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ABSTRACT 
 
 

The use of propofol and propofol in combination with remifentanil by 

nonanesthesiologists is a controversial topic. Much of the concern centers on adverse 

respiratory effects: loss of responsiveness, respiratory depression, and airway 

obstruction. The aim of this study was to investigate these adverse drug effects at 

propofol-remifentanil combinations commonly used in procedures requiring esophageal 

instrumentation and build response surface models of drug effects. A second aim was to 

investigate published dosing regimens through simulation with these models. A third aim 

was to develop an optimization algorithm to identify an ideal propofol-remifentanil dosing 

regimen for upper endoscopy procedures. 

Twenty-four volunteers received escalating target controlled remifentanil and 

propofol infusions. Responses to insertion of a bougie (40 cm), responsiveness, 

respiratory rate, and tidal volume were recorded at 384 targeted concentration pairs. 

Four published dosing regimens of propofol alone or in combination with opioids were 

simulated for a 10-min procedure. An optimization algorithm was developed to identify 

an optimal propofol-remifentanil dosing regimen from a set of possibilities. 

Models for loss of response to esophageal instrumentation, intolerable ventilatory 

depression, and respiratory compromise were built. Simulations of published dosing 

regimens showed that once drug administration ended, loss of responsiveness, and 

respiratory depression effects dissipated quickly. Respiratory compromise dissipated 

more quickly in propofol only techniques compared to propofol-opioid techniques. An 

optimal dosing recommendation was identified for a simulated 55 year-old, 75 kg, 175 
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cm male undergoing an anticipated 10-min upper endoscopy and consisted of a propofol 

bolus of 0.8 mg/kg and infusion rate of 40 mcg/kg/min and a remifentanil bolus of 0.2 

mcg/kg and an infusion rate of 0.05 mcg/kg/min. 

High propofol-low remifentanil concentration pairs can block the response to 

esophageal instrumentation while avoiding intolerable ventilatory depression in 

spontaneously breathing volunteers. Propofol combined with remifentanil or fentanyl 

improved conditions for esophageal instrumentation and had a rapid return to 

responsiveness. Optimization techniques identified a remifentanil propofol dosing 

regimen that minimizes the duration of loss of responsiveness, respiratory depression, 

and airway obstruction and, according to expert opinion and models of drug effect, 

provides conditions that will permit upper endoscopy procedures. This dosing regimen 

merits clinical validation in patients undergoing brief endoscopic procedures. 
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PREFACE

 
The work presented in this thesis represents several years of careful study into 

the analgesic and sedative effects resulting from propofol-remifentanil dosing 

combinations. There has been some debate on whether it is safe for 

nonanesthesiologists to administer these drugs. This work will address this question in 

the realm of gastrointestinal procedures requiring esophageal instrumentation. 

In Chapter 2, we present probabilistic models of drug effect for loss of response 

to esophageal instrumentation, loss of responsiveness, and intolerable ventilatory 

depression and conclude that there is an area where a high percentage of volunteers 

tolerated esophageal instrumentation and avoided concentrations that would lead to 

involuntary respiratory depression. However, there was no concentration that achieved 

these conditions and avoided loss of responsiveness in a majority of volunteers. This 

chapter was published in Anesthesia & Analgesia in September 2011 with an 

accompanying editorial. 

Chapter 3 improves upon our models for loss of response to esophageal 

instrumentation and intolerable ventilatory depression. A revised model is introduced 

that more accurately reflects clinically acceptable conditions for esophageal 

instrumentation. A new model for both intolerable ventilatory depression and airway 

obstruction is presented and called respiratory compromise. In addition, simulations of 

published upper endoscopy dosing protocols are performed. Because models for 

respiratory compromise and loss of responsiveness were built from data collected in 

unstimulated patients, it was decided they only are accurate in unstimulated patients 
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following termination of the procedure. An abstract presented on this work was awarded 

a Best of: Clinical Science award at the American Society of Anesthesiologists 2011 

Conference. Anesthesiology, the official journal of the American Society of 

Anesthesiologist, extended an invitation to submit a manuscript from this work for 

publication in their April 2012 issue and it is currently under final review. 

Reviewers from both manuscripts have encouraged us to use our expert position 

to provide a dosing recommendation. However, the complexity involved in addressing 

this issue required this be addressed in its own manuscript. Chapter 4 presents our work 

into providing an a priori dosing recommendation using multiobjective optimization 

techniques and our previously published propofol-remifentanil interaction models. This 

work has not yet been submitted to a journal for publication. 

 

 



 

 

1 CHAPTER 1 

 
INTRODUCTION 

 
Each day, thousands of patients undergo gastrointestinal endoscopy, with the 

number continually increasing. The advent of new, fast acting drugs such as propofol 

and remifentanil has helped decrease procedure and recovery times but also introduces 

the risk of cardiopulmonary complications.1 Of particular concern is that for the 

procedures, the anesthetics are commonly administered by nonanesthesiologists. This is 

worrisome because of the rapid onset of drug effects and lack of reversal agents, placing 

patients in potentially harmful situations very rapidly and leaving the clinician with a 

narrow window in which to react. The American Society of Anesthesiologists has issued 

a statement that the use of propofol be limited to those properly trained.2 

 
1.1 Background 

Propofol or propofol in combination with an opioid is commonly used to provide 

sedation and analgesia for gastrointestinal procedures such as upper endoscopy.3 

Propofol is a sedative that also provides amnesia but offers only minimal analgesia. It 

has a time to peak effect of 1.6 min.4 While it is possible to perform upper endoscopy 

without any anesthesia, sedatives and analgesics are commonly administered to 

improve patient comfort and procedure quality.  

