triplet polarization to singlet state population
begins immediately and occurs during a single spin-locking stage.
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state polarization after an evolution time (τevolve) in analogy to the M2S experiment.

However, instead of pulse trains, continuous spin-locking is applied on resonance with

the nearly-equivalent spins at a nutation frequency equal to the J-coupling between

spins, i.e., νn = J . The simulation shown in Fig. 4.1d illustrates that such spin-

locking transfers triplet state polarization directly from transverse polarization into

singlet state population more quickly than in the M2S sequence.

An energy level analysis shows that selecting a nutation frequency νn = J matches

the energies of the singlet state and one of the triplet states, creating a spin-lock

induced crossing. At this energy, off-diagonal interaction terms ∆ν/2
√
2 become

significant and induce oscillatory triplet/singlet polarization transfer. Consider two

coupled spin-1/2 nuclei with identical resonance frequencies. As discussed in chapter

2, the system can be described by three triplet eigenstates, |T−〉, |T0〉, and |T+〉, and

one singlet eigenstate, |S0〉. These are the symmetric and antisymmetric combinations

of the product states given by equation 4.2:

|T−〉 = | ↑↑〉

|T0〉 =
| ↑↓〉+ | ↓↑〉√

2

|T+〉 = | ↓↓〉

|S0〉 =
| ↑↓〉 − | ↓↑〉√

2
(4.2)

74



Chapter 4: Singlet States in Nearly-Equivalent Spins

The Hamiltonian for this system is described by

H0 = h
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It is convenient to work in the rotating frame at the average resonance frequency of

the spins, so that (ν1 + ν2)/2 = 0. Then

H0,rot = h
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If spin-locking is now applied on resonance with the triplet transitions with a nu-

tation frequency νn, then the corresponding off-diagonal elements are added to the

Hamiltonian:

HSL = h
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Since the spin-locking is applied for an extended period, we work with the new dressed
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states that are formed. Diagonalization produces the dressed state Hamiltonian

HSL,dressed = h
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The new dressed eigenstates are

|φ−〉 =
1

2
(| ↑↑〉+ | ↓↓〉 − | ↑↓〉 − | ↓↑〉)

=
1

2
(|T−〉+ |T+〉)−

1√
2
|T0〉

|φ0〉 =
1√
2
(| ↓↓〉 − | ↑↑〉) = 1√

2
(|T+〉 − |T−〉)

|φ+〉 =
1

2
(| ↑↓〉+ | ↓↑〉+ | ↑↑〉+ | ↓↓〉)

=
1

2
(|T−〉+ |T+〉) +

1√
2
|T0〉

|φS〉 =
1√
2
(| ↑↓〉 − | ↓↑〉) = |S0〉. (4.7)

The states |φ0〉 and |φS〉 are split by energy J and are unaffected by the strength of

spin-locking, whereas the energy of states |φ−〉 and |φ+〉 have a linear dependence on

νn.

It is now evident that selecting a nutation frequency νn = J will match the energies

of states |φ−〉 and |φS〉, creating a spin-lock induced crossing. At this energy, any off-

diagonal interaction terms between the two eigenstates become significant and drive

magnetization transfer. A resonance frequency difference between the two spins is
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one such off-diagonal term, which can be added to the Hamiltonian so that

HSL,dressed = h






















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4
− νn 0 0 ∆ν

2
√
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4
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4
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√
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4


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
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

















. (4.8)

When νn = J , the off-diagonal terms cause magnetization to coherently oscillate

between triplet and singlet states with a period T =
√
2/∆ν, and maximum transfer

occurs at half this time:

tSL,max =
1

∆ν
√
2
=

0.707

∆ν
. (4.9)

Comparison with equation 4.1 shows that SLIC produces singlet state polarization

about 40% faster than M2S, which results in fewer relaxation losses. To compare the

effectiveness of the two sequences, we performed simulations using Bloch equations

to model relaxation and singlet-triplet polarization transfer. Figure 4.2 plots the

calculated polarization transfer efficiency for M2S and SLIC as a function of the

product T1∆ν. SLIC is found to be significantly more efficient than M2S for all

ranges of parameters, and particularly for T1∆ν < 1.

4.1.3 Experiment

To assess the relative utility of the SLIC and M2S sequences for producing nuclear

spin singlet states, we performed NMR measurements at 4.7 T on a 20 mM solution of

the phenylalanine-glycine-glycine (phe-gly-gly) molecule dissolved in D2O. Nitrogen

gas was bubbled through the solution for 5 minutes to displace dissolved oxygen. A
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Figure 4.2: Simulations of ideal triplet/singlet polarization transfer efficiency for M2S
(blue) and SLIC (red). Results are shown for TS ≫ T1 and TS = 3T1. M2S was
modeled in two steps: first, polarization transfer from I1x + I2x with lifetime T2 = T1
to I1y−I2y with lifetime T1/3; second, polarization transfer from I1z−I2z with lifetime
T1/3 to singlet state S0 with lifetime TS. Only one polarization transfer needed to be
modeled for SLIC, between I1x+ I2x with lifetime T2 = T1 and S0 with lifetime TS. A
maximum of 50% polarization transfer to the singlet state can be achieved by both
sequences, which we define to be an efficiency of 100%. Note that both sequences are
less efficient for smaller TS/T1 due to singlet relaxation.
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Figure 4.3: The phenylalanine-glycine-glycine structure is shown with its correspond-
ing spectrum measured at 200 MHz. The aromatic proton resonances occurring near
7.3 ppm are not shown.

reference spectrum (Fig. 4.3) was acquired with one π/2 pulse followed by an FID

acquisition, which shows that the molecule possesses two sets of nearly-equivalent

proton pairs in which the protons are unresolved (δ = 3.20 ppm and δ = 3.71 ppm),

and one proton pair exhibiting a second-order spectrum (centered at δ = 3.89 ppm).

Each proton of the pair at δ = 3.20 ppm is split by a third neighboring spin (δ = 4.27

ppm) with strength J = 7.3 Hz. The spin-lattice relaxation time, T1, was measured

for each nucleus using an inversion recovery sequence, and results are shown in Table

4.1.

Pulse sequences to implement SLIC are shown in Fig. 4.4. The transmitter fre-

quency is set to the average resonance frequency of the proton pair of interest. A

79



Chapter 4: Singlet States in Nearly-Equivalent Spins

Table 4.1: Spin-lattice relaxation times for protons of the phe-gly-gly molecule

Chemical Shift (δ) T1 (ms)
3.20 430±5
3.71 912±7
3.89 618±6
4.27 1760±20
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Figure 4.4: A typical experiment uses the SLIC sequence to create singlet state
by applying on-resonance spin-locking with the nutation frequency matched to the
J-coupling and with a duration appropriate for the resonance frequency difference.
(a) The acquisition can be performed directly following singlet creation to detect
the corresponding loss in x-axis magnetization, or (b) the system can be allowed to
evolve, after which the singlet state can be converted back to transverse polarization
for readout by applying spin-locking a second time.

π/2 pulse with phase y is applied to create a coherence between (|T−〉 + |T+〉)/
√
2

and |T0〉. Next, the phase is shifted 90◦ and spin-locking is applied with a nutation

frequency νn = J . In the resulting dressed state, the previous coherence becomes a

population difference |φ−〉〈φ−| − |φ+〉〈φ+|. After a time τSL = 0.707/∆ν, this is con-

verted to a population difference |φS〉〈φS| − |φ+〉〈φ+|. Spin-locking is then removed.

In Fig. 4.4a, an acquisition is performed immediately to measure the x-axis magne-

tization, I1x + I2x, whereas in Fig. 4.4b, the system is allowed to evolve for duration

τevolve and both the singlet and triplet states are allowed to relax. The remaining

singlet polarization is then read out by applying spin-locking again with phase x and

nutation frequency νn = J for time τSL and then acquiring an FID with phase x.
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Phase cycling is performed to remove residual triplet polarization by inverting the

phase of both the π/2 pulse and the acquisition. The singlet state lifetime is found

by measuring the remaining singlet population for a range of τevolve and fitting to a

single exponential decay. We optimized the singlet state creation for SLIC using both

sequences of Fig. 4.4 by scanning νn and τSL and measuring the NMR signal at the

end of each sequence.

For comparison, we also performed the experiment using Tayler and Levitt’s M2S

sequence for preparation and readout of the singlet state, with the pulse sequence

drawn in Fig. 4.1a, starting with the ideal values for τ , n1, and n2. However, the

optimal number of pulses can vary significantly from the theoretical values when

other spins couple to the target spin pair. We optimized parameters by scanning τ ,

n1, and n2 and measuring the NMR signal at the end of the sequence.

4.1.4 Results

We first addressed the nearly-equivalent proton spin pair with chemical shift δ

= 3.71 ppm and T1 = 912 ± 7 ms. For the M2S sequence (Fig. 4.1a) we found

optimized parameters for singlet creation to be n1 = 10, n2 = 5, and τ = 14.4 ms,

which indicates J = 17.4 ± 0.1 Hz and ∆ν = 2.8 ± 0.3 Hz. We also found a singlet

lifetime of TS = 25.1 ± 0.8 s with no spin-locking applied during τevolve. We measured

the NMR signal intensity (x-axis magnetization, proportional to the transverse triplet

state polarization) at the end of the M2S sequence for τevolve = 5 s, which arises from

the transfer of transverse triplet state polarization to singlet state population and

then back to measurable transverse triplet state polarization after τevolve, and we
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then used the singlet lifetime to extrapolate the singlet state population at τevolve =

0. During τevolve, remaining triplet state polarization is lost to relaxation, and it does

not contribute to the final signal. We compared this M2S NMR signal magnitude

to a reference measurement arising from a single π/2 pulse applied to the sample,

i.e., without singlet creation. From this analysis we estimate that 24% of the initial

triplet state polarization was transferred to the singlet state and back to triplet for

τevolve = 0, out of a theoretical maximum of 50%, yielding an efficiency of 69% for

each application of the M2S sequence.

For the SLIC technique, we determined the optimal spin-lock nutation frequency

by performing a truncated SLIC pulse sequence in which the NMR signal (x-axis

magnetization) was acquired directly after the first spin-locking period. As a function

of nutation frequency, the measured NMR signal exhibited a dip centered at νn =

17.5 ± 0.3 Hz with a relative depth of ∼ 25% (Fig. 4.5a), consistent with the SLIC

condition of νn = J for optimal triplet/singlet polarization transfer. We then used

this optimal spin-lock nutation frequency in the complete SLIC sequence with τevolve

= 5 s (Fig. 4.1C) and optimized the spin-lock duration (τSL) to produce the strongest

NMR signal and hence maximal singlet state creation. The measured dependence of

the SLIC NMR signal on the spin-lock duration (Fig. 4.5B) exhibits a flat maximum

for τSL ≈ 280 to 360 ms. Using τSL = 300 ms provided about 34% polarization

transfer from the triplet to the singlet state and back when extrapolated to τevolve

= 0, indicating an 82% polarization transfer efficiency for each application of SLIC

spin-locking. Although the matching condition is narrow, the B1 homogeneity of our

spectroscopy coil was sufficient to achieve good polarization transfer. Applications in

82



Chapter 4: Singlet States in Nearly-Equivalent Spins

c

b d

a

Figure 4.5: Experimental application of the SLIC technique to nuclear spin singlet
state creation in the phe-gly-gly molecule. Results for δ = 3.71 ppm proton pair: (a)
The NMR signal (normalized x-axis magnetization, proportional to transverse triplet
polarization) following the first SLIC spin-lock as a function of nutation frequency
for τSL = 300 ms exhibits a pronounced dip when the spin-lock nutation frequency
equals the J-coupling. A Lorentzian is fit to the measurement to determine νn = J =
17.5 ± 0.3 Hz. (b) NMR signal after the complete SLIC experiment with τevolve =
5 s (proportional to final transverse triplet polarization surviving transfer to singlet
and back) as a function of spin-lock duration. Maximal singlet state creation is
found for τSL ≈ 280 to 360 ms. We fit for amplitude, A, and ∆ν with the function
I = A sin4(πτSL∆ν/

√
2), and we find ∆ν = 2.15 ± 0.02 Hz. Results for δ = 3.20

ppm proton pair: (c) NMR signal following the first SLIC spin-lock as a function
of nutation frequency for τSL = 332 ms, with a Lorentzian fit to the data yielding
optimal νn = J = 13.5±0.2 Hz. (d) NMR signal after the complete SLIC experiment
with τevolve = 500 ms as a function of spin-lock duration. Maximal singlet state
creation is found for τSL ≈ 300 to 400 ms. From a fit with the function I = A
sin4(πτSL∆ν/

√
2) + c, we find ∆ν = 2.13 ± 0.06 Hz.
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magnetic resonance imaging may require a pulse sequence with a broader nutation

frequency bandwidth.

We next applied the SLIC technique to singlet state creation in a second pro-

ton spin pair in the phe-gly-gly molecule, with chemical shift δ = 3.20 ppm and T1

= 430 ± 5 ms. This proton spin pair is coupled to a third proton that decreases

both the singlet lifetime (TS = 2.15± 0.05 s with no spin-locking applied) and the

triplet/singlet polarization transfer efficiency. We followed the procedure outlined

above to determine the optimal spin-lock nutation frequency νn = J = 13.5 ± 0.2

Hz, and the optimal spin-lock duration τSL,max = 332 ± 9 ms (Fig. 4.5c,d). We

then applied the complete SLIC sequence with τevolve = 500 ms and found about 12%

polarization transfer to the singlet state and back when extrapolated to τevolve = 0,

which represents a transfer efficiency of 49% for each application of SLIC spin-locking.

For comparison, we experimentally investigated singlet state creation with the M2S

sequence. We determined optimized M2S parameters to be n1 = 4, n2 = 5, and τ

= 17.9 ms, and measured that only 4% of the polarization was transferred from the

triplet to the singlet state and back when extrapolated to τevolve = 0, which represents

a 28% efficiency for each application of the M2S sequence.

We also compared the effectiveness of M2S and SLIC using off-resonant trans-

mitter frequencies. We performed singlet state creation and readout sequences using

both M2S and SLIC at a number of transmitter frequency offsets with a constant

τevolve = 500 ms and measured the transfer efficiency. The resulting curves were

fit with a Gaussian to determine a full width at half maximum (FWHM) effective

bandwidth (Fig. 4.6). The effective bandwidth was similar for both sequences, with
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Figure 4.6: Triplet/singlet polarization transfer efficiencies for the δ = 3.71 ppm spin
pair using SLIC and M2S, measured as a function of transmitter frequency offset and
fit with Gaussian functions. SLIC exhibits a higher efficiency and a 15% broader
effective bandwidth.

FWHM bandwidths of 17.6 ± 0.6 Hz for SLIC and 15.3 ± 0.3 Hz for M2S.

4.1.5 Discussion

In summary, we introduced an improved and broadly applicable method, known

as SLIC for “spin-lock induced crossing,” for the creation of long-lived singlet states

of nuclear spins in molecules and other many-atom systems. As an example, we

applied our SLIC technique to two different nearly-equivalent proton spin pairs in the

phenylalanine-glycine-glycine molecule and demonstrated that the SLIC experiment

gives 40% and 300% more signal than the previous M2S technique for the transfer

of triplet state polarization to singlet state population and then back to measurable

transverse triplet state polarization1. SLIC is more effective than M2S primarily

1It was pointed out by G. Pileio that using composite π pulses, such as (π/2)x-(π)y-(π/2)x,
decreases the sensitivity to pulse errors and leads to higher M2S efficiency. The improvement from
SLIC might not be as large if such pulses were implemented.
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because the transfer to the long-lived singlet state begins immediately with SLIC,

without the need for an initial transfer to a singlet-triplet coherence as with M2S.

Though a singlet-triplet coherence can have an extended lifetime relative to a single-

spin coherence time (T2), it generally relaxes significantly faster than the singlet

population lifetime (TS), leading to greater polarization loss and less efficient singlet

state creation for M2S than for SLIC. Additionally, the shorter length and lower peak

power of SLIC ultimately results in significantly less power dissipation in the sample.

The relative advantage of SLIC grows for molecules with small resonance frequency

difference ∆ν between the nuclear spins, which in many cases can be much smaller

than 1/T1.

The SLIC pulse sequence has been further developed by Theis et al., who demon-

strated an adiabatic version (adSLIC) with a broader nutation frequency (B1) band-

width [78]. This makes it possible to accomplish more efficient singlet transfer when

there is less accurate knowledge of the molecular J-couplings. Using adSLIC, Claytor

et al. prepared singlet states in pairs of 13C nuclei at natural isotopic abundance [45],

allowing singlet states to be characterized without synthesizing costly isotopically-

enriched samples.

4.2 Singlet State Transfer

When molecules possess four or more nuclear spins, it is possible to define singlet

and triplet states in various combinations of paired nuclear spins. Such states were

studied by the Warren group, who used M2S and adSLIC sequences to produce singlet

states in symmetric molecules [22, 78]. In that technique, one singlet-triplet subspace
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is defined on a pair of protons and another singlet-triplet subspace is defined on a pair

of 13C nuclei. The protons are coupled more strongly to the 13C nuclei than to one

another. The pulse sequence then performs the operation |T0,HT0,C〉 → |S0,HS0,C〉 to

produce a long-lived singlet state. However, because the spins within each pair are

identical, singlet states cannot be produced selectively in one spin pair or the other.

In this section, we study a different geometry consisting of two spin pairs whose

intra-pair spin-spin couplings are strong but whose inter-pair couplings are much

weaker. We selectively create the singlet state in one spin pair and use the weak

coupling to transfer singlet order to the second spin pair. This technique makes it

possible to measure weak J-coupling differences and to perform NMR experiments in

a singlet-singlet subspace.

Using the glutamate molecule, we demonstrate how typical NMR experiments can

be performed in the Bloch sphere defined by the two singlet states. We implement the

equivalent of a Rabi experiment, in which polarization is coherently transferred back

and forth between the singlet states of the two proton pairs. This allows us to measure

the singlet-singlet interaction strength. We then perform a Ramsey experiment by

creating a coherent superposition of singlet states and allowing the superposition

to precess in the singlet-singlet basis. This provides a measurement of the energy

difference between singlet states and demonstrates that a quantum mechanical phase

is present despite the absence of a net dipole moment. These measurements represent

a first step toward creating a decoherence-free subspace in which both phase and

magnitude information can be stored for times longer than T1 or T2.

We also implement singlet state transfer to study weak coupling differences in the
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phenylalanine-glycine-glycine (phe-gly-gly) molecule. The spin-spin relaxation time,

T2, normally sets a limit on the length of both FID measurements and coherence

transfer experiments that allow the detection of scalar couplings [79]. Thus the cou-

pling strength must generally be of at least the order 1/T2 to be detectable. However,

because the nuclear spin singlet state can have a lifetime TS ≫ T1, coherent inter-

actions between singlet states are detectable on the order 1/TS. We subsequently

measure a scalar coupling difference of ∼ 10 mHz between spins in phe-gly-gly.

4.2.1 Theory

We consider two pairs (labeled by i = 1 and 2) of spin-1/2 nuclei, each with spins

labeled j = a and b. If the coupling between spins within each pair is strong compared

with their resonance frequency difference (Jiaib ≫ |νia−νib|), or if strong spin-locking

is applied (νn ≫ |νia − νib|), then each spin pair is described by singlet and triplet

eigenstates. As shown in chapter 2, these are

|φ+〉 =
1

2
(| ↑↓〉+ | ↓↑〉+ | ↑↑〉+ | ↓↓〉) = 1√

2
|T0〉+

1

2
(|T−〉+ |T+〉)

|φ0〉 =
1√
2
(| ↑↑〉 − | ↓↓〉) = 1√

2
(|T−〉 − |T+〉)

|φS〉 =
1√
2
(| ↑↓〉 − | ↓↑〉) = |S0〉

|φ−〉 =
1

2
(| ↑↓〉+ | ↓↑〉 − | ↑↑〉 − | ↓↓〉) = 1√

2
|T0〉 −

1

2
(|T−〉+ |T+〉). (4.10)

If interactions between spins of different pairs is weak compared with the interactions

of spins within each pair, then the system can be described by 16 new product states

formed from the singlet and triplet states of each spin pair. In the experiments we

perform, we selectively create singlet state in either one spin pair or the other, so
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we only need to consider product states containing the triplet states of one spin pair

and the singlet state of the other, represented by |TS0〉 and |S0T 〉. Here, the triplet

component is some combination of the triplet states described by

|T 〉i = αi|φ+〉i + βi|φ0〉i + γi|φ−〉i. (4.11)

To preserve normalization, we require

α2
i + β2

i + γ2i = 1. (4.12)

The spins of pair 1 are also weakly coupled to the spins of pair 2, i.e., there are

couplings J1a2a, J1a2b, J1b2b, J1b2a. These couplings produce an interaction between

|TS0〉 and |S0T 〉 with strength

C =
J1a2a + J1b2b − J1a2b − J1b2a

4
(α1α2 + β1β2 + γ1γ2) . (4.13)

Note that the interaction between a spin of one pair and the two spins of the other

pair is antisymmetric, which is necessary to couple the two antisymmetric eigenstates.

The interaction is mediated by the difference in cis and trans J-couplings within the

molecule, where cis refers to two nuclei on the same side of the molecular backbone

and trans refers to two nuclei on the opposite side of the molecular backbone. Al-

though intramolecular configurations change rapidly in the molecules studied, there

is a different average coupling Jiai′a versus Jiai′b no matter which particular spins are

labeled a and b [80, 81].

The energy of each state is a function of the spin-locking nutation frequency, νn,

and the intra-pair J-couplings:

E1 =
J1a1b
4

− 3J2a2b
4

+ (α2
1 − γ21)νn,1

E2 =
J2a2b
4

− 3J1a1b
4

+ (α2
2 − γ22)νn,2. (4.14)
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A Hamiltonian for |TS0〉 and |S0T 〉 can then be written as

H = h









E1 C

C E2









. (4.15)

The interaction terms have no effect unless |∆E| = |E1 − E2| < |C|, i.e., transitions

cannot take place as long as the coupling terms are smaller than the energy differ-

ence between the eigenstates. At zero spin-locking nutation frequency, this energy

difference is simply |∆E| = |J1a1b−J2a2b|. However, a subset of states can be brought

on resonance by spin-locking, which modifies the energy of those states containing

α or γ terms. If the RF spin-locking transmitter frequency and power are chosen

such that |∆νn| = |νn,1 − νn,2| = |∆E|, then two states are brought on resonance and

coherent polarization transfer occurs. The singlet state population of each spin pair

then exhibits an oscillation with period

τ =
2

J1a2a + J1b2b − J1a2b − J1b2a
. (4.16)

If spin-locking is applied to spin pair 1, then the difference in effective spin-locking

nutation frequencies can be approximated by

∆νn ≈
√

ν2n,1 +∆ν212 − νn,1, (4.17)

where ∆ν12 is the average resonance frequency difference between spin pair 1 and spin

pair 2.

By controlling the duration of spin-locking, unitary transformations can be per-

formed, such as the equivalent of a π pulse:

|φ+S0〉 → |S0φ+〉, (4.18)
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and a π/2 pulse:

|φ+S0〉 →
1√
2
(|φ+S0〉+ |S0φ+〉) . (4.19)

Note that although the product state describing singlet transfer contains a triplet

state, we will perform experiments that only measure the singlet component of each

spin pair. This might suggest that triplet state relaxation can be ignored. However,

in actuality triplet-triplet interactions and relaxation affect the details of the transfer

process. For instance, if the triplet states interconvert more slowly than 1/τ , then

the interacting singlet states will be entangled with either |φ+〉 or |φ−〉, depending

on the spin-locking phase (a 180◦ phase shift changes the sign of νn). One could

subsequently perform the operations |φ+S0〉 → |S0φ+〉 followed by |φ−S0〉 → |S0φ−〉

in two independent steps. On the other hand, if the triplet states interconvert more

quickly than 1/τ , then the triplet states will always remain in equilibrium with one

another and the singlet transfer will appear independent of the spin-locking phase.

Then the triplet states play a purely ancillary role by bringing the singlet levels

into resonance, and it is possible to view the system as a subspace defined by two

singlet states. This is the case for our experiments because the two spin pairs are

off-resonance by 52 Hz, and when one spin pair is spin-locked the other experiences

the interaction term ν1Î1z+ν2Î2z, which connects states |φ+〉 and |φ−〉. Consequently,

either spin-locking phase effectively drives the transition

|φ+S0〉+ |φ−S0〉 → |S0φ+〉+ |S0φ−〉. (4.20)

Whether a system is described by the first or second situation can be determined

experimentally, as described below. Alternatively, the system can be analyzed by

further dressing with the interaction ν1Î1z + ν2Î2z. Simulations show that this term

91



Chapter 4: Singlet States in Nearly-Equivalent Spins

produces energy shifts making it possible to drive singlet transfer even when the

effective spin-locking is equal for both spin pairs.

4.2.2 Experiment

Experiments were performed in a 200 MHz NMR spectrometer using an 80 mM

solution of monosodium glutamate dissolved in pH 7.0 phosphate buffer and a 20 mM

solution of phenylalanine-glycine-glycine (phe-gly-gly) dissolved in D2O. For both

samples, nitrogen gas was bubbled through the solution for 5 minutes to displace

dissolved oxygen. The glutamate spectrum is identical to that in Fig. 3.2.1b and the

phe-gly-gly spectrum is identical to that in Fig. 4.3.

Figure 4.7 shows the variety of pulse sequence combinations possible for sin-

glet transfer experiments. Each experiment consists of three stages: singlet state

preparation, a singlet transfer procedure, and singlet state readout. The particular

pulse sequence used for preparation and readout depends on the targeted spin pair’s

J-coupling and chemical shift parameters. The SLIC sequence is used for nearly-

equivalent spins while the three-pulse sequence is used for inequivalent spins. For

either case, the singlet state is produced selectively in one of the two proton pairs,

due to the differences in coupling strength and chemical shifts for each pair.

The singlet transfer procedure can consist of either a Rabi or a Ramsey experi-

ment. In the Rabi experiment, CW spin-locking is applied to drive singlet transfer

from one spin pair to another. Either the spin-locking duration τSL or spin-locking

nutation frequency νn can be varied while the other is kept constant. In the Ramsey

experiment, spin-locking with a fixed nutation frequency and duration is creates a
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Figure 4.7: Pulse sequences for singlet state transfer measurements. Singlet state
is selectively created on one spin pair with either a spin-lock induced crossing or a
three-pulse sequence. A Rabi experiment can be performed to measure the singlet
transfer rate to the second spin pair, or a Ramsey experiment can be performed to
study a singlet-singlet coherence. Finally, singlet state is read from one spin pair or
the other before a FID signal is acquired.

coherent superposition between the two singlet states. This is followed by free pre-

cession of the states for time τRamsey and then a subsequent spin-locking application

to read out the superposition. During the free precession period, spin-locking can

be turned off, or it can be applied with a nutation frequency low enough to avoid

inducing singlet transfer.

Finally, a readout sequence is selectively applied to one of the proton pairs to

convert its singlet state to transverse magnetization, which is measured by acquiring

the FID signal. Readout can be performed on either the same spin pair on which the

singlet state was created, or on a different spin pair. Once again, the SLIC sequence

is used for readout from nearly-equivalent spins while the three-pulse sequence is used

for inequivalent spins.
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Figure 4.8: Double Rabi sequence for determining whether entanglement is lost be-
tween the singlet state of one spin pair and the individual triplet states of the other
spin pair.

To determine whether the singlet state of one pair maintains entanglement with

a triplet state of the other pair, or whether the triplet states mix and entanglement

is lost, we perform the sequence shown in Fig. 4.8. During the Rabi sequence, spin-

locking is first applied with phase y for duration τSL, and then applied a second

time with phase −y for duration τSL. If entanglement is maintained, then when

τSL = 1/(2|Jcis − Jtrans|), maximal singlet state transfer occurs for each triplet case

|φ+〉 and |φ−〉, and the singlet state transfer is maximized. On the other hand,

if entanglement is lost, then a full period of singlet state transfer occurs for time

τSL = 1/(2|Jcis − Jtrans|), and the amount of singlet transferred is zero.

4.2.3 Results

Glutamate

Figure 4.9a shows results for a singlet transfer Rabi experiment in glutamate.

The singlet state was prepared on spin pair 1 (chemical shift δ = 2.04 ppm) using the

SLIC sequence with νn = 15.5 Hz and a spin-lock duration of 157 ms. Black points

show the normalized integrated signal of spin pair 2 (δ = 2.3 ppm) when no spin-lock

is applied (νn = 0 Hz) during the transfer stage after reading out its singlet state
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using the SLIC sequence with νn = 17 Hz and a spin-lock duration of 145 ms. While

some residual magnetization is present, it decays within ∼ 200 ms, indicating that

it arises from short-lived triplet states and that no singlet state has been created on

spin pair 2. Moreover, we set an upper limit of 0.01 for the possible amount of singlet

transferred. Red points show the same measurement when νn = 500 Hz (∆νn = 2.7

Hz) is applied during the transfer stage with the transmitter set to δ = 2.04 ppm. The

periodic oscillations indicate a coherent transfer of singlet state population between

spin pairs 1 and 2. Blue points are results for the same experiment (νn = 500 Hz,

∆νn = 2.7 Hz, transmitter at δ = 2.04 ppm) when the singlet state is instead read

out from spin pair 1. Notice that the oscillation has the same period but a 180◦

phase shift, which indicates that singlet state from spin pair 1 is lost in proportion

to that gained by spin pair 2. Approximately 1/3 of the singlet state from spin pair

1 is not transferred, as it corresponds to the population of spin pair 2 in the |φ0〉

state. The period of the oscillation indicates a transfer frequency of 2.5 ± 0.1 Hz,

which should equal the average difference between Jcis and Jtrans. The total singlet

state (purple points) exhibits a weak oscillation, which indicates that there is also a

small amount of coherent transfer into a state other than the singlet state of spin pair

2. During the Rabi experiment, total singlet state population relaxes with a time

constant TRabi = 1.8 ± 0.1 s, which is approximately twice T1 (measured T1 values

are 0.92 ± 0.02 s and 1.11 ± 0.02 s for spin pairs 1 and 2, respectively). The Rabi

experiment was repeated for a range of νn values during the singlet transfer stage

and the amplitude of the oscillations was measured (Fig. 4.9b). A best-fit Lorentzian

indicates a resonance condition ∆νn = ∆E = 2.25± 0.08 Hz.
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a b

Figure 4.9: Measurement of coherent singlet state transfer in glutamate. (a) Singlet
order is selectively prepared predominantly in spin pair 1 and is followed with spin-
locking at a 500 Hz nutation rate during the evolution time. The singlet state is then
read out from either spin pair 1 (blue points) or spin pair 2 (red points). Oscillations
in the singlet state population of each spin pair indicate f = |Jcis − Jtrans| = 2.5± 0.1
Hz. If spin-locking is not applied, singlet transfer does not occur (black points). The
small amount of residual magnetization decays with a time constant T = 205 ± 7
ms, indicating that it arises from short-lived triplet states. The sum of singlet state
measurements (magenta points) decays exponentially with time constant TRabi =
1.8±0.1 s. All intensities are integrated signals normalized to a conventional spectrum.
Spin pair 1 results were fit with a function A cos2(πfτSL) exp(−τSL/TRabi) + c while
spin pair 2 results were fit with a function A sin2(πfτSL) exp(−τSL/TRabi)+c. (b) The
amplitude of singlet transfer, extracted from the parameter A of the fit, is plotted
for singlet transfer measurements performed with a range of spin-locking nutation
frequencies. A Lorentzian fit gives a peak value of 2.25 ± 0.08 Hz for the resonance
condition with a FWHM of 4.3± 0.4 Hz.
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To perform a Ramsey experiment, we first prepared the singlet state in spin pair 1

and then performed a π/2 rotation in the singlet-singlet subspace by spin-locking with

nutation frequency νn = 500 Hz on-resonance with spin pair 1 (δ = 2.04 ppm) for

100 ms. This created a coherent superposition state of the form (|TS0〉+ |S0T 〉) /
√
2.

We next applied spin-locking for time τRamsey with nutation frequency νn = 47 Hz to

mix triplet quantum states without inducing singlet transfer (we found that if spin-

locking is not applied during the free precession period, we do not detect Ramsey

oscillations). We then performed a second π/2 rotation using identical spin-locking

as the first rotation. Finally, we read out the singlet state from either spin pair 1 or

2 using SLIC.

Figure 4.10a shows results of the Ramsey experiment when the transmitter is

centered on the spin pair 1 resonance during the free precession time. When singlet

state is read out from spin pair 2 (red points), the signal exhibits oscillations at

f = 2.33± 0.03 Hz, as calculated by fitting to the model function

A[cos(2πf − φ) exp(−τRamsey/T
∗
2s) + c] exp(−τRamsey/T1s). (4.21)

The oscillations represent the singlet-singlet coherent superposition precessing in the

Bloch sphere defined by the singlet-triplet product states. We obtain a satisfactory fit

(χ2/dof < 1) when a small phase correction of φ = 20◦ is applied to account for extra

delays during the free precession time (such as the time needed to switch spin-locking

power). The signals exhibit two forms of decoherence, dephasing with a characteristic

time T ∗
2S and depopulation with the singlet lifetime TS. For readout from spin pair 2,

we find values TS = 4.4± 0.2 s and T ∗
2S = 1.3± 0.4 s. When singlet state is read out

from spin pair 1 (green points), the signal exhibits corresponding oscillations 180◦ out
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of phase with those from spin pair 2, with values f = 2.30±0.08 Hz, TS = 2.91±0.05

s, and T ∗
2S = 0.55 ± 0.13 s. The frequency of both measurements roughly matches

the singlet transfer resonance condition and represents the energy difference between

the two sets of singlet-triplet product states defining the Bloch sphere. The singlet

state lifetimes are 2 to 4 times longer than T1, and the singlet lifetime of spin pair 2

is longer than that of spin pair 1, because spin pair 2 is further from the downfield

proton that drives singlet relaxation. For both cases, the measured dephasing time

is ∼ 25% of the singlet lifetime.

Figure 4.10b shows results when the transmitter is centered 90 Hz downfield from

spin pair 1 during the free precession. When reading from spin pair 2 (red points),

we find f = 2.11 ± 0.05 Hz, TS = 2.2 ± 0.2 s, and T ∗
2S = 0.52 ± 0.14 s with φ set to

zero phase shift. Reading from spin pair 1, we find f = 2.17± .06 Hz, TS = 1.4± 0.1

s, and T ∗
2S > Ts. We require a phase correction of 97◦ beyond the expected 180◦

shift. The off-resonant driving reduces the singlet lifetimes by half but improves the

Ramsey contrast and significantly extends T ∗
2S as measured from spin pair 1. Both

sets of measurements also exhibit fast oscillations during the first 300 ms that are

likely due to triplet state coherences. More studies are needed to understand why

a phase shift occurs between the two measurements in this scenario. A significant

phase shift might arise from the time delay required for changing the frequency. It is

also possible that some singlet/triplet polarization transfer is occuring for spin pair

1 during the free precession time.

Finally, to confirm that the singlet state of spin pair 1 does not remain entangled

with the triplet states of spin pair 2, we performed the double Rabi experiment
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a

b

Figure 4.10: Measurement of Ramsey oscillations in the singlet-singlet subspace of
glutamate. Spin-locking is applied at nutation frequency νn = 47 Hz with the
transmitter centered (a) on the pair 1 resonance frequency and (b) 90 Hz down-
field from spin pair 1. Green and red points are measurements from pair 1 and
2, respectively. Black curves are sinusoidal fits with the function A[cos(2πf −
φ) exp(−τRamsey/T

∗
2s) + c] exp(−τRamsey/T1s). Blue curves are sinusoidal fits with the

function A[− cos(2πf − φ) exp(−τRamsey/T
∗
2s) + c] exp(−τRamsey/T1s). In both plots,

intensity represents integrated signal normalized to a conventional spectrum.
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Figure 4.11: Measurement of singlet transfer using the double Rabi experiment. The
spin-lock during the singlet transfer stage is applied for time τSL twice, once with
phase y and once with phase -y. A full period of oscillation occurs when 2τSL =
1/|Jcis − Jtrans|, indicating that the transfer occurs simultaneously for both triplet
components |φ+〉 and |φ−〉 rather than in separate stages.

shown in Fig. 4.8. Singlet state was prepared in spin pair 1, 500 Hz spin-locking was

applied to spin pair 1 as in previous measurements, and the singlet state was read out

from either spin pair 1 or 2. The results (Fig. 4.11) show oscillations with a period

T = 1/(2|Jcis − Jtrans|), as expected if entanglement is lost. As a consequence, only

one of the two spin-lock phases needs to be applied to transfer the full amount of

accessible singlet state from one spin pair to the other. Moreover, since the triplet

state identity can be ignored, the Ramsey experiment can be viewed as taking place

solely within a singlet-singlet subspace. The triplet states only act to make the

singlet-singlet interactions accessible by bringing the states into resonance.
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Phenylalanine-glycine-glycine

For measurements of singlet state transfer in phe-gly-gly, we employed the pulse

sequences of Fig. 4.7, but we used the three-pulse sequence to prepare and read out

singlet state from the proton pair at δ = 3.89 ppm (center of molecule), while still

using a SLIC sequence for the proton pair at δ = 3.71 ppm (end of molecule). As

in the glutamate Rabi experiment, singlet state was first prepared in one of the two

proton pairs, followed by a period of spin-locking for τSL with an applied nutation rate

νn. The singlet state was then converted back to transverse magnetization in either

the original proton pair or the adjacent pair before acquisition of the FID signal.

Figure 4.12a presents measurements of singlet transfer in phe-gly-gly between the

center spin pair at δ = 3.89 ppm and the end spin pair at δ = 3.71 ppm when νn = 280

Hz (∆νn = 2.3 Hz). Results are shown for two cases: (1) the singlet state is created

in the end pair and read out from the center pair (black points), and (2) the singlet

state is created in the center pair and read out from the end pair (red points). In

both cases, the transmitter is set to δ = 3.89 ppm for spin-locking to ensure a good

lifetime for the spin-locked singlet. Notice that unlike the results for glutamate, no

oscillation is observed, only a buildup of singlet state followed by a long decline. From

a fit, we estimate a value |Jcis − Jtrans| ≈ 10 mHz and a decay time of TRabi ≈ 12

seconds, which is slightly lower than the central spin pair’s singlet lifetime TS = 14.5

s.

The transfer appears less effective when transferring the singlet state from the

center pair to the end pair, possibly because the singlet state can also be transferred

in the other direction to the third spin pair of the chain. We attempted to increase the
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a b

Figure 4.12: Measurement of singlet state transfer in the phenylalanine-glycine-
glycine molecule. (a) The singlet state is created in one spin pair and read out from
the adjacent spin pair. Best-fit curves of the form A[sin2(πfτSL)+ c] exp(−τSL/TRabi)
indicate a transfer rate f = |Jcis − Jtrans| ≈ 10 mHz. (b) The singlet state is created
in the center spin pair and transferred to the end spin pair multiple times before
readout in order to increase the total amount of singlet transferred.

total amount of the singlet state transferred using a “pumping” scheme to transfer

the singlet state multiple times. We created singlet state polarization on the center

spin pair using the three-pulse sequence and spin-locked at νn = 280 Hz to transfer

the singlet state to the end pair. We then removed spin-locking for time 5T1 = 3.1 s,

created singlet state polarization in the center spin pair again using the three-pulse

sequence, and repeated the spin-locking to induce a second singlet state transfer. This

process was repeated multiple times before finally reading out the singlet state from

the end pair using a SLIC sequence. After four of these pumping cycles, we were able

to achieve a significant increase in the singlet state population of the end pair versus

a single transfer sequence (Fig. 4.12b). Further increasing the number of cycles to

eight had little effect, as the 25 second lifetime of the end spin pair’s singlet state

likely limits the total amount of singlet state buildup achievable.
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4.2.4 Discussion

We have demonstrated that interactions between two singlet states within a molecule

can produce coherent transfer of singlet order between one spin pair and another.

The resonance condition needed to effectuate this transfer is controllable, allowing

unitary operations to be performed in a subspace spanned by two singlet states.

Because singlet state relaxation is slow compared to spin-lattice relaxation, this rep-

resents a step toward a decoherence-free subspace (DFS) in which quantum informa-

tion can be stored beyond conventional relaxation times. A DFS consisting of four

spins has been proposed before [82, 83], using the two spin-zero states |S0S0〉 and

(|T+T−〉 − |T0T0〉+ |T−T+〉)/
√
3. Our system differs in that we utilize the individual

singlet states of each spin pair. Decoherence within the DFS then occurs through de-

population of the singlet states as well as dephasing due to fluctuations in the singlet

state energy levels. Since the singlet state energy levels are defined by the geminal J-

coupling between spins, they are sensitive to scalar relaxation of the first kind, which

is generally extremely slow compared with other relaxation mechanisms [24]. How-

ever, our measurements of glutamate indicate a depopulation time greater than T1

but a dephasing time similar to T1, indicating that a detailed study of the dephasing

mechanism will be needed.

We have also demonstrated the measurement of weak J-coupling differences on

the order of 10 mHz. Such measurements could be useful for the determination of

molecular structures, especially proteins and macromolecules, as the difference in cis

and trans J-couplings is a function of the molecular geometry [80, 81]. Many current

multidimensional NMR methodologies for structure determination, such as COSY
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and TOCSY [84], depend on coherence transfer among states that relax on the order

1/T2 or 1/T1ρ. As proton spin lifetimes rarely exceed a few seconds, this sets a lower

limit of the order 100 mHz for coupling resolution, which limits the ability to detect

long-range coupling differences. Singlet state transfer may provide a way to detect

weaker coupling differences that provide information about structure at distances five

or more bond lengths apart, as well as allow for measurements across chains such as

phe-gly-gly that contain only distantly-spaced protons.
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Low-Field J-Coupling Spectroscopy

Up to this point, we have discussed NMR measurements performed in a high-

field 4.7 T (200 MHz proton resonance frequency) superconducting magnet. At high

magnetic fields, liquid-state NMR spectra exhibit features originating from chemical

shifts and scalar coupling. We now turn to measurements in a low-field magnet

operating at 6.5 mT (276 kHz proton resonance frequency). At such a low magnetic

field, homonuclear chemical shifts are typically much weaker than scalar coupling

(∆ν ≪ J). As a consequence, a homonuclear spin system exists in a strongly-coupled

regime and its energy levels are best described by dressed eigenstates. Chemical shifts

are not detectable, and only a single spectral line appears.

Despite this apparent limitation, low-field spectroscopy is of interest for applica-

tions where high magnetic fields are prohibitive, such as in mobile spectrometers and

in the presence of ferromagnetic or paramagnetic substances. To gain useful spectral

information from proton NMR at low magnetic fields, a substance can be synthesized

containing a heteronucleus such as 15N or 13C. The heteronucleus breaks the chemical
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equivalence of the spin system, thereby making previously forbidden NMR transitions

accessible. The result is a complex spectrum in which the primary separation between

spectral lines results from scalar coupling [85–89].

The need for a heteronucleus is a severe limitation when trying to characterize

natural samples, as only a few percent of molecules will contain a 13C nucleus. We

develop an alternative method for J-coupling spectroscopy that does not require the

sample to contain a heteronucleus. Our technique is based on the same principles

as the SLIC sequence demonstrated in section 4.1, only instead of investigating a

level crossing between the singlet state and a triplet state composed of two spins, we

map out level crossings among a larger number of dressed states, each with contribu-

tions from many spins. We perform demonstrations of SLIC spectroscopy on ethanol

samples and show that the spectral information obtained can be used to determine

molecular properties.

5.1 Theory

Methods have been developed for predicting spectra from both zero-field [90, 91]

and low-field [92, 93] pulsed NMR experiments. The calculation is normally ap-

proached in three steps: (1) The eigenstates are determined for groups of identical

spins by dressing the product states with the scalar couplings among those spins.

Since the spins are identical, the eigenstates can easily be found using the Clebsch-

Gordan coefficients. (2) Proton-heteronucleus interactions are added. If the magnetic

field is weak enough that heteronuclear scalar coupling is greater than the proton-

heteronucleus frequency difference, then new dressed eigenstates are calculated via
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diagonalization. Otherwise perturbation theory is used. (3) Perturbation theory is

used to calculate splittings caused by weaker proton-proton couplings between chemi-

cally inequivalent spin groups. This technique leads to eigenstates that are convenient

for predicting the transition frequencies and intensities for the heteronuclear spin sys-

tem.

However, when such an analysis is performed for a homonuclear spin system, one

finds that many of the NMR transitions are forbidden. For example, Emondts et

al. demonstrated a nuclear spin singlet state at zero magnetic field between a 13C

nucleus and a proton. In that case, the system can be manipulated via a magnetic

pulse through the interaction

〈T0|γIB0Îz + γSB0Ŝz|S0〉 = (γS − γI)B0/2, (5.1)

where S refers to the 13C spin and I refers to the 1H spin. The interaction strength

is proportional to the difference in gyromagnetic ratios. In the case of two identical

protons, the gyromagnetic ratio is identical and this interaction term is equal to zero,

so no such manipulation is possible. Only transitions within the triplet subspace

can be addressed. The same conundrum appears when considering interactions in

systems with more numerous spins; only transitions within each spin subspace are

addressable.

The addition of even a weak static magnetic field causes chemical shifts to break

the protons’ chemical equivalence, which makes transitions between different spin

subspaces theoretically accessible. Unfortunately, as long as ∆ν ≪ J , the transition

probabilities are suppressed by a factor ∼ ∆ν2/4J2 and are too small to be easily

detected from a FID measurement. However, we note that this situation is closely
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analogous to the nearly-equivalent proton pairs studied at high field. In that case, we

showed that spin-locking could induce energy crossings at which the weak interactions

take effect, and we measured the crossings by detecting a dip in x-axis magnetization.

Here, we show that the same behavior occurs for more complex spin systems, thereby

allowing the otherwise suppressed J-couplings to be measured. We discuss the case

of ethanol in appendix B and summarize the procedure for finding its level crossings

here.

For a hydrated ethanol molecule, one only needs to consider the aliphatic protons,

as the alcohol proton exchanges at a rate much faster than the J-coupling. We first

combine groups of spins that are magnetically equivalent even in the presence of a B0

field. These are the methylene group (2 geminal protons) and the methyl group (3

geminal protons). The methylene group eigenstates consist of one singlet and three

triplet states, whereas the methyl group eigenstates consist of four spin-3/2 states

and four spin-1/2 states. The energies of these states are defined by the geminal

J-couplings between the protons, which are present but undetectable in conventional

NMR measurements for magnetically equivalent spins.

We then form dressed states from the proton groups coupled by the next-strongest

scalar couplings. In ethanol, this is the vicinal J-coupling between methylene and

methyl group protons. These states are identified by angular momentum quantum

numbers F and mF (i.e., states |F,mF 〉) and now include protons that have different

chemical shifts. We define the eigenstates as if the chemical shifts were identical and

then consider the chemical shift difference as an interaction term ∝ ∆ν between the

dressed states, as in the analysis of the SLIC technique for singlet and triplet states
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discussed in section 4.1.2.

Finally, we consider the effects of spin-locking applied at the single resonance line

measured at low field. All protons are spin-locked with nutation frequency νn, which

dresses the states within each F subspace and splits those dressed states proportion-

ally to mFνn. At specific nutation frequencies, energy levels cross (spin-lock induced

crossing); however, not all crossings have associated interactions. As discussed in ap-

pendix B, the interactions produced by chemical shift differences only occur between

spin-locked states with ∆F ′ = ±1 and ∆mF ′ = ±1. In these cases, the interaction

terms drive a polarization transfer between states, which is detected as a drop in

x-axis magnetization. For hydrated ethanol, the dips are predicted to occur at 3
2
J

and 5
2
J , whereas for dehydrated ethanol a more complex spectrum is predicted due

to perturbations by the alcohol proton.

5.2 Experiment

To create a J-coupling spectrum, we perform either of the SLIC pulse sequences

shown in Fig. 5.1. In Fig. 5.1a, we apply a π/2 pulse to create x-axis magnetization

and then spin-lock at nutation frequency νn for time τSL. This is followed by the

acquisition of a FID signal. In Fig. 5.1b, we perform the same experiment but split

the spin-lock into two halves, applied with opposite phase and divided by a π pulse

that helps reverse the effects of B0 detuning.

We performed measurements in a custom-built low-field magnetic resonance im-

ager operating at 6.5 mT (276 kHz proton resonance frequency) [94], shown in Fig.

5.1c. The system is centered around a four-coil bi-planar electromagnet powered by a
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a. SLIC sequence for detecting level crossing

b. Improved SLIC sequence to remove artifacts
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Figure 5.1: SLIC spectroscopy experiment. (a) Standard SLIC pulse sequence for
detecting a level crossing. (b) Modified SLIC pulse sequence with echo to remove
effects from shifts in B0. (c) Image of the low-field magnetic resonance system.

Danfysik System 8500 power supply. Gradient coils, powered by Techron 7782 ampli-

fiers, enable imaging as well as shimming of the static field. With shimming enabled,

we consistently achieve linewidths on the order of 1 Hz. Pulse sequences are syn-

thesized by a Tecmag Redstone console and amplified by a Tomco BT00500-AlphaS

500W RF power amplifier before being sent to the probe coil via a transmit/receive

(T/R) switch. The system’s passive T/R switch (a quarter-wave small signal diode

transcoupler) prevented us from performing the experiment with a single coil, as the

voltages applied during low-power spin-locking were below the diode threshold volt-

age needed to turn the switch on. Therefore, we performed the experiment using

crossed coils. A 25 cm diameter solenoidal coil (29 cm long with 62 turns) was used

as a transmitter with its axis oriented along the x-direction, and a smaller 7 mm
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solenoidal receive coil (4 cm long with 40 turns) containing the sample was placed

inside, oriented along the y-axis. The FID signal is sent via a Miteq AU-1583, 36 dB

gain preamplifier to the Tecmag console.

5.3 Results and Discussion

Conventional NMR spectra are shown in Fig. 5.2 for anhydrous ethanol acquired

at both 4.7 T and 6.5 mT. From the high-field spectrum, we find JAB = 7.1 Hz

coupling between the methyl group and methylene group protons, and JAC = 4.8 Hz

coupling between the methyl group protons and the alcohol proton. The low-field

spectrum shows a single featureless line. The 2.4 ppm chemical shift between methyl

and methylene group protons corresponds to only 0.66 Hz at 6.5 mT, much weaker

than the scalar couplings, leading other spectral transitions to be suppressed by a

factor of ∼ 420.

SLIC spectra at 6.5 mT, acquired using the pulse sequence in Fig. 5.1b, are shown

in Fig. 5.2c for anhydrous ethanol and a 9:1 ethanol:water mixture. The addition of

a small percentage of water greatly increases the alcohol proton’s chemical exchange

rate and eliminates the effects of the coupling JAC . Measurement results were also

simulated with SpinDynamica and are shown for comparison. The depths of the

features range between 5% and 25% of the signal intensity. Both the positions and

depths of the dips are in general agreement with the simulations, but significant noise

is present even after applying a moving window average. Moreover, some positions

deviate ∼ 1 − 2 Hz from calculated values, possibly due to miscalibration of the

nutation frequency vs. spin-locking power or drifts in B0.
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a b

c

Figure 5.2: Conventional and SLIC spectra of ethanol. (a) In a 200 MHz spectrome-
ter, the conventional spectrum exhibits a typical splitting pattern due to J-coupling.
The alcohol proton experiences little chemical exchange and also shows a splitting
pattern (inset). The spectral assignments are indicated. (b) In a 6.5 mT spectrom-
eter, ∆ν ≪ J , and no spectral features are observed. (c) Modified SLIC spectra at
6.5 mT of anhydrous and hydrated ethanol exhibit dips corresponding to J-coupling
strengths within the molecule. For anhydrous ethanol, 8 averages with τSL = 2s were
acquired, and data were smoothed with a 3-point moving window average. For hy-
drated ethanol, 16 averages with τSL = 1s were acquired, and data were smoothed
with a 3-point moving window average.
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We found that a significant source of noise was fluctuations in the B0 field caused

by the movement of cars and trucks outside the lab. At times these shifted the

spectral line by 4 Hz, enough to significantly change the effective spin-locking power

given that the nutation rates are on the order of 10 Hz. When the sequence in Fig.

5.1a was employed, signal intensity was highly sensitive to shifts in B0, with even

small shifts creating 50% dips in x-axis magnetization. The addition of a π pulse in

sequence 5.1b decreased but did not eliminate the effects.

Applying feedback to the electromagnet to stabilize the B0 field or using a shielded

low-field NMR system should lead to significant improvements in the SNR. SLIC

spectroscopy could also be performed following pre-polarization in a high-field magnet

or following Overhauser enhancement [95, 96]. This would not only improve the SNR,

but it would also provide a way to measure the spin-lattice relaxation times of the

interacting dressed states by recording SLIC spectra following a range of delays after

the polarization step.

In conclusion, we have demonstrated a novel method of J-coupling spectroscopy

at low magnetic field that does not require the addition of a heteronucleus. This may

provide a path to chemical identification using mobile low-field spectrometers and

magnetic resonance imagers. More generally, it is applicable to any strongly-coupled

spin system. Examples include protons at moderate and high magnetic fields, where

it may be used to extract extra information in conjunction with conventional NMR

techniques, and spin ensembles in condensed matter systems such as those found in

diamond, where it may be used to identify couplings among surface electrons or nuclei

in the lattice.
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Introduction to Nitrogen-Vacancy

Centers in Diamond

The nitrogen-vacancy (NV) center is a crystallographic defect in diamond with

unique optical and spin properties that makes it useful for a wide variety of appli-

cations, ranging from measurements of magnetic and electric fields to quantum in-

formation processing [97–107]. As a color center, the NV exhibits fluorescence when

excited with visible light. As an electronic defect, the NV− charge state contains

six non-bonding electrons arranged in an S = 1 spin configuration [108, 109]. The

electronic and optical properties are linked via spin-orbit coupling, leading to both

spin-state-dependent fluorescence intensity and optical pumping into the ground spin

state [110]. These features make it possible to perform electronic spin resonance

(ESR) on the spins of a single defect by controlling the spin state with microwave

pulses and both preparing and detecting the spin state optically.

A nitrogen-vacancy center is created when a substitutional nitrogen atom becomes
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adjacent in the lattice to a vacancy, either during diamond synthesis or as the vacancy

diffuses through the lattice during high-temperature annealing (See Fig. 6.1a for a

diagram of the structure). The NV center is more stable than the two separate

defects [111], so NV formation is thermodynamically favorable. The NV center can

exist in either the NV0 or NV− charge state, with the latter possessing the optical

and spin properties described above. In this work, “NV center” will refer to NV−.

These defects can be found at low concentrations in natural diamond, but they can

also be formed controllably at high concentrations in synthetic diamonds. The best

results are achieved using chemical vapor deposition (CVD). In this technique, the

diamond is grown slowly from methane in the presence of hydrogen gas. Nitrogen

gas can be added, leading to nitrogen impurities at well-controlled concentrations. A

small fraction (< 1%) combine with vacancies to form NV centers. If nitrogen gas

is added throughout the growth process, this leads to NV formation throughout the

diamond [112], whereas if nitrogen is added for a short period of growth, a “delta

doped” NV layer can be created [113]. An alternative method for forming an NV

layer is to start with an undoped CVD diamond and implant nitrogen using an ion

beam. This allows the defect depth and density to be well controlled. Annealing

to mobilize vacancies then spurs the formation of NV centers within the layer of

implanted nitrogen. At low implantation energies, NV centers can be produced very

close to the surface (< 10 nm) [114, 115].

The NV center’s six non-bonding electrons fill four molecular orbitals (MO) de-

fined by their point group symmetry as a′1, a1, ex, and ey. The lower-energy a
′
1 orbital

is filled by a pair of electrons, leaving the remaining four electrons to populate the
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three higher-energy MOs in a number of combinations [108, 116]. The ground state of

these electronic configurations is a21e
2. Orbital parity symmetrization leads different

combinations within this subspace to possess either triplet or singlet spin states. The

electrons can populate either the spin ground state 3A2 triplet level or one of two

singlet levels, 1A1 and 1E. The next excited electronic state is a1e
3, which possesses

a spin ground state triplet 3E and a higher-energy singlet 1E ′. The system can be

excited from the ground electronic state to the first excited state through the absorp-

tion of an optical photon whose wavelength is between the zero-phonon line at 637

nm and an upper vibronic band limit of ∼ 475 nm. The excited state most com-

monly decays back to the ground state through fluorescence at wavelengths between

637 nm and ∼ 800 nm with a lifetime of ∼ 13 ns. However, the excited state can

also decay non-radiatively into the 1A1 singlet state, which occurs preferentially from

the ms = ±1 state and is followed by radiative decay at 1043 nm to the 1E singlet

state and then non-radiative decay to the 3A2 ground state, all on a timescale of

∼ 300 ns [117]. The non-radiative decay from the excited state to 1A1 is believed to

occur via spin-orbit coupling as a result of the 1A1 and 3E energy levels being close

in energy, although the exact mechanism is not yet understood [108]. Since the decay

through the singlet state is spin-state dependent, continuous pumping from ground

to excited electronic state results in a buildup of state ms = 0 in the ground state.

This feature provides a way to create spin polarization, typically at levels between

80% and 95% [104, 107, 117–120]. Moreover, the fluorescence intensity is stronger for

ms = 0, which allows for optical detection of the spin state. The energy levels and

transitions are summarized in Fig. 6.1b.

116



Chapter 6: Introduction to Nitrogen-Vacancy Centers in Diamond

3A
2

3E
1A

1

1E

∣0 〉

∣−1〉

∣0 〉

∣+1 〉

∣−1〉

∣+1 〉

Δ

ΔD
es

D
gs

ZPL

1043  nm

a b

Figure 6.1: NV center structure, energy levels, and dynamics. (a) The NV center
structure consists of a substitutional nitrogen atom (blue) and a vacancy (white cir-
cle). The NV center axis is defined by the vector between the nitrogen atom and the
vacancy (green arrow). There are four possible axes, depending on the position of
the nitrogen atom around the vacancy. (b) NV center energy levels and transitions.
The ground triplet state 3A2 is split into three energy levels by a zero-field splitting
Dgs = 2.87 GHz, and by Zeeman splitting ∆ = Bz × 2.8 MHz/G. The excited triplet
state 3E is split into three energy levels by a zero-field splitting Des = 1.41 GHz,
and by Zeeman splitting ∆ = Bz × 2.8 MHz/G. The ground and excited electronic
states are separated by an energy equivalent to the zero-phonon line ZPL = 632 nm.
The lower ground state singlet 1E is separated from the upper ground state singlet
1A1 by an energy equivalent to the wavelength 1043 nm. Light with a wavelength
shorter than the ZPL (green line) excites the ground state to high vibronic levels of
the excited state, which then decay non-radiatively to the lowest vibronic level of the
excited state (blue dashed line). The system can then either fluoresce with emission
of red light (red line) or decay non-radiatively to the singlet states via an inter-system
crossing (purple dashed line) and eventually back to the ground triplet state. The
inter-system crossing is faster when the spin is in the | ± 1〉 spin state than in the
|0〉 spin state. This leads to optical pumping and spin-state-dependent fluorescent
intensity.
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The NV center spin states can also be manipulated through electron spin res-

onance (ESR) using microwaves. The ms = 0 state is split from the ms = ±1

state by a zero-field splitting Dgs = 2.87 GHz. In the presence of a magnetic field,

ms = +1 is separated from ms = −1 by the Zeeman interaction ∆ = 2γeBz, where

γe ≈ 2.8MHz/G is the electron gyromagnetic ratio and Bz is the magnetic field pro-

jection along the NV center’s axis. This axis is defined by the direction of the vector

connecting the nitrogen atom and the vacancy. Magnetic fields along the x and y

axes (i.e., Bx and By) lead to state mixing, which lowers the fluorescence contrast and

perturbs the energy levels [121, 122]. Hyperfine interactions between the electrons

and the nitrogen nuclear spins lead to further structure for the ms = ±1 states. The

energy levels can be elucidated via measurements of the optical fluorescence during

the simultaneous application of laser light and microwaves (Fig. 6.2a). The fluores-

cence decreases when the microwaves are on resonance with a transition. Ultimately,

the ESR spectrum of a single NV center in a static magnetic field consists of six

resonances for a 14N defect (I = 1) and four resonances for a 15N defect (I = 1/2).

By applying microwaves to a single resonance, the spin states can be coherently

manipulated to create superposition states. The simplest experiment, a Rabi nuta-

tion, measures the NV fluorescence after optical pumping followed by a microwave

pulse (Fig. 6.2b). As the microwave pulse length or power are varied, a sinusoid is

mapped out as the spin state is driven around the longitudinal axis of the Bloch

sphere. A pulse length can be chosen to rotate the magnetization vector from |0〉 to

|1〉, thereby defining a π pulse, or from |0〉 to (|0〉+ |1〉)/
√
2, defining a π/2 pulse. A

Ramsey experiment can be performed by optically pumping, applying a π/2 pulse,
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Figure 6.2: Four common pulse sequences for NV ESR experiments. (a) CW ESR for
detecting resonance frequencies. (b) Rabi nutation for pulse length calibration. (c)
Ramsey experiment for measuring T ∗

2 and resonance frequencies. (d) Hahn echo (n =
1) and dynamical decoupling (n > 1) for extending coherence time and measuring T2.

and then allowing the state to evolve. A second π/2 pulse projects the remaining

coherence back into state |0〉 or |1〉 (Fig. 6.2c), and a fluorescence measurement is

used to determine how much the coherence decayed. This decay, characterized by the

dephasing time T ∗
2 , results from magnetic fluctuations in the spin bath (and magnetic

inhomogeneities when measuring multiple NV centers in an ensemble).

Dephasing from slow fluctuations can be reversed using a Hahn echo sequence.

This places a π pulse in the middle of the Ramsey sequence, thereby flipping the

spin state and reversing the time evolution of the coherence (Fig. 6.2d). Decay of

the coherence still occurs if the integrated environmental noise after the π pulse

is different from that before the pulse. In this way, the Hahn echo is a form of

auto-correlation measurement of the magnetic environment. The signal intensity is

subsequently a function of the correlation time of the magnetic noise. The Hahn echo

signal decreases as the sequence length increases, and the characteristic time scale is

the decoherence time T2. (Note that this is a different definition of T2 than what is
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commonly used in NMR literature, as the measurements are performed differently.)

One can also view the Hahn echo sequence as defining a filter for the NV coher-

ence’s sensitivity to its environment [123–126]. In an echo experiment, the coherence

is not sensitive to high-frequency fluctuations, as the integral over the fluctuations

averages to zero during each half of the sequence. It is also not sensitive to very

slow fluctuations, since in that case the environment appears approximately identical

during each half of the sequence. However, it is particularly sensitive to fluctuations

on the time scale 1/τ , where τ is the Hahn echo sequence length. One can increase

the sensitivity by repeating the Hahn echo again any number of times before the

final π/2 pulse. This is called a dynamical decoupling (DD) sequence, as it decouples

the coherence from environmental noise at all frequencies except for particular reso-

nances. While the goal of dynamical decoupling sequences is normally to extend the

coherence lifetime, the fact that the sequences show particular sensitivity to specific

frequencies gives these sequences a dual purpose. By sweeping DD sequences through

their resonances and monitoring the spin state coherence loss for each frequency step,

one can extract a spectrum of the magnetic environment [126].

The following chapter describes how a dynamical decoupling technique applied

to the NV center spins can be used to detect the magnetic fields of nuclei on the

diamond surface in proximity to the NV center. As the nuclei precess in a magnetic

field, they create an oscillating magnetic signal at their Larmor frequency that can

be detected through the effect on the NV center’s spin coherence. The signal they

create is locally large but drops off quickly with distance (∼ 1/d3), resulting in the

ability of an NV center to detect only nearby nuclei, on the scale of nanometers.
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This makes it possible to perform nanoscale nuclear magnetic resonance spectroscopy

and nanoscale magnetic resonance imaging for the first time. Moreover, it provides a

convenient way to measure the depth of an NV center below the diamond surface.
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Nanoscale NMR Spectroscopy and

Imaging

Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imag-

ing (MRI) provide non-invasive information about multiple nuclear species in bulk

matter, with wide-ranging applications from basic physics and chemistry to biomed-

ical imaging [127]. However, the spatial resolution of conventional NMR and MRI

is limited to several microns even at large magnetic fields (> 1 tesla) [128], which

is inadequate for many frontier scientific challenges such as single molecule spec-

troscopy and in vivo imaging of individual biological cells. Here we demonstrate

nanoscale NMR spectroscopy and imaging of multiple nuclear species (1H, 19F, 31P)

under ambient conditions and at moderate magnetic fields (∼ 20 millitesla) using

two complementary sensor modalities that exploit optical measurements of nitrogen-

vacancy (NV) color centers in diamond. We interrogate single shallow NV centers

in a diamond chip to perform simultaneous multi-species NMR spectroscopy on few-
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nanometer-sized samples, placed on the diamond surface, which have a statistical

spin polarization equivalent to ∼ 100 polarized nuclei. We also employ a diamond

chip containing a shallow, high-density NV layer, to demonstrate wide-field optical

NMR spectroscopy and imaging with sub-micron resolution of samples containing

multiple nuclear species. This work lays the foundation for far-ranging NMR and

MRI applications at the nanoscale, such as determining the structure and dynamics

of single proteins and other biomolecules, identification of transition states in surface

chemical reactions, and functional biological imaging with subcellular resolution and

tissue field-of-view.

The spatial resolution of conventional NMR and MRI is limited to macroscopic

length scales due to the modest signal-to-noise ratio (SNR) provided by inductively-

detected thermal spin polarization, even in large (> 1 tesla) magnetic fields [129–131],

and the finite strength of externally-applied magnetic field gradients used for Fourier

k-space imaging [128]. Other precision magnetic sensors have only macroscopic reso-

lution, e.g., semiconductor Hall effect sensors [132] and atomic magnetometers [133],

and/or require operation at cryogenic temperatures, e.g., superconducting quan-

tum interference devices (SQUIDs) [134] and magnetic resonance force microscopy

[135, 136]. Alternatively, NV centers in diamond have recently been shown to pro-

vide sensitive, nanoscale magnetic sensing and imaging for a wide range of operational

conditions [97, 98, 137]. In particular, NV centers in room-temperature diamond can

be brought within a few nanometers of magnetic field sources of interest while main-

taining long NV electronic spin coherence times (∼ 100 µs), a large Zeeman shift

of the NV spin states (∼ Bohr magneton), and optical preparation and readout of
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the NV spin (Fig. 7.1a). Highlights of NV-diamond magnetic sensing to date, all

performed under ambient conditions, include sensitive spectroscopy [104, 126, 138]

and imaging [139–141] of electron and nuclear spin impurities within the diamond

sample; single electron spin imaging external to the diamond sensor [142]; sens-

ing of nanoscale ensembles of proton spins in samples placed on the diamond sur-

face [143–145]; targeted detection of single paramagnetic molecules attached to the

diamond surface [146]; and wide-field magnetic imaging of living magnetotactic bac-

teria, with sub-micron resolution [102].

In the present work, we employ two complementary sensor modalities to demon-

strate nanoscale NMR spectroscopy and imaging of samples containing multiple nu-

clear species placed on the diamond surface. In the first modality (Fig. 7.1b), a

scanning confocal microscope interrogates a single NV center about 8 nm below the

surface of a high-purity diamond chip. In the second modality (Fig. 7.1c), the fluores-

cence from a shallow (5 - 15 nm deep), high-density (3.5× 1011 cm−2) NV ensemble

layer near the surface of a diamond chip is imaged onto a CCD camera. This wide-

field microscope provides pixel-by-pixel multi-species NMR spectroscopy and imaging

with sub-micron resolution and wide field-of-view, in a robust device that does not

rely on identifying and addressing an optimally chosen NV center, while the confocal

microscope can extract thickness information of layered thin films containing different

nuclear species, with sub-nanometer resolution.
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Figure 7.1: NV NMR Experiment. (a) NV center energy level diagram; see Methods
for details. (b) A confocal microscope interrogates a single shallow NV center, which
detects NMR signals from a few-nanometer region of sample on the diamond surface.
(c) A wide-field microscope images fluorescence from a shallow, high-density layer of
NV centers allowing detection of NMR signals from overlapping nanoscale regions of
sample on the diamond surface. Only NV centers of the same orientation (shown in
red) contribute to the ensemble NV NMR signal. (d) Larmor precessing nuclear spins
in the sample produce an effective AC magnetic field (such as the one shown by the
green line) that is detected by NV sensors in a frequency-selective manner using an
XY8-k pulse sequence.

7.1 Experiment

For both sensor modalities, an NV NMR measurement proceeds in the following

way. First, an 8 µs long 532 nm laser pulse optically pumps the NV electronic

spins into the |0〉 state. Resonant microwave pulses are then applied to the NV

electronic spins: first, a π/2 pulse prepares a coherent superposition of ground spin

states (|0〉 + |1〉)/
√
2; next, an XY8-k sequence allows the NV spins to probe the

local magnetic environment [147]; and finally, a π/2 pulse projects the evolved NV

spin coherence onto a |0〉, |1〉 state population difference, which is detected via the

NV spin-state dependent fluorescence intensity after a 500 ns 532 nm laser pulse.

The XY8-k pulse sequence consists of a block of eight sequential π-rotation pulses

repeated k times (Fig. 7.1d) and serves two purposes. First, the sequence dynamically
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decouples NV spins from the background magnetic environment (e.g., spin impurities

in diamond and other sources of magnetic noise), so that the NV spin coherence time

T2 is extended beyond the inhomogeneous dephasing time T ∗
2 and the single Hahn-echo

coherence time [148–152]. Second, the XY8-k sequence gives the NV spins narrow-

band sensitivity to NMR signals centered at frequency ν = 1/2τ , where τ is the delay

time between π pulses, and with detection bandwidth ∆ν = 0.111/kτ [125, 126, 153].

The presence of an NMR signal resonant with the XY8-k sequence is detected as a

spectrally-specific change in the NV optical fluorescence signal. See appendix E for

information about the hardware used in the experiment.

For the NV NMR experiments described here, the magnetic signal of interest

is produced by nuclear spins on the diamond surface interacting with shallow NV

centers through magnetic dipole-dipole coupling. The specific components of the

dipole-dipole Hamiltonian that are responsible for the measured signal stem from the

SzIx and SzIy terms, where Sz is the z component of the NV spin (defined by the NV

symmetry axis) and Ix,y are the x and y components of the nuclear spin. These terms

couple the NV spin to the transverse component of the nuclear spin, which precesses in

a static magnetic field at the nuclear Larmor frequency. A nearby permanent magnet

aligned with the NV center quantization axis sets the static magnetic field, B0. A

single measurement consists of repeating the optical pumping, XY8-k sequence, and

optical detection a few hundred times in order to collect sufficient photons at the

detector. The measurement is then repeated for a series of XY8-k pulse delay times,

τ , to determine the spectrum of the magnetic environment. When τ matches a half-

period of the nuclear spin precession, the magnetic coupling effectively drives the NV
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spin away from the initial spin state, which is detected as a change in NV fluorescence

intensity. These dips in the signal occur at the Larmor frequencies of nuclei on the

surface (or other sources of noise, such as nuclear impurities within the diamond).

To perform NV NMR measurements, two fluorescence measurements F1 and F2

were acquired for each pulse sequence delay with the final π/2 pulse 180◦ out of

phase. This procedure removes common-mode noise from laser intensity fluctuations.

Normalized contrast, C, was then calculated as

C =
F2 − F1

F2 + F1

. (7.1)

The broad decrease in contrast resulting from intrinsic NV decoherence was removed

with a linear baseline correction. The corrected contrast was fit with the function

C(ω) = exp

(

−
∑

i

χi(ω)

)

, (7.2)

where χi(ω) describes the NV decoherence due to each nuclear species, i. It is a

function of the frequency-dependent variance in the magnetic field signal (spectral

density), 〈|Bi
z(Ω, ωL)|

2〉, created by the nuclear spins, as well as a function g(Ω, τ, N)

describing the NV sensor response to the pulse sequence:

χi(ω) =
γ2e
4π

∫ +∞

−∞
〈
∣

∣Bi
z(Ω, ωL)

∣

∣

2〉 |g(Ω, τ, N)|2 dΩ. (7.3)

The function g(Ω, τ, N) is the Fourier transform of g(t), where g(t) is a function

describing the sign of NV spin phase accumulation during the pulse sequence. For

the primary resonance of the XY8-k sequence,

|g(Ω, τ, N)|2 ≈ 4

π2
(Nτ)2sinc2

(

Nτ

2

(

Ω− π

τ

)

)

. (7.4)
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The magnetic signal created by a semi-infinite layer of spin-1/2 nuclei with density ρ

near an NV center oriented along the [1 0 0] crystallographic axis is

〈|Bz(Ω, ωL)|2〉 = ρ
5π

48

(

µ0h̄γn
4π

)2(
1

(dNV + z1)3
− 1

(dNV + z2)3

)

T ∗−1
2

(Ω− ωL)2 + (T ∗−1
2 )2

,

(7.5)

where ωL is the nuclear Larmor frequency, T ∗
2 is the nuclear spin dephasing time,

dNV is the depth of the NV center below the diamond surface, z1 is the distance from

the diamond surface to the lower bound of the layer, and z2 is the distance from the

diamond surface to the upper bound of the layer. Combining these expressions and

using the relationship ω = π/τ for the filter resonance condition gives

χi(ω) = ρi
5

48π

(

µ0γn,iγeh̄

4π

)2(
1

(dNV + z1)3
− 1

(dNV + z2)3

)

Ii(ω), (7.6)

where Ii(ω) is the convolution between the Lorentzian lineshape of the nuclear spin

signal from species i and the sinc2(ω) lineshape of the filter function for the XY8-k

sequence. It can be expressed as

Ii(ω) =
2T ∗2

2,i
[

1 + T ∗2
2,i (ωL,i − ω)2

]2

{

e
− Nπ

ωT∗

2,i

[

[

1− T ∗2
2,i (ωL,i − ω)2

]

cos

[

Nπ

ω
(ωL,i − ω)

]

− 2T ∗
2,i (ωL,i − ω) sin

[

Nπ

ω
(ωL,i − ω)

]]

+
Nπ

ωT ∗
2,i

[

1 + T ∗2
2,i (ωL,i − ω)2

]

+ T ∗2
2,i (ωL,i − ω)2 − 1

}

, (7.7)

where N = 8k is the total number of π pulses. See appendix C for a derivation of the

model equations.

Importantly, the strength of the NV NMR signal and the number of nuclear spins

detected per NV are sensitively dependent on the NV depth and the density of nuclear

spins in the sample. To calibrate NV depth, we used NV NMR measurements from
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protons in immersion oil (a well-understood sample with uniform 1H density) placed

on the diamond surface, together with a model of magnetic field fluctuations at each

NV center induced by the ensemble of statistically polarized nuclear spins in the

sample. We used the resulting NV depth and the nuclear magnetic field model to

determine the number of sensed nuclear spins in each sample studied. To estimate

the depth of single NV centers, NV NMR measurements were performed with a drop

of immersion oil (Olympus Type-F Low Auto-Fluorescence) on the diamond surface.

The parameters dNV and T ∗
2 were determined by fitting the NV NMR signal contrast

with equation 7.2 using a density ρ = 60 protons nm3 [145].

7.2 Results and Discussion

Figure 7.2 shows example results for multi-species nanoscale NMR spectroscopy of

a fluorinated sample measured with a single NV center, whose depth was determined

by the aforementioned calibration process to be ∼ 8 nm below the diamond surface.

The fluorinated sample was prepared by mixing 2 mmol of solid sodium hydroxide

with 2 mmol of liquid perfluorooctanesulfonyl fluoride (POSF) to produce a mixture

containing sodium perfluorooctanesulfonate (PFOS). The mixture was applied to the

diamond surface and allowed to dry, leaving a solid sample of PFOS on the surface.

Employing an XY8-10 pulse sequence, we measured NV NMR spectra of the

fluorinated residue and observed resonances corresponding to 19F and 1H nuclei over

a range of applied static magnetic fields, B0, oriented along one NV axis. Several

representative NMR spectra are shown in Fig. 7.2a, where we fit the measured NV

fluorescence to the model function in equation 7.2 in order to extract the frequencies
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Figure 7.2: Multi-species nanoscale NMR with a single shallow NV center. (a) 1H and
19F NMR spectra of a fluorinated sample (PFOS/POSF) at several magnetic fields,
measured with an XY8-10 sequence and fit with a model for the NV NMR lineshape.
The PFOS molecular structure is indicated schematically. Inset: Measured 1H and
19F NMR resonance frequencies as a function of applied static magnetic field B0.
Linear fits yield gyromagnetic ratios in good agreement with literature. (b) Series
of NV NMR spectra of the fluorinated sample acquired with an increasing number
of repetitions k of the XY8-k pulse sequence. Measurement sensitivity and spectral
selectivity improve with increased repetitions k. (Note: in both a and b, spectra are
offset vertically for clarity of display.)

and linewidths of the NMR resonance dips. For the 19F NMR resonance, we estimate

that 50% of the observed NV NMR signal results from ∼ 20,000 unpolarized fluorine

nuclei in a (10 nm)3 volume, which has a statistical spin polarization equivalent to

∼ 140 polarized fluorine nuclei. In Fig. 7.2a we also plot the measured resonance

frequency ν0 of each nuclear species as a function of B0, with an observed linear

dependence ν0 =
γn
2π
B0, consistent with the gyromagnetic ratios of 19F and 1H [154].

To characterize the inhomogeneous dephasing time T ∗
2 for each nuclear species,

we varied the number of repetitions k in the XY8-k pulse sequence and observed the

effect on the measured NV NMR resonance features. As shown in Fig. 7.2b, we found
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that increasing k, and thereby creating a narrower spectral filter for the NV NMR

measurement, results in a narrowing and deepening of the resonance dips, setting

lower limits of T ∗
2 ≥ 32 µs for 19F and T ∗

2 ≥ 11 µs for 1H for this nanoscale sample on

the diamond surface. Dephasing results from both spin-spin interactions and diffusion

above the NV center (described in appendix D.)

To further investigate the omnipresent proton signal, observed from both the

fluorinated PFOS/POSF sample and a SiO2-coated region of the diamond (described

below), we applied Fomblin Y HVAC 140/13 oil to the surface of a diamond directly

after acid cleaning. NV NMR measurements of the Fomblin oil, which contains 40 19F

nuclei/nm3 and no 1H, yield strong NMR signals of both 19F and 1H nuclei for each of

the single NV centers probed (see Fig. 7.3a). The different relative strengths of the 19F

and 1H signals, dependent on the depth of the probed NV center, is most consistent

with a thin proton-containing layer (most likely water) between the diamond chip and

a thick layer of Fomblin oil (Fig. 7.3b). Applying the NV NMR lineshape model to the

proposed sample geometry yields a water layer thickness of 0.8±0.2 nm. This analysis

represents a first proof-of-principle demonstration of the capability of the NV NMR

technique to extract thickness information for multi-layered thin films containing

multiple nuclear spin species of known density, with sub-nanometer resolution.

As shown in figure 7.4, we also acquired consistent multi-species nanoscale NMR

spectra using an ensemble of high-density, shallow-implanted NV centers in a wide-

field microscope setup, with the NV fluorescence signal detected by a CCD camera and

integrated across the few-micron-wide laser spot. For this diamond chip, the mean

lateral distance between NV centers of the same orientation is ∼ 30 nm (determined
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Figure 7.3: Determination of surface proton layer thickness. (a) NMR signal from
Fomblin Y oil on the diamond surface measured with two NV centers. NV depths are
presented, as calculated from the lineshape model. (b) Chemical structure of Fomblin
Y oil. (c) Description of the hypothesized sample structure resulting from Fomblin Y
oil floating above a thin layer of water on the diamond surface.

from the NV fabrication process and wide-field fluorescence measurements); and the

mean NV depth ∼ 10 nm (determined by the calibration process outlined above).

In particular, the results in figure 7.4 demonstrate that high sensitivity nuclear spin

sensing can be provided by NV ensembles, without choosing an optimal single NV

sensor. In the first example (Fig. 7.4a), we again measured a fluorinated sample

(PFOS/POSF) dried on the diamond surface. Both 1H and 19F NMR signals are

resolved, albeit with broader linewidths than for the single NV center data of figure

7.2. In the second example (Fig. 7.4b), we performed NV NMR measurements of 31P

nuclei for a sample of powdered adenosine triphosphate disodium (ATP) salt on the

diamond surface. The observed 31P NMR signal is weaker than for the 1H and 19F

NV NMR measurements, due to the relatively smaller 31P gyromagnetic ratio and

lower phosphorus spin density in the ATP salt sample. A plot of the measured 1H,
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Figure 7.4: Multi-species nanoscale NMR with a shallow NV ensemble. (a) NMR
spectra of a fluorinated sample (PFOS/POSF) at several magnetic fields. As with
single-NV measurements, both 1H and 19F NMR signals are observed and fit with
a model lineshape. (b) 31P NMR spectra from a powdered adenosine triphosphate
(ATP) sample at several magnetic fields, smoothed and fit with the model lineshape.
(Note: in both a and b, spectra are offset vertically for clarity of display.) (c) Mea-
sured 1H, 19F, and 31P NMR resonance frequencies as a function of applied static
magnetic field B0. Linear fits yield gyromagnetic ratios for 1H and 19F in good agree-
ment with literature, with the value for 31P exceeding the literature value by about
4%.

19F, and 31P resonance frequencies versus magnetic field (Fig. 7.4c) are in reasonable

agreement with the known gyromagnetic ratios of these nuclear species [154]. Note,

however, that the effective gyromagnetic ratio for 31P derived from these NV NMR

measurements is about 4% higher than the free 31P value, which may result from

dipole-dipole couplings within the ATP molecule.

We next used the wide-field NV microscope to demonstrate NMR imaging of

spatially-varying concentrations of 19F nuclear spins, again using the fluorinated sam-

ple (PFOS/POSF). We fabricated a shaped structure (mask) of SiO2 on the diamond

surface via atomic-layer deposition. This structure covered part of the diamond sur-

face, with a sub-micron edge going from the full thickness of the SiO2 layer (90 nm) to

bare diamond. Fig. 7.5a shows a white light image of a corner defined by this struc-
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ture. We introduced the fluorinated sample onto the diamond surface and applied the

sensing protocol described above, which provided an NMR spectrum for each pixel

of the CCD camera: i.e., optical MRI with about 500 nm lateral resolution, 50 µm

field-of-view, and sensitivity to nuclear spins within ∼ 20 nm of the diamond surface.

An example 19F NMR image is shown in figure 7.5b; with single-pixel NMR spectra

on the bare diamond surface and under the SiO2 structure shown in figure 7.5c. The

SiO2 structure prevented underlying NV centers from detecting the NMR signal from

19F nuclear spins in the sample, due to the strong (1/d3) distance dependence of NV

sensitivity to magnetic dipole fields. In contrast, the NV centers remained sensitive

to 19F nuclear spins in the sample on the bare diamond surface. Remnant protons are

known to be present on diamond surfaces except under extreme conditions [143–145];

hence an 1H NMR signal was observed across the full diamond surface. These results

illustrate the ability of our technique to provide nuclear-species-specific spectroscopic

and imaging information for nanoscale samples across a wide field-of-view.

7.3 Conclusion

In conclusion, we demonstrated a new capability for nanoscale, optically-detected

NMR spectroscopy and imaging of multiple nuclear species (1H, 19F, 31P) using shal-

low NV centers in diamond. We performed simultaneous multi-species NMR spec-

troscopy under ambient conditions, employing both single NV centers, suitable for

probing few-nanometer sized samples containing ∼ 100 polarized nuclear spins as

well as extracting thickness information for multiple layers of thin films with sub-

nanometer resolution; and high-density NV ensembles in a thin layer near the sur-
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Figure 7.5: Optical MRI of multi-species sample with sub-micron structure. (a)
White-light transmission image of shaped SiO2 structure (90 nm thick mask) on the
surface of a diamond containing a shallow, high-density NV layer. (b) Optical MRI
of 19F nuclear spin density in the fluorinated sample (PFOS/POSF) within ∼20 nm
of surface. Blue represents a deep 19F NMR contrast dip and hence high fluorine
concentration on the bare diamond surface as measured by the NV ensemble. Red
represents no 19F NMR signal detected by the NV ensemble underneath the SiO2

layer. For display, the image was processed with a 3-pixel width Gaussian blur. (c)
NV NMR spectra from two points of the image in (b). On the bare diamond surface
(A), NMR signals are observed for both 1H and 19F. Under the SiO2 structure (B),
only remnant 1H spins are detected, as the SiO2 layer displaces the fluorinated sample
∼90 nm away from the diamond surface and NV sensors.

face, suitable for wide-field spectroscopy and imaging with sub-micron resolution.

Importantly, the NV ensemble results show that high-sensitivity nanoscale NMR does

not require choosing an optimal single NV sensor. These complementary NV sensor

modalities provide utility well beyond current NMR and MRI technology, opening the

door to wide-ranging applications at the nanoscale, from studies of surface catalyst

reactions to the identification of single protein structure and dynamics to functional

MRI within living cells. Future challenges include improving the sensitivity and res-

olution of NV NMR and MRI, e.g., by realizing very shallow NV centers with good

optical and spin properties and employing Fourier k-space imaging techniques with

pulsed magnetic field gradients, respectively.
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Conclusions and Outlook

This thesis has demonstrated a number of novel techniques, but significant work

remains to bring each to its full potential. Advances will most likely be driven by

both improved pulse sequences and better materials.

8.1 Singlet States

Many groups are focused on using singlet states to store spin polarization for

extended periods in hyperpolarized media, and we have helped advance that ability

with the SLIC sequence. Further research on the relaxation properties of the sin-

glet state in both nearly-equivalent and equivalent spin pairs may eventually lead to

designer-molecules with extremely long singlet lifetimes. However, there are also a

number of other applications that should not be overlooked. In particular, the SUC-

CESS sequence offers a way to target the NMR signal of a large variety of endogenous

molecules. Its major drawback at this point is the decrease in singlet creation and
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readout efficiency as molecular complexity increases. One solution is to apply pulse

sequences better tailored to the target molecule’s Hamiltonian. These might be de-

rived via optimal control theory [155] or even genetic algorithms [156–158] and may

include adiabatic, chirped, or SLIC pulses to complement the simple pulses we em-

ployed. Additionally, the use of gradients as a quantum filter rather than phase

cycling should improve the ability to remove background signals by reducing errors

caused by imperfect signal subtraction.

There is a surging interest in low-field NMR spectroscopy, as it avoids the great

expense and lack of portability of high-field superconducting magnets. Each year at

the ENC conference, it seems that a new low-field NMR company appears! J-coupling

spectroscopy using SLIC could significantly boost the information that these devices

extract from a spectrum. However, pulse sequence and hardware improvements are

needed to overcome the sensitivity to B0 shifts and inhomogeneities as well as B1

stability. Perhaps more importantly, computational algorithms must be produced to

more easily predict and interpret the spectra produced.

The creation of a decoherence-free subspaces using combinations of singlet states

has been proposed in the context of quantum information processing, and the ability

of NMR to test such a system should not be overlooked. While NMR quantum

computing has fallen out of favor due to its lack of scalability, NMR provides an

excellent way to test quantum algorithms that can be applied to better quantum

processors in the future. We have demonstrated one possible approach using SLIC

sequences to control multiple pairs of strongly-coupled spins. The next steps are

to better understand and optimize the pulse sequences to improve the accuracy of
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the unitary operations and to fully characterize the sources of decoherence in such

a subspace. Moreover, a way to perform logical operations to transfer quantum

information from other spins into the subspace must be derived. Other combinations

of singlet states can also form a DFS, and the SLIC sequence may find applications

in those cases as well.

Finally, there is the possibility that singlet state studies can be used to measure

magnetic parameters that are currently not detectable with NMR, such as J-couplings

between magnetically equivalent nuclei. For example, a spin-lock induced crossing be-

tween singlet and triplet states of identical spins will not lead to coherent polarization

transfer, but it may reveal dynamics caused by higher-order interactions. The analy-

sis of ethanol energy levels at low-field shows that there are many energy crossings in

which polarization transfer is forbidden by first-order processes, but further analysis

is needed to reveal how spin-locking at these crossings may affect spin relaxation to

reveal other spin transitions.

8.2 NV NMR

The rapid advancements in magnetometry using nitrogen-vacancy centers in di-

amond are breaking down sensitivity and size barriers that have plagued magnetic

resonance for decades. However, NV NMR spectroscopy is still in its infancy and

significant improvements will be necessary for it to compete with conventional NMR.

Because it is currently a low-field technique, NV NMR cannot resolve the chemical

shifts that give NMR much of its utility for chemistry. This may be overcome by

NV NMR’s potential ability to directly image the location of nuclear spins, which is
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being advanced using strong nanoscale magnetic gradients in the Walsworth group

and using novel pulse sequences by our colleagues in the Cappellaro group. Such

methods might make it possible to map out the positions of nuclei in biomolecules.

Employing diamonds at high-field where chemical shifts are dominant is also possible

and is a largely unexplored area of research.

A major goal of NV NMR is to detect a single nuclear spin with a single NV

center, and it appears that with the proper diamond preparation and pulse sequence

this will be achieved in the near future. The major materials challenge is to produce

very shallow NV centers with good coherence properties. A number of groups are

attacking the problem experimentally, and it should be possible to use NV NMR to

better characterize the diamond surface to promote this goal. New pulse sequences

making use of spin-locking and nearby surface electronic spins should provide better

sensitivity as well.

Finally, a number of other NV NMR applications can be imagined. As discussed in

appendix D, NV NMR measurements are very sensitive to diffusion and may better

reveal diffusion dynamics at the nanoscale, near surfaces, and in thin films. Sub-

cellular imaging of living cells may be possible using NV ensembles, similar to DC

magnetic measurements already demonstrated [102]. It should also be possible to

extend NV NMR to measurements of quadrupolar nuclei, revealing quadrupole inter-

actions and consequently electric field gradients in samples at the nanoscale. These

and other novel uses for NV NMR are ready to be explored by the next generation

of graduate students following in my footsteps.
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Appendix A

Singlet State Relaxation

Detailed models of singlet state relaxation have been derived by Pileio et al. in

ref. [35, 36, 159]. This appendix discusses other aspects of singlet state relaxation,

including the relaxation properties of the long-lived coherence, the effects of off res-

onance spin-locking, and the dependence of singlet state relaxation on temperature

and paramagnetic impurities.

A.1 Long-Lived Coherence Relaxation

The maximum lifetime of the long-lived coherence (LLC) under zero RF spin-

locking power can be found using the conventional two-spin dipole-dipole relaxation

model of Solomon [25, 41], which predicts that in most cases TLLC = 3T1. Demonstra-

tion of this relation is accomplished by comparing the long-lived coherence experiment

with a standard inversion recovery experiment. In the latter case the system is ini-

tialized to the state I1z(0) = I2z(0) = −M0, where Inz(t) is the magnetization of
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nucleus n at time t, and M0 is the magnetization of the spins at thermal equilibrium.

The Bloch equations then describe the magnetization as a function of time with two

relaxation rates, ρ and σ:

IZ =M0 (1− 2 exp [t/T1]) =M0 (1− 2 exp [−(ρ+ σ)t]) . (A.1)

These two relaxation rates are the result of zero, single, and double quantum transi-

tions with rates W0, W1 and, W2 respectively:

σ = W2 −W0

ρ = W0 + 2W1 +W2. (A.2)

For small molecules, which rotate quickly (GHz rates), the short correlation times

result in transition rates that can be related to one another through a constant k:

k = 10W0 = 20/3W1 = 5/3W2, (A.3)

where the numerical prefactors for W0, W1 and, W2 are determined from averaging

the relative interaction strength of each transition over all angular configurations.

Combining equations A.1, A.2, and A.3 allows one to write T1 in terms of k:

T1 = 1/(ρ+ σ) =
2

3

1

k
. (A.4)

The long-lived coherence, ρLLC , represents a population difference

ρLLC = | ↑↓〉〈↑↓ | − | ↓↑〉〈↓↑ | = I1z − I2z. (A.5)

It results from a selective inversion of the spins rather than the inversion of both

spins. The initial conditions for magnetization are I1Z(0) = −I2Z(0) = M0. In this
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case relaxation is found to be bi-exponential for the individual magnetizations and

exponential for the magnetization difference. The Bloch equations for the magneti-

zation of spins one and two are

I1z =M0 (1− exp [−(ρ+ σ)t] + exp [(σ − ρ)t]) (A.6)

and

I2z =M0 (1− exp [−(ρ+ σ)t]− exp [(σ − ρ)t]) . (A.7)

The difference between these equations describes the magnetization of the long-lived

coherence:

I1z − I2z = 2M0 exp [−t/TLLC ] = 2M0 exp [(σ − ρ)t] . (A.8)

This results in a lifetime TLLC = 1/(ρ− σ), which can be written in terms of T1 as

TLLC =
1

2(W0 +W1)
=

2

k
= 3T1. (A.9)

The enhancements are smaller for the long-lived coherence when the molecules

have long correlation times, since the assumptions leading to equation A.3 are no

longer valid. For example, larger molecules rotate more slowly, which can lead to

W2 ≈ 0. In that case

T1 = 1/(2W1) =
10

3

1

k

TLLC =
1

2(W0 +W1)
=

2

k
=

3

5
T1. (A.10)

Bornet et al. studied a similar long-lived coherence in which an additional π/2 pulse

rotated I1z− I2z into I1x− I2x, which they subsequently spin-locked [40]. They found

that TLLC = 3T2 for short coherence times and TLLC = 9T2 for longer coherence

times. The advantage of using the I1z − I2z is that a lifetime enhancement can be
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achieved without the use of spin-locking. This enhancement is contingent on T1

being dominated by intra-pair interactions. The more outside spins contribute to

spin-lattice relaxation, the smaller the enhancement will be.

A.2 Effect of Off-Resonance RF Spin-Locking

We found that increased lifetime enhancement (TS/T1) was achieved in glycerol

formal when the RF power was applied slightly off-resonance. Glycerol formal is

special because it exists in two interconverting structures and has overlapping spectral

lines. We refer to the peaks from one structure as “a” and “b” and from the other

structure as “b” and “c”, since the “b” peaks are completely overlapping. Peak “c”

was found to have a longer lifetime when the RF transmitter frequency was centered

between “a” and “b.” Table A.1 summarizes the measurements made with the RF

transmitter frequency centered at the two different positions. In Fig. 3.5 and Table

3.3 of the main text we present measurements for peak “c” with the RF transmit

frequency centered between “b” and “c.”

Table A.1: Measured values of spin-lattice, singlet, and long-lived coherence relax-
ation times for glycerol formal.

Transmit Peak T1(s) TS(s) TS/T1 TLLC(s) TLLC/T1
a & b a 0.95± 0.01 1.07± 0.01 1.13± 0.02 1.3± 0.2 1.4± 0.2

b 0.68± 0.01 2.81± 0.03 4.13± 0.08 1.4± 0.2 2.1± 0.3
c 0.68± 0.01 2.09± 0.02 3.07± 0.05 1.12± 0.06 1.65± 0.09

b & c a 0.95± 0.01 1.30± 0.05 1.37± 0.05 1.14± 0.04 1.20± 0.04
b 0.68± 0.01 2.07± 0.05 3.04± 0.09 1.06± 0.08 1.6± 0.1
c 0.68± 0.01 1.91± 0.03 2.81± 0.06 1.37± 0.02 2.01± 0.04

We also measured the maximum singlet lifetime in citric acid when the transmitter

frequency of the RF spin-lock was moved away from the average resonance frequency
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Figure A.1: For citric acid prepared with a mixture of singlet population and long-
lived coherence, we measured an approximately quadratic relationship between the
singlet relaxation rate and the frequency offset of the RF spin-locking field from the
average frequency of the proton spin pair. Note the significant deviations between the
relaxation rates of the lower-frequency proton (red squares) and the higher-frequency
proton (black circles).

144



Appendix A: Singlet State Relaxation

of the proton pair. A theoretical analysis predicts that the relaxation rate should in-

crease quadratically with RF-field offset for relatively small frequency shifts [35, 160].

We set the RF spin-locking nutation frequency to 565 Hz and employed a mixture

of singlet and long-lived coherence. As seen in Fig. A.1, the measured large-scale

increase in relaxation rate is quadratic, but deviations are clearly evident between

the lifetimes of each proton of the pair. At RF frequency offsets between 30 and 90

Hz, the relaxation rate decreases for the proton whose resonance frequency is closer to

the RF transmitter frequency while the relaxation rate of the other proton increases.

This trend differs from what we observed in glycerol formal, where we measured a

longer singlet lifetime when the RF spin-locking field frequency was moved away from

the resonance frequency by 20 Hz.

A.3 Temperature Effects

Figure A.2 shows measurements for citric acid of the spin-lattice relaxation time T1

and the maximum singlet lifetime TS at high RF spin-locking power for temperatures

between 22 and 54 ◦C. Both T1 and TS increase linearly with temperature, and the

enhancement ratio (TS/T1) changes little over the temperature range. This trend

matches previous results [19]. Both T1 and temperature are inversely proportional to

the molecular correlation time because in solution small molecules are in the extreme-

narrowing regime. Therefore, a linear relationship between T1 and temperature is

expected. Since the singlet lifetime is also linear with temperature, we conclude that

it must be inversely proportional to correlation time as well, and thus the magnetic

quadrupolar interaction is the dominant relaxation mechanism.
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Figure A.2: Measured temperature dependences of T1 (black circles) and the max-
imum singlet lifetime TS (red squares) are linear for citric acid. (T1 error bars are
smaller than symbol size.) Lifetime enhancement ratio TS/T1 (blue diamonds) has
little temperature dependence.

A.4 Sensitivity of the Long-Lived Coherence and

Singlet State to Paramagnetic Impurities

We studied the sensitivity of the long-lived coherence and singlet state lifetimes

to paramagnetic impurities, specifically oxygen, by comparing lifetimes in solutions

with different oxygen concentrations. The effect of paramagnetic relaxation on the

singlet state was studied by Tayler and Levitt for the alanine-glycine molecule [161].

They measured the strength of relaxation versus paramagnetic spin concentration.

However, the relaxation rates 1/T1, 1/TLLC , and 1/TS should be affected differently

depending on the molecular geometry, especially the internuclear distance between

the spins comprising the singlet. Singlet states created in more closely spaced nuclei
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are expected to experience weaker paramagnetic relaxation because the two spins

are more likely to experience identical interactions with the paramagnetic spins. We

verified this hypothesis by measuring relaxation times in molecules with a variety of

structures.

The molecules considered are shown in Fig. A.3. Nitrous oxide was investigated

elsewhere [162], and the results are used for comparison. For the others, 100 mM

solutions were prepared in D2O or CCl4, and the relaxation times T1, TLLC , and TS

were measured as described in chapter 3. Measurements were then repeated after

bubbling N2 gas through each solution for 5 min to displace dissolved oxygen. The

relaxation rates due to oxygen are then given by

k1[O2] = T−1
1 (O2)− T−1

1 (N2)

kLLC [O2] = T−1
LLC(O2)− T−1

LLC(N2)

kS[O2] = T−1
S (O2)− T−1

S (N2). (A.11)

Note that although the rates depend on the oxygen concentration, [O2], we are inter-

ested in rate ratios such as kS/k1, which can be measured without knowing the value

of [O2].

Results are summarized in Table A.2. For a number of molecules, hardware lim-

itations prevented us from applying enough RF power to fully convert the prepared

state to the singlet eigenstate. The column “% singlet” lists the singlet character of

the prepared state during spin-locking, i.e., 〈ψ|S0〉. The internuclear distance between

the spins comprising the singlet state is also listed. Fig. A.4 plots the sensitivity as

a function of internuclear distance. It shows that the sensitivity of both the singlet

and long-lived coherence to oxygen increases as the nuclear spacing increases.
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Nitrous Oxide Citric Acid p-Hydroxybenzoic Acid

4H-Pyran-4-One Ethyl Maltol 4-Methyl-3-Furoic Acid

Figure A.3: Structures of molecules tested for oxygen sensitivity. The nuclei on which
the singlet state was prepared are indicated.

Table A.2: Oxygen sensitivity of singlets vs. internuclear distance.

Molecule Solvent % Singlet R (Å) kLLC/k1 kLLC/kS kS/k1
nitrous oxide Blood 100% 1.13 - - 0.015

0.026
citric acid D2O 100% 1.76 0.5 1.2 0.4
4H -pyran-4-one D2O 96% 2.44 1.0 0.8 1.3
ethyl maltol D2O 96% 2.44 0.9 0.8 1.2
p-hydroxybenzoic acid D2O 98% 2.47 0.6 0.7 0.9
2-methyl-3-furoic acid D2O 99% 2.77 0.9 1.0 0.9
2-methyl-3-furoic acid CCl4 99% 2.77 0.8 1.0 0.8
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Figure A.4: The ratios kLLC/k1 and kS/k1 increase as a function of internuclear
distance.

With knowledge of the spin state oxygen sensitivity, it is possible to derive an

expression relating the enhanced lifetime of the long-lived coherence (TLLC/T1) to

that of the singlet state (TS/T1). Consider the isolated proton pair on which the

singlet or long-lived coherence is prepared. We have shown previously that

1

TS
= 0 (A.12)

1

T1
= kDD (A.13)

1

TLLC
=

1

3
kDD, (A.14)

where kDD is the relaxation rate due to dipole-dipole coupling.

Now consider the addition of more spins to the system. These could be nearby

protons on the molecule or oxygen in the solution. Each state’s relaxation rate will

increase in response to the concentration of these spins. Let [A] represent their
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concentration and kn represent the relaxation of state n per unit [A]. Then

1

TS
= kS[A] (A.15)

1

T1
= k1[A] + kDD (A.16)

and

1

TLLC
= kLLC [A] +

1

3
kDD (A.17)

Subsequently, the lifetime enhancements are

TS
T1

=
kDD + k1[A]

kS[A]
(A.18)

and

TLLC
T1

=
kDD + k1[A]

kLLC [A] +
1
3
kDD

(A.19)

We seek a function TLLC/T1 = f(TS/T1). Using the relationships

TLLC
T1

=
kS[A]

kLLC [A] +
1
3
kDD

TS
T1

(A.20)

and

kDD = kS[A]
TS
T1

− k1[A] (A.21)

we arrive at

TLLC
T1

=
kS[A]

kLLC [A] +
1
3
(kS[A]

TS
T1

− k1[A])

TS
T1

(A.22)

Canceling out [A] and performing some rearrangement gives

TLLC
T1

=
3TS
T1

TS
T1

+
(

3kLLC−k1
kS

) (A.23)

We can now define a new parameter, α, such that

TLLC
T1

=
3TS
T1

TS
T1

+ α
(A.24)
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Table A.3: α calculated from oxygen sensitivity experiments.

Molecule α
citric acid 1.1
4H -pyran-4-one 1.6
ethyl maltol 1.6
p-hydroxybenzoic acid 1.0
2-methyl-3-furoic acid 1.8

and

α =
3kLLC − k1

kS
. (A.25)

Table A.3 shows the calculated values of α using the oxygen sensitivity measure-

ments of Table A.2. They range between 1 and 1.8. Figure A.5 plots the lifetime

enhancement of the long-lived coherence versus that of the singlet state for a number

of molecules measured here and in chapter 3. Most values lie between the dashed

curves defined by α = 0.8 and α = 2, while the best-fit value is α = 1.4 (solid line).

For relaxation from a random magnetic field, one would expect kLLC = k1 and

kS/k1 ≤ 2, which would result in α ≥ 1 [29]. In that situation, higher α should

correspond to lower values of kS/k1. However, we see considerable deviation from

such a trend, with kLLC < k1 for most cases. This indicates that the long-lived

state is exhibiting some correlated behavior, possibly because natural couplings are

producing an admixture with the singlet state. More detailed measurements are

needed to further elucidate this behavior.
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Figure A.5: A plot of measured lifetime enhancements for the long-lived coherence
(TLLC/T1) versus measured enhancements for the singlet state (TS/T1) show that
values roughly follow the relationship given by equation A.24. Dotted lines plot the
relationship for α = 0.8 (upper bound) and α = 2 (lower bound), while the solid
line represents the best-fit value α = 1.4. The molecules from the oxygen sensitivity
experiment associated with each set of points is indicated. Purple points indicate
values from aspartic acid, trans-1,4-cyclohexanediol, and glycerol formal given in
Table 3.3.

152



Appendix B

Low-Field Energy Level

Calculations

The position of dips measured in a SLIC spectrum can be calculated in a similar

way to zero-field spectra [90, 91], but with modifications to consider a homonuclear

system and the effects of RF spin-locking. Here, we demonstrate the procedure for

hydrated ethanol, which is also applicable to more complex systems by repeating the

necessary steps for all spin groups and couplings.

Hydrated ethanol contains two spin groups: a methylene group (labeled A) con-

sisting of two protons J-coupled with strength JAA, and a methyl group (labeled B)

consisting of three protons each J-coupled to the other with strength JBB. The values

for scalar couplings within these spin groups are unknown because there is currently

no way to measure the couplings between magnetically equivalent spins. Protons

from group A are coupled to protons of group B by the coupling JAB, with a value

JAB = 7.1 Hz measured in a 4.7 T spectrometer.
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The methylene group protons are magnetically equivalent and the spins form three

triplet states and one singlet state. The dressed state definitions and energies are:

|1,−1〉A = | ↑↑〉

|1, 0〉A =
| ↑↓〉+ | ↓↑〉√

2

|1,+1〉A = | ↓↓〉

|0, 0〉A =
| ↑↓〉 − | ↓↑〉√

2

E =
1

4
JAA

E =
1

4
JAA

E =
1

4
JAA

E = −3

4
JAA.

(B.1)

The methyl group spins are also magnetically equivalent and can combine in three

different ways. There is a spin-3
2
subspace with states
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(B.2)

There are two spin-1
2
subspaces, one corresponding to an mz = 0 triplet state paired

with a proton and the other corresponding to a singlet state paired with a proton:
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(B.3)

Next, the methylene and methyl group states are combined into product states

and then dressed to form 32 new eigenstates whose energies are also determined by
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JAB. The internal energies of the states (i.e., JAA, JBB) determine which product

states combine, as the J-coupling will only be effective between product states of the

same energy. The first group is:
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all with energy E = 3
2
JAB + 1

4
JAA + 3

4
JBB,
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all with energy E = −JAB + 1
4
JAA + 3

4
JBB, and
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all with energy E = −5
2
JAB + 1

4
JAA + 3

4
JBB.

The second group is:
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all with energy E = 1
2
JAB + 1

4
JAA − 3

4
JBB, and
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all with energy E = −JAB + 1
4
JAA − 3

4
JBB.

There is a final group of 8 states consisting of product states with the singlet |0, 0〉,
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but JAB does not act on the singlet and no dressing is necessary:
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A more complicated molecule would require further rounds of dressing to build

up the full complement of eigenstates describing the system. This quickly becomes

tedious and is more easily accomplished computationally by simply diagonalizing the

full spin Hamiltonian of the molecule.

The previous states were derived with no spin-locking applied. Spin-locking re-

quires the states to be dressed with the RF Hamiltonian. Fortunately, the RF Hamil-

tonian only drives transitions ∆mF within each F subspace, so one only needs to

consider how each subspace rearranges. Diagonalization reveals the following general
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formulas to define new spin-locked states |F ′,mF ′〉. Spin-5
2
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The final step is to find which level crossings induce a polarization transfer. The

interaction Hamiltonian takes the form νAÎz,A + νB Îz,B. Since this only involves Îz

operators, for the interaction to be nonzero, the two dressed states it connects must

share identical bare-spin product states. This limits the interactions to dressed states

formed from the same group of product states (i.e., within the group B.4, B.5, B.6 or

within the group B.7, B.8). Moreover, inspection shows that the two dressed states

must be separated by ∆F = ±1. The connected states must also share the same

symmetry, otherwise the interaction terms will sum to zero. If we were working in

the laboratory frame, we would find the condition ∆mF = 0, as in the case of the

zero-field experiments. However, spin-locking produces symmetric and antisymmetric

combinations of those states, which leads to the condition ∆m′
F = ±1, where m′

F is

the spin quantum number for the dressed state in the rotating frame.
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a b

Figure B.1: Energy levels of ethanol spin states under spin-locking. (a) The group
consisting of dressed states given by equations B.4, B.5, and B.6. (b) The group
consisting of dressed states given by equations B.7 and B.8. The positions of the
crossings at which polarization transfer occurs are indicated by vertical lines.
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Appendix C

NV NMR Lineshape

In this appendix, a derivation is presented for the signal expected from an NV

NMR measurement made with a dynamical decoupling sequence.

Throughout this document, we adopt the non-unitary Fourier transform in angular

frequency units, such that the Fourier transform pair for f(t) is defined as [163]

f(t) = F
−1(f(ω)) =

1

2π

∫ +∞

−∞
f(ω)eiωtdt f(ω) = F (f(t)) =

∫ +∞

−∞
f(t)e−iωtdt.

(C.1)

With the previous expression, Parseval’s theorem reads as

∫ +∞

−∞
f(t)g∗(t)dt =

1

2π

∫ +∞

−∞
f(ω)g∗(ω)dω →

∫ +∞

−∞
|f(t)|2dt = 1

2π

∫ +∞

−∞
|f(ω)|2dω,

(C.2)

and the expressions for the Dirac delta and convolution functions are

δ(ω − ω′) =
1

2π

∫ +∞

−∞
eit(ω−ω

′)dt F (f ∗ g) = f(ω)g(ω). (C.3)
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C.1 Signal from a Dynamical Decoupling Sequence

As described in the main text, two spin-state-dependent fluoresence measurements

F1(τ) and F2(τ) are acquired from independent dynamical decoupling experiments

with π-pulses spaced by time τ . For F1(τ), the final π/2-pulse projects the coherence

into the | ± 1〉 state, whereas for F2(τ) the pulse phase is reversed to project the co-

herence into |0〉. This procedure removes common-mode noise from laser fluctuations.

The fluorescence signals are described as a signal contrast, C(τ), of the form

C(τ) =
F2(τ)− F1(τ)

F2(τ) + F1(τ)
. (C.4)

The contrast is effectively measuring the projection of the coherence state after the

sequence into its state at the beginning of the sequence. During the sequence, the

coherence has accumulated some phase ∆φ(τ), thereby rotating out of its original

state. The contrast is related to the accumulated phase by

C(τ) = 〈cos(∆φ(τ))〉. (C.5)

The brackets around cos(∆φ(τ)) reflect that a typical fluorescence measurement is

an average over many repeated dynamical decoupling experiments. If the accumu-

lated phase ∆φ(τ) follows a normal distribution centered at the zero with variance

〈∆φ2(τ)〉, then the average over the cosine can be converted to an exponential func-

tion of the variance using the relationship [ref]

〈f(X)〉 =
∫ ∞

−∞
f(x)p(x)dx, (C.6)
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where p(x) is the probability distribution function for random variable X. Applying

the integral of Eq. (C.6) to Eq. (C.5) produces

C(τ) = exp(−〈∆φ2(τ)〉/2). (C.7)

Phase is accumulated during the dynamical decoupling sequence as the NV elec-

tron spins Larmor precess in the presence of a magnetic field signal Bz(t), where z is

the NV quantization axis. (The Larmor precession from the static background field

B0 is removed by working in the rotating reference frame). The sign of phase accu-

mulation (i.e., positive or negative phase accumulation) is reversed by each π-pulse

of the sequence, and can be represented over time as a function g(t), as shown in Fig.

1a. The total phase accumulated at the end of the sequence is then

∆φ(τ) = γe

∫ Nτ

0

g(t)Bz(t)dt, (C.8)

where γe is the gyromagnetic ratio for the electron (in units of rad/s) and N is the

number of π-pulses in the sequence. The accumulated phase variance can be expressed

in terms of a correlation function between measurements across times t and t′:

〈∆φ2(τ)〉 = γ2e 〈
∫

g(t)Bz(t)dt

∫

g(t′)Bz(t
′)dt′〉, (C.9)

For a function with temporal translational invariance, such as Bz(t)Bz(t
′) (which

depends only on the time difference t− t′), one can write: [164]

Bz(t)Bz(t
′) =

1

2π

∫

Bz(ω)Bz(−ω)eiω(t−t
′)dω =

1

2π

∫

|Bz(ω)|2 eiω(t−t
′)dω. (C.10)

The last passage follows from the fact that Bz(t) contains Hermitian operators, so

that the complex conjugate Bz(ω)
∗ = Bz(−ω). In this way, spectral density SB(ω) is
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computed as

SB(ω) = 〈|Bz(ω)|2〉 =
∫ Nτ

0

〈Bz(t)Bz(t
′)〉e−iω(t−t′)dt. (C.11)

Similarly, one finds

|g(ω)|2 =
∫ Nτ

0

〈g(t)g(t′)〉e−iω(t−t′)dt. (C.12)

Equation (C.9) then simplifies to

〈∆φ2(τ)〉 = γ2e
2π

∫ +∞

−∞
SB(ω) |g(ω, τ,N)|2 dω, (C.13)

where g(ω, τ,N) is the Fourier transform of g(t) for the dynamical decoupling pulse

sequence. Bz(ω) is the Fourier transform of the time-dependent magnetic signal along

the NV axis z.

C.2 Application to Signals from Nuclear Spins

C.2.1 Correlation Functions

We consider magnetic signal Bz(t) originating from nuclear spins in the vicinity

of the NV center. As the nuclear spins Larmor precess about the applied static field,

they produce periodic magnetic field fluctuations along z. For an ensemble of point

dipoles, Bz(t) at the NV center can be written as:

Bz(t) =
∑

j

Dj

[

3ujxu
j
zS

j
x(t) + 3ujyu

j
zS

j
y(t) + (3ujzu

j
z − 1)Sjz(t)

]

, (C.14)

where the NV is coupled to many nuclear spins j at positions given by a distance rj

and a unit vector uj (which can be written in terms of of its coordinates ujx, u
j
y, u

j
z).

The coupling factor is Dj = (µ0h̄γn)/(4πr
3
j ), where γn is the gyromagnetic ratio of
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the nuclei and rj is a distance between the NV center and nuclear spin j. Terms Sjx,y,z

represent the projection of nuclear spin j along the x, y, and z axes. Then the time

dr
j z-axis

B
0

Sj

NV

θ α

uj
z

uj
x

x x y x y y x y x x,-x

g(t)
τ

1

-1

t

RF t

a b

Figure C.1: (a) The dynamical decoupling sequence defines a function g(t) describing
the direction of spin precession in response to a magnetic signal Bz(t). (b) An NV
center with depth d sits below an ensemble of nuclei. Each nucleus has spin vector
Sj and position ujx, u

j
y, u

j
z. The NV axis, and the axis for magnetic quantization, is

at angle α with respect to the vector normal to the diamond surface. For purposes
of integration across the sample, the spherical coordinates r, θ, φ are used.

correlator is expressed using Eq. (C.14) to obtain

〈Bz(t)Bz(t
′)〉 =

∑

j

Dj(rj)
[

3ujxu
j
zS

j
x(t) + 3ujyu

j
zS

j
y(t) + (3ujzu

j
z − 1)Sjz(t)

]

∑

i

Di(ri)
[

3uixu
i
zS

i
x(t

′) + 3uiyu
i
zS

i
y(t

′) + (3ujzu
j
z − 1)Siz(t

′)
]

. (C.15)

For an ensemble of nuclear spins that do not interact with each other, correlators can

be defined for each spin’s projection along each of its axes:

〈Sjα(t)Siβ(t′)〉 = δα,βδ
i,jfα,β(S, T, t− t′). (C.16)

Note that the correlator is a function of the nuclear spin’s total spin quantum number

S as well as the temperature T . In the simple case in which the external magnetic

field for the nuclei is applied along the NV axis one can write fx,x = f y,y, i.e., behavior
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in the transverse plane is independent of phase. Moreover, all nuclear spins of the

same species have the same correlator, and so the index j is dropped for fα,β. Then

〈Bz(t)Bz(t
′)〉 =

∑

j

D2
j (rj)

[

9fx,x
(

(ujxu
j
z)

2 + (ujyu
j
z)

2
)

+ f z,z
(

3ujzu
j
z − 1

)2
]

. (C.17)

Assuming that the energy of the state |mz〉 is h̄ωmz
mz, the transverse fx,x, f y,y

and longitudinal f z,z spin-spin correlation functions have their natural expression in

frequency-space with the definition in Eq. (C.1). The relevant spin projections Sα for

each nucleus are found using their respective operators:

Sα = 〈mz|Ŝα|nz〉 (C.18)

Then in the spectral representation

fα,α(S, T, ω) = F (fα,α(t)) =

∫

〈Sα(t)Sα(0)〉e−iωtdt

=
2π

Z

∑

n,m

e
− En

kBT |〈mz|Ŝα|nz〉|2δ
(

Em − En
h̄

− ω

)

, (C.19)

where Z is the partition function. In the high temperature limit where En ≪ kBT ,

the eigenstates are equally populated, and

fα,α(S, ω) =
2π

tr(I)

∑

n,m

∣

∣

∣
〈mz|Ŝα|nz〉

∣

∣

∣

2

δ

(

Em − En
h̄

− ω

)

. (C.20)

We now make use of the definitions for the z and x spin projections:

Sz = 〈nz|Ŝz|mz〉 = mz〈nz|mz〉

Sx = 〈nz|
Ŝ+ + Ŝ−

2
|mz〉, (C.21)

where

Ŝ±|S,mz〉 =
√

S(S + 1)−mz(mz ± 1)|S,mz ± 1〉. (C.22)

166



Appendix C: NV NMR Lineshape

Then the longitudinal correlator is

f z,z(S, ω) =
2π

tr(I)

ˆ∑

z
|〈mz|Sz|mz〉|2 δ(ω). (C.23)

The correlator (C.23) can be computed by noting that a Curie-Weiss prefactor appears

due to the relation
∑

zm
2
z/tr(I) = S(S + 1)/3. Because the diagonal correlator is

centered at zero energy, it will not contribute to the final integral (C.13) as long as

g(ω = 0, τ, N) = 0 (i.e., the dynamical decoupling pulse sequence is not sensitive to

DC fields). The transverse correlator is

fx,x(S, ω) =
2π

tr(I)

∑

n,m

∣

∣

∣
〈mz|Ŝx|nz〉

∣

∣

∣

2

δ

(

Em − En
h̄

− ω

)

, (C.24)

which is non-zero only whenmz, nz are adjacent energy levels. For the case of spin-1/2

nuclei (S = 1/2), where the nuclear spins precess at Larmor frequency ωL = γnB0,

we evaluate (C.24) as:

fx,x(S = 1/2, ω) =
2π

8
(δ(ω − ωL) + δ(ω + ωL)) (C.25)

The two contributions in (C.25) represent the Stokes and anti-Stokes lines, equal in

the limit T → ∞ due to the fluctuation-dissipation theorem.

The expression for magnetic field correlation is now

〈Bz(t)Bz(t
′)〉 = 9fx,x

∑

j

D2
j (rj)

[

(ujxu
j
z)

2 + (ujyu
j
z)

2
]

, (C.26)

for which we have calculated fx,x. By writing 1− (ujz)
2 = (ujx)

2+(ujy)
2, the geometry-

dependent terms can be collected into one factor

Γ =
∑

j

D2
j (rj)(u

j
z)

2
(

1− (ujz)
2
)

, (C.27)

which we evaluate in the following section.
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C.2.2 Calculation of the Geometrical Factor

The geometrical factor (or “form factor”, in a spectroscopic notation) can be

computed according to the user’s needs. While Eq. (C.26) can be calculated directly

from a random sample of nuclear locations, it is more convenient to assume a sample

of nuclear density ρ continuously distributed on the surface. This is a particularly

good assumption for liquid samples in which nuclear locations vary on a time scale

short compared with the dynamical decoupling sequence length. Then the summation

of Eq. (C.27) can be converted to the integral

Γ = ρ

∫

dV

[

(

µ0h̄γn
4π

)2
(ujz)

2(1− (ujz)
2)

r6

]

= ρ

(

µ0h̄γn
4π

)2

Γ̃. (C.28)

Spherical coordinates are used with the conventions of Fig. 1b. The polar angle

origin θ = 0 is defined to be orthogonal to the surface of the diamond, while φ is

the azimuthal angle with arbitrary origin. The NV axis z points along a direction

z = [sin(α) cos(β), sin(α) sin(β), cos(α)]. The projection uz needed for Eq. (C.28)

will in general depend on all four angles just introduced. In particular, uz = z · ur,

where ur = [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)].

The integral for Γ̃ is then

Γ̃ =

∫ 2π

0

∫ π/2

0

∫ ∞

dNV / cos(θ)

(uz)
2(1− (uz)

2)

r4
sin(θ)drdθdφ, (C.29)

where dNV is the NV depth below the diamond surface. The sample height is assumed

to be semi-infinite, thereby allowing integration of the radial component from the

diamond surface to infinity. Other sample geometries can be accomodated with the
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proper integral limits and choice of coordinate system (i.e., spherical, cylindrical,

etc.). Evaluating the integral produces a simple expression for Γ(dNV ):

Γ(dNV ) = ρ

(

µ0h̄γn
4π

)2
(

π
[

8− 3 sin4(α)
]

288d3NV

)

. (C.30)

The expression is maximal when α = 0, where Γ̃(dNV ) = π/(36d3NV ) However, in

most samples the NV axis is aligned along [100] direction, so that α = 54.7◦. At this

angle, Γ̃(dNV ) = 5π/(216d3NV ). With the correlation functions and geometric factors

now evaluated, the spectral density can be written as

SB(ω) = 〈|Bz(S = 1/2, ω)|2〉 = Γ(dNV )
9π

4
(δ(ω − ωL) + δ(ω + ωL)) . (C.31)

The spectral density can be related to the magnetic field variance by

SB(ω) = πB2
RMS (δ(ω − ωL) + δ(ω + ωL)) , (C.32)

where

B2
RMS =

9

4
Γ(dNV ) = ρ

(

µ0h̄γn
4π

)2
(

π
[

8− 3 sin4(α)
]

128d3NV

)

. (C.33)

For NV centers oriented at α = 54.7◦ this simplifies to

B2
RMS = ρ

(

µ0h̄γn
4π

)2(
5π

96d3NV

)

. (C.34)

C.2.3 The Filter Function |g(ω, τ)|2

To complete Eq. (C.13), the filter function |g(ω, τ)|2 must be evaluated for the

dynamical decoupling sequence. For a CPMG or XY8 sequence with N π pulses, such

as that in Fig. 1a, the Fourier transform is

g(ω, τ,N) =
2

π

+∞
∑

k=−∞

Nτ(−1)k

2k + 1
sinc

[

Nτ

2

(

ω − (2k + 1)π

τ

)]

e−i
Nτ
2 (ω− (2k+1)π

τ ). (C.35)
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For most purposed, only the first-order terms need to be retained. The expansion

must include k = 0,−1 to be symmetric around ±ω. However, the integral over

positive and negative frequencies will be equivalent to twice the integral over positive

frequencies as long as kBT ≫ h̄ωL. Note that some other models use a different

definition of the filter function, F (ω), in which

F (ωt) =
ω2

2
|g(ω, τ)|2 (C.36)

If the nuclear spin dephasing time is assumed to be infinite, such that the nuclear

spin signal can be described by delta functions, we can now obtain a final formula for

the contrast in the S = 1/2 case:

C(τ) = exp

(

− 2

π2
γ2eB

2
RMS(Nτ)

2

[

sinc2
[

N

2
(ωLτ − π)

]

+ sinc2
[

N

2
(ωLτ + π)

]

+ sinc

[

N

2
(ωLτ − π)

]

sinc

[

N

2
(ωLτ + π)

]])

. (C.37)

The off-resonant terms contribute very weakly to the lineshape and can be ignored,

resulting in an approximate formula:

C(τ) ≈ exp

[

− 2

π2
γ2eB

2
RMS(Nτ)

2sinc2
(

Nτ

2

(

ωL − π

τ

)

)]

. (C.38)

C.3 Nuclear dephasing time

In the previous section, we assumed that the nuclear spin signal could be repre-

sented by a delta function, meaning that it has a coherence time much longer than

the length of the dynamical decoupling sequence. However, the effective nuclear spin
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linewidth is broadened due to both dephasing from spin-spin interactions and diffu-

sion through the NV interaction volume. In order to take these effects into account,

we substitute the delta functions of Eq. (C.25) with normalized Lorentzian functions

such that:

fx,x(S = 1/2, ω) =
2π

8

(

1

π

T ∗−1
2

(ω − ωL)2 + (T ∗−1
2 )2

+
1

π

T ∗−1
2

(ω + ωL)2 + (T ∗−1
2 )2

)

, (C.39)

where T ∗
2 is the effective dephasing time of the nuclei. As before, we need to compute:

C(τ) = exp

(

−〈∆φ2(τ)〉
2

)

= exp

(

− 1

π
γ2eB

2
RMS

∫

ω

fx,x(S, ω) |g(ω, τ,N)|2 dω
)

,

(C.40)

Once again, symmetry allows us to simplify the experession using only the positive-

frequency component if we multiply the expression by two, leading to

C(τ) = exp

(

− 2

π2
γ2eB

2
RMS

∫

ω

1

π

T ∗−1
2

(ω − ωL)2 + (T ∗−1
2 )2

(Nτ)2sinc2
[

Nτ

2

(

ω − π

τ

)

]

dω

)

.

(C.41)

It is evident that the integral is a convolution between a Lorentzian l(ω) and a function

ψ(ω) ∼ sinc2(u). Using the convolution theorem, the integral can be solved by

multiplying the respective Fourier transforms and then taking the inverse Fourier

transform of the result. The Lorentzian component is

l(ω) =
1

π

T ∗−1
2

(ω − ωL)2 + (T ∗−1
2 )2

. (C.42)

Its Fourier transform is

L(t) =
(

e−tT
∗−1
2 −itωLH(t) + etT

∗−1
2 −itωLH(−t)

)

, (C.43)

where H(t) is the Heaviside step function. The sinc2(u) component is

ψ(ω) = (Nτ)2sinc2
[

Nτ

2
(ω)

]

. (C.44)
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Notice that the frequency offset π/τ has been removed to simplify the Fourier trans-

form. The Fourier transform is

Ψ(t) = π ((t−Nτ) sgn(t−Nτ)− 2t sgn(t) + (t+Nτ) sgn(t+Nτ)) . (C.45)

Taking the inverse Fourier transform I(ω) = F−1(L(t)Ψ(t)), and using the identity

ω = π/τ for the filter function resonance condition, gives the expression

I(τ) =
2T ∗2

2
[

1 + T ∗2
2

(

ωL − π
τ

)2
]2

{

e
−Nτ

T∗

2

[[

1− T ∗2
2

(

ωL − π

τ

)2
]

cos
[

Nτ
(

ωL − π

τ

)]

− 2T ∗
2

(

ωL − π

τ

)

sin
[

Nτ
(

ωL − π

τ

)]]

+
Nτ

T ∗
2

[

1 + T ∗2
2

(

ωL − π

τ

)2
]

+ T ∗2
2

(

ωL − π

τ

)2

− 1

}

. (C.46)

The final expression for contrast including nuclear spin dephasing is

C(τ) ≈ exp

(

− 2

π2
γ2eB

2
RMSI(τ)

)

(C.47)

Once again, for comparison with other models using F (ω) as the filter function, the

relationship is

F (ωt) =
2ω2

π2
I(τ). (C.48)

Ultimately, an experimental determination of a T2 dominated or of a T2 non-dominated

regime can be carried out by checking scaling of the dip amplitude and width as a

function of N and τ . Figure 4 shows what the dip looks like for three values of nuclear

T2.
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C.4 Pseudospin Derivation

An alternative derivation can be obtained using the pseudospin formalism. The

contrast is a product of the pseudo-spin signal Sj from each nuclear spin j:

C(τ) =
∏

j

Sj. (C.49)

For a CPMG sequence (or XY8) with N pulses, the pseudo-spin signal for nuclear

spin j is

Sj =1−2~ωj0×~ωj1 sin2

(

Ωj
0τ

4

)

sin2

(

Ωj
1τ

4

)

sin2(Nαj/2)

cos2(αj/2)
, (C.50)

where

cos(αj) = cos

(

Ωj
0τ

2

)

cos

(

Ωj
1τ

2

)

− ~ωj0 · ~ωj1 sin
(

Ωj
0τ

2

)

sin

(

Ωj
1τ

2

)

(C.51)

is the effective rotation angle during one cycle. Here the vectors ~ωji = Ωj
i
~ωji represent

the nuclear spin Hamiltonians in the two subspaces of the NV electronic spin, i.e., i

takes the value of the NV center spin state -1, 0, or 1. In the case of spin-1/2, we

have ~ωj0 = ωjLẑ, where ωL is the nuclear spin Larmor frequency. On the other hand,

~ωj1 = ωjLẑ +
~Ajz, where ~Ajz is the dipolar coupling component along the NV z axis.

Then the dip in the signal, Dj = 1− Sj, can be related to contrast by

C(τ) =
∏

j

Sj =
∏

j

[1−Dj]

=
∏

j

[

1− 2(~ωj0×~ωj1) sin2

(

Ωj
0τ

4

)

sin2

(

Ωj
1τ

4

)

sin2(Nαj/2)

cos2(αj/2)

]

. (C.52)

The expression can be further simplified in the limit ωL ≫ |Ajz|, where

~Ajz = Ajz[cosϕ sinϑ, sinϕ sinϑ, cosϑ]. Then, to second order in Ajz, the signal is given
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by

Sj ≈ 1− 2(Ajz)
2 sin2(ϑ)

ω2
L

sin4 (ωLτ/4) sin
2 (NωLτ/2)

cos2 (ωLτ/2)
. (C.53)

For simplicity in the following steps, we define κj = Ajz sin(ϑ
j) = (Ajzx)

2+(Ajzy)
2. We

can also show that

|g(ωL, τ)|2 =
16

ω2
L

sin4 (ωLτ/4) sin
2 (NωLτ/2)

cos2 (ωLτ/2)
. (C.54)

Then the signal from an ensemble of nuclear spins precessing at Larmor frequency ωL

is

C(τ) =
∏

j

(

1− 1
8
|g(ωL, τ)|2κ2j

)

(C.55)

This product can be reconciled with the exponential form of the previous section in

the following manner. First a variance of the effective field is defined as

〈κ2〉 = 1

n

n
∑

j=1

κ2j . (C.56)

The variance is just an average of the individual κ2j values. If the number of spins

n is large, one can assume that each spin acts like an average spin, and κ2j can be

replaced with 〈κ2〉. Then the product simplifies to

C(τ) =
∏

j

(

1− 1
8
|g(ωL, τ)|2κ2j

)

⇒
(

1− 1
8
|g(ωL, τ)|2〈κ2〉

)n
. (C.57)

Substitution with Eq. (C.56) yields

C(τ) =

(

1− 1

8
|g(ωL, τ)|2

1

n

∑

j

κ2j

)n

. (C.58)

Note that for large n this is the definition of the exponential! Then

C(τ) = lim
n→∞

(

1− 1

8
|g(ωL, τ)|2

1

n

∑

j

κ2j

)n

= exp

(

−1

8
|g(ωL, τ)|2

∑

j

κ2j

)

. (C.59)
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The term
∑

j κ
2
j can converted into an integral of the form

∫

ρ(~r)κ2(~r)d3r and inte-

grated over the sample. Since Az represents the frequency shift from dipolar coupling,

one can show from the definition of κ that

∑

j

κ2j = 9γ2e
∑

j

D2
j (rj)(u

j
z)

2
(

1− (ujz)
2
)

= 4γ2eB
2
RMS. (C.60)

This along with the approximated expression of the filter function finally allows Eq.

(C.59) to be written as

C(τ) ≈ exp

(

−1

2
γ2e |g(ωL, τ)|2B2

RMS

)

= exp

(

− 2

π2
γ2e (Nτ)

2sinc2
(

Nτ

2

(

ωL − π

τ

)

)

B2
RMS

)

. (C.61)

The expression for contrast exactly matches that derived in Eq. (C.38).
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Effects of Diffusion in NV NMR

The NV NMR protocol detects a nuclear spin signal via the dipole-dipole inter-

action, which makes it extremely sensitive to changes in nuclear spin position. As a

consequence of the strong distance dependence of dipolar coupling, nuclei diffusing

in a liquid move in and out of the sensing volume very quickly, which limits the in-

teraction time between the NV and nucleus. As a result, the linewidth of the nuclear

spin signal is broadened. This is in contrast to conventional NMR detection via an

inductive coil surrounding the sample, in which the nuclei can be fully contained

within the sensing volume and changes in nuclear position have little effect on the

signal. In the model describing the NV NMR signal (appendix C), we approximated

the line broadening effect by assuming the nuclear spin fluctuations were described

by a Lorentzian function with a broadening defined by the T ∗
2 parameter. In this

appendix, we use Monte Carlo simulations to more thoroughly model the effect of

molecular diffusion on the NV NMR signal. We show that for a semi-infinite sam-

ple (stretching from the surface to a distance well beyond the sensing volume), the
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linewidth can be satisfactorily described by a simple equation defining the correlation

time for diffusing particles. We also find that the spectral density of the nuclear spin

fluctuations is not described by either a Lorentzian or Gaussian distribution. Finally,

we show that the linewidth can be significantly narrowed by confining the sample to

a thin layer.

D.1 Estimated Linewidth Calculated from Corre-

lation Time

Translational diffusion limits the amount of time a nucleus interacts with the

NV center. Typically, one assumes that the interaction lasts for a characteristic

correlation time, τd, and that the probability finding the particles interacting drops

off exponentially in time. By taking the Fourier transform, one finds that this behavior

produces a Lorentzian lineshape L(τ, ω) typically written as

L(τ, ω) =
1

π

τd
1 + ω2τ 2d

. (D.1)

This can also be written in a standard Lorentzian form

L(τ, ω) =
1

π

1/τd
ω2 + 1/τ 2d

. (D.2)

The full width at half maximum (FWHM) is then 2/τd.

The translational diffusion correlation time for two spins in three dimensions can

be related to molecular geometries and diffusion coefficients by [96, 165]

τd =
d2

Dav

, (D.3)
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where d is the distance of closest approach between two spins and Dav is the average

of the diffusion coefficients for the two spins. Since the NV center is immobile, we

can assume that its diffusion coefficient is zero. The distance of closest approach is

the NV depth, dNV . Then the correlation time becomes

τd =
2d2NV
Dnuc

, (D.4)

where Dnuc is the diffusion coefficient of the nuclei.

We will consider two substances of interest, water and immersion oil. The diffu-

sion coefficient of water at room temperature is 2.3× 10−9 m2/s [166]. The diffusion

coefficient of the immersion oil used in our experiments is unknown, but it can be ap-

proximated from the known viscosity of 450 cSt [167]. Low-fluorescent immersion oil

is typically composed of liquid polybutadiene mixed with smaller amounts of paraffins

and carboxylic acid esters [168]. In one example of an immersion oil with kinematic

viscosity ν = 450 cSt [168], the polybutadiene component has an average molecular

weight of 1600 g/mol. The hydrodynamic radius of the molecule is on the order of

r ∼ 1 nm [169], and the density is ρ ∼ 0.9 g/mL. The dynamic viscosity is then

η = ρν = 0.405 cP. (D.5)

Using the Stokes-Einstein relationship

D =
kBT

6πηr
(D.6)

gives a diffusion coefficient Doil ≈ 5× 10−13 m2/s.

Figure D.1a plots the estimated linewidth for water and immersion oil as a function

of NV center depth calculated using equation D.4, while Fig. D.1b plots the estimated
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a b

Figure D.1: Estimate of nuclear spin spectral density linewidth for NV NMR exper-
iment. (a) Linewidth as a function of NV depth for water and immersion oil. Solid
lines are calculations based on the correlation time defined by equation D.4. Solid
symbols are values calculated from the Monte Carlo simulation described in section
D.2. Open symbols are values for the water linewidth when the water layer is confined
to 1 nm height above the diamond surface, calculated with a Monte Carlo simulation.
(b) Linewidth as a function of diffusion coefficient for NV centers 5 and 10 nm deep,
calculated with equation D.4.

linewidth versus diffusion coefficient for 10 nm and 5 nm deep NV centers. The

estimated nuclear spin linewidths for a 10 nm deep NV center are 23 MHz for water

and 5 kHz for immersion oil.

D.2 Monte Carlo Simulations

To better-characterize the lineshape of the nuclear spin signal, we modeled diffu-

sion of oil and water molecules with a Monte Carlo simulation. We chose a diffusion

simulation based on a lattice model in which the molecule moves along each axis

(x, y, z) either backward or forward one lattice site with a 50% probability at each

step [170]. This is more convenient than a continuous-space model for dealing with

the boundary condition defined by the diamond surface. For a step in which the
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nucleus would move to a lattice site inside the diamond, the nucleus instead remains

in place. The lattice step size, dl, is related to the diffusion coefficient D and the

time step dt by dl =
√
2Ddt. At each time step, a coupling factor with the NV is

calculated. We ignore the dipole-dipole coupling prefactors as they do not matter for

the final result. The coupling factor is

c =
u2z(1− u2z)

r6
, (D.7)

where r is the distance between the NV center and the nucleus, and uz contains the

angular terms in spherical coordinates for the vector connecting the NV center and

the molecule:

uz = cos(α) cos(θ) + sin(α) sin(θ) cos(φ). (D.8)

Here α is the angle of the NV axis, 54.7◦, θ is the polar angle, and φ is the azimuthal

angle.

The simulation records a trajectory of x, y, z, and c values. We are most interested

in c, as this represents the envelope of the sinusoidal Larmor precession signal that

the NV measures. Fourier transformation of c subsequently gives the lineshape of the

nuclear spin spectral density.

We first verified that the algorithm properly simulates diffusion. Figure D.2a plots

the probability of finding the molecule at locations x, y, and z after 40 microseconds

for an immersion oil molecule whose origin (which we define as coordinates (0,0,0))

is on the diamond surface directly above the NV center. The results were collected

from 5000 simulation runs. Figure D.2b shows a Gaussian curve fit to the probability

density for the x-axis. From the standard deviation of the fit, we find a diffusion co-

efficient D = 5.00009×10−13 m2/s, in excellent agreement with the assigned diffusion
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Figure D.2: Confirmation of diffusion model. (a) Probability of finding the oil nucleus
at a given distance after 40 microseconds of diffusion. (b) A Gaussian fit of the
probability function along the x-axis agrees with the diffusion coefficient of oil.

coefficient for immersion oil.

We next calculated the coupling factor as a function of time using simulation

lengths appropriate for the diffusion coefficient of each substance and the NV depth,

making sure that the average coupling coefficient was near zero by the end of the

simulation. For immersion oil, timecourses ranged between 4 and 16 ms, while for

water, timecourses ranged between 160 and 800 µs. An average timecourse was

calculated from 1000 simulation runs and Fourier transformed to produce a plot of

coupling factor versus frequency. The full-width at half maximum value was then

extracted numerically.

Results for immersion oil above a 10 nm deep NV center are shown in Fig. D.3.

For the time domain, results are shown for both a single run and the average of 1000

runs. Coupling decreases to nearly zero within the first 100 µs as the nucleus diffuses

away from the NV center, although within a single run the nucleus often moves

back into the sensing volume. In the frequency domain, the lineshape is clearly not
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Figure D.3: Simulation of an oil molecule above a 10 nm deep NV center. (a) Coupling
factor as a function of time for a single run (blue) and an average of 1000 runs (red).
(b) Fourier transform of the average timecourse for the coupling factor. The FWHM
linewidth is 5.01 kHz.

Lorentzian nor Gaussian, but rather exhibits a sharply-peaked shape. This is likely

a consequence of the 1/r6 distance dependence of the coupling factor. Nevertheless,

the FWHM linewidth of 5.01 kHz matches very well with the calculation based on

correlation time (Eq. D.4).

Figure D.4 plots the results for the coupling factor between water and a 10 nm

deep NV center. The results are qualitatively very similar to those of immersion oil,

but the larger diffusion coefficient leads to a faster dropoff in coupling strength and a

broader linewidth. Again the FWHM linewidth value of 23.5 MHz matches well with

calculations based on the correlation time (Eq. D.4).

We plot the results from simulations at a range of NV depths in figure D.2 (closed

symbols) and find strong agreement between the simulation and the calculation based

on correlation time. We also plot the results from simulations in which the water layer

is confined to 1 nm height above the diamond surface (i.e. in the z direction) (open

squares). We suspect a ∼ 1 nm water layer of water is normally present on the surface
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Figure D.4: Simulation of a water molecule above a 10 nm deep NV center. (a)
Coupling factor as a function of time for a single run (blue) and an average of 1000
runs (red). (b) Fourier transform of the average timecourse for the coupling factor.
The FWHM linewidth is 23.5 MHz.

due to hydration from moisture in the air. Confining the water in this way narrows

the linewidth between 2 and 3 orders of magnitude, giving a value of ∼ 100 kHz for a

10 nm deep NV center. This is significant because bulk water’s linewidth of 23.5 MHz

would be much too broad to detect, but the decrease in linewidth for a thin layer can

narrow the signal sufficiently to be measured. The predicted 100 kHz linewidth is

still broader than that detected in our experiments, indicating that other effects may

also be confining the water or lowering its diffusion coefficient near the surface. Such

a phenomenon has been predicted by molecular dynamics simulations [171], which

calculated a diffusion coefficient near a hydrophilic diamond surface that is only 31%

the value for bulk water.

In conclusion, our calculations demonstrate that NV NMR is strongly sensitive

to diffusion effects for liquid samples. NV NMR measurements consequently can

provide novel information about a sample’s diffusion coefficients and confinement

volume, which may elucidate new interfacial phenomena.
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Hardware for NV Center

Experiments

This appendix describes the NV NMR setup used for experiment in chapter 7.

E.1 Diamond samples

The diamond for single NV measurements of PFOS/POSF was a 2× 2× 0.4 mm

99.999% 12C high-purity chemical vapor deposition (CVD) chip from Element 6 with

an unpolished surface, implanted with 2.5-keV 14N+ ions and annealed at 900 ◦C for

8 hours. The NV centre chosen for NV NMR measurements was in a region with a

2D NV density of 8 × 107 cm−2, and its Hahn echo T2 was 26 µs. The diamond for

single NV measurements of Fomblin was a 4 × 4 × 0.5 mm 99.999% 12C high-purity

chemical vapor deposition (CVD) chip from Element 6 with an unpolished surface,

implanted with 2-keV 15N+ ions at a dose of 1× 109 cm−2. It was annealed at 800 ◦C
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for z hours and cleaned in a three-acid mixture (1:1:1 nitric:sulfuric:perchloric acids).

The diamond for NV ensemble measurements was a 4× 4× 0.3 mm 99.6% 12C CVD

chip from Element 6 implanted with 6 keV 14N+ ions at a dose of 2 × 1013 cm−2.

The diamond was annealed at 800 ◦C for 2 hours, producing NV centres with a 2D

density of 3.5× 1011 cm−2 in a ∼ 10 nm thick layer at an average depth of ∼ 10 nm,

estimated by Monte Carlo simulations. The ensemble Hahn echo T2 was 3 µs.

E.2 Confocal microscope

Measurements of single NV centres were performed using a custom-built scanning

confocal microscope. Optical excitation was provided by a 800 mW 532 nm diode

pumped solid-state (DPSS) laser (Changchun New Industries Optoelectronics Tech

MLLIII532-800-1), focused onto the diamond using a 100×, 1.3 NA oil immersion

objective (Nikon CFI Plan Fluor 100× oil). The excitation laser was pulsed by

focusing it through an acousto-optical modulator (Isomet 1205C-2). NV fluorescence

was collected through the same objective and separated from the excitation beam

using a dichroic filter (Semrock LM01-552-25). The light was additionally filtered

(Semrock LP02-633RS-25) and focused onto a single-photon counting module (Perkin-

Elmer SPCM-ARQH-12). Microwaves were delivered to the diamond using a 900 µm-

diameter loop fabricated on a glass cover slip, with the diamond glued to the cover slip

and in contact with the loop. The loop was driven by an amplified (Mini-circuits ZHL-

16W-43-S+) microwave synthesizer (Windfreak SynthNV). The phase of microwave

pulses was controlled using an in-phase/quadrature (IQ) mixer (Marki IQ1545LMP).

Microwave and optical pulses were controlled using a computer-based digital delay
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generator (SpinCore PulseBlaster ESR400). Measurement protocols (pulse sequences,

data acquisition, etc.) were controlled by custom software. The static magnetic field

was applied with a permanent magnet whose distance and position relative to the

NV centre was controlled with a three-axis stage.

E.3 Wide-field microscope

Measurements of NV ensembles were performed using a custom-built wide-field

microscope. Optical excitation was provided by a 532 nm LaserQuantum mpc6000

laser focused through a glass coverslip and the diamond chip onto the opposite di-

amond surface, containing the shallow, high-density NV layer, by a 100× 0.9 NA

air objective (Olympus MPlan N). The diamond was attached to the coverslip with

Norland Blocking Adhesive 107 (Norland, Cranbury, NJ), which was cured under a

UV lamp for 30 minutes. The laser was controlled with an acousto-optical modulator

(Isomet M1133-aQ80L-1.5). The NV fluorescence signal was collected through the

same objective and separated from the excitation beam with a dichroic mirror (Sem-

rock LM01-552-25) and optical filters (Semrock LP02-633RS-25 and FF01-750SP-25)

before being imaged onto a CCD camera (Starlight Express SXVR-H9). An optical

chopper was used to block fluorescence during optical state preparation of the NV

centres. Microwaves were synthesized with a signal generator (Agilent E8257D), am-

plified (Mini-circuits ZHL-16W-43-S+), and applied to the sample with a small wire

loop placed against the diamond. The microwave pulse phase was controlled by an IQ

mixer (Marki IQ1545LMP). Microwave and optical pulses were controlled by a pulse

generator (SpinCore PulseBlasterESR-PRO 500 MHz) governed by custom software.
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The static magnetic field was applied with a permanent magnet whose distance and

position relative to the NV ensemble was controlled with a three-axis stage.

The laser spot on the diamond had a FWHM size of ∼ 60 µm. For the white light

image, each CCD pixel represented 200 nm x 200 nm on the diamond surface. For the

NV fluorescence measurement, each CCD pixel represented 1 x 1 µm on the diamond

surface, although the point spread function of the detection optics was ∼ 500 nm.

Smaller CCD pixels could be used, with reduced SNR. Each NV NMR measurement

average was performed for 500 ms (2000 chopper cycles) at each dynamical decou-

pling delay, and a full dataset consisted of ∼ 800 averages. For simple spectroscopic

measurements, a 26 µm x 20 µm field of view was sampled and the measurements

from each pixel were averaged together before further processing. For imaging, a

larger field of view was sampled and each pixel was analyzed separately.

E.4 SiO2 structure

The diamond used for NV ensemble NMR imaging was prepared by cleaning in

piranha solution (2 parts H2SO4 to 1 part H2O2 v/v) for more than 1 hour. Using

atomic layer deposition (ALD, Savannah Atomic Layer Deposition S200), a 3 nm

layer of Al2O3 was grown on the diamond surface followed by a 90 nm layer of SiO2.

The deposition temperature of the substrate was 250 ◦C, and deposition rate was 0.5

nm/min. The SiO2-coated diamond was cleaned with acetone and isopropanol and

then baked for 2 minutes on a hot plate at 115 ◦C to remove water. The diamond

was then spin coated with hexamethyldisilazane followed by photoresist S1805 and

once again heated at 115 ◦C for 90 seconds. It was exposed with a photomask using a

187



Appendix E: Hardware for NV Center Experiments

Suss MicroTec MJB4 and developed with CD26 for 45 s, rinsed with deionized water,

and blown dry with nitrogen. SiO2 was etched with buffered oxide etchant (BOE) for

1 minute at an etch rate of 330 nm/min. Photoresist was then removed by soaking

in acetone for 5 minutes. Finally, the diamond was cleaned in piranha solution for 1

hour.
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