While mild to moderate sedation is the ideal target, it is often not possible to 

place a scope in the esophagus and avoid deep sedation. Also, if propofol is dosed 

alone, there is also a tendency to oversedate in an attempt to compensate for its lack of 
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analgesic properties. Elevated levels of propofol can lead to apnea, ventilatory 

depression, desaturation, and hypotension. 

Opiates commonly used in combination with propofol include midazolam, 

fentanyl, alfentanil, and remifentanil. This work will focus on remifentanil, which has a 

time to peak effect of around 1 min.4-6 As an opiate, remifentanil has analgesic 

properties but little sedative or amnesic properties. High doses of remifentanil can lead 

to respiratory depression.  

Administering propofol in combination with an opioid is common, allowing the 

patient to receive the benefits of both drugs. In addition, the interaction between these 

propofol and opioids is synergistic for most effects, meaning that when both are 

administered, less of each drug is needed to reach the same effect as if either drug were 

given alone. However, this is not limited to just the desired effects – the patient is also 

exposed to the adverse effects of both drugs and the interaction for these effects may 

also be synergistic. 

 
1.2 Goals 

The question this dissertation seeks to answer is “does a dosing combination 

exist that provides adequate sedation and analgesia for esophageal instrumentation 

while minimizing the risk of adverse effects?” Because remifentanil is a relatively new 

drug, its effects have not been thoroughly characterized. Studies do exist that report a 

propofol C50 for endoscopy procedures with propofol alone and in the presence of an 

opioid, but to our knowledge no interaction model exists. In order to determine if propofol 

and remifentanil can be safely administered for upper endoscopy, interaction models 

between propofol and remifentanil needed to be built for several drug effects. Research 

needs to be conducted to identify current dosing strategies, and an algorithm needs to 

be developed to identify the optimal dosing combination.  
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1.2.1 Pharmacodynamic models of drug effect 

The first aim of this study was to characterize the interaction between propofol 

and remifentanil for loss of response to esophageal instrumentation, intolerable 

ventilatory depression, and respiratory compromise (intolerable ventilatory depression 

and airway obstruction). Response surface models would be built that could predict the 

probability of effect for any drug combination.  

 
1.2.2 Evaluation of common dosing strategies 

A second aim was to explore through simulation the behavior of common dosing 

regimens for loss of response to esophageal instrumentation, loss of responsiveness, 

respiratory depression, and respiratory compromise. Focus will be on evaluating the 

adverse effects encountered by these protocols following the end of the procedure, a 

time when patients are unstimulated and therefore at greatest risk. This aim would also 

partly serve as a validation of the models developed in the first aim. 

 
1.2.3 Identification of optimal drug combination and dosing 

Once drug effect models are created, we will have a “view of the landscape”, 

meaning we will know where the various effects occur and how they interact. This will 

help identify what if any propofol-remifentanil combination will provide a high probability 

of loss of response to esophageal instrumentation yet avoid loss of responsiveness, 

respiratory depression, and respiratory compromise. In addition, simulation of common 

dosing protocols would serve to validate these models as well as comment on which 

strategy may be best. Ultimately, these steps would contribute to our making a final 

dosing recommendation. 

With the experience obtained in the first two aims, objective functions will be 

constructed that will define the properties of the ideal dose. It will include time until the 

procedure can begin, time needed to perform the procedure, and total recovery time. 
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Ideal times for each objective will be obtained from experts in the field. Finally, an 

optimization algorithm will be developed to identify the dosing combination that comes 

closest to these ideal times. The algorithm will evaluate the tradeoff between the various 

objectives and select the best compromise solution. 

Algorithm performance will be evaluated by comparing recommendations from 

the optimization routine to actual dosings administered to patients. Objective scores for 

the actual and recommended dosings will be computed and a final recommendation 

made.  

 
1.3 References 
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2 CHAPTER 2 

 
REMIFENTANIL-PROPOFOL PHARMACODYNAMIC MODELS 

 FOR INTOLERABLE VENTILATORY DEPRESSION, LOSS  

OF RESPONSIVENESS, AND LOSS OF RESPONSE  

TO ESOPHAGEAL INSTRUMENTATION* 

 
2.1 Abstract 

2.1.1 Introduction 

Remifentanil and propofol are increasingly used for short duration procedures in 

spontaneously breathing patients. In this setting, it is preferable to block the response to 

moderate stimuli while avoiding loss of responsiveness (LOR) and intolerable ventilatory 

depression (IVD). The aim of this study was to explore selected effects of combinations 

of remifentanil-propofol effect-site concentrations (Ces) that lead to a loss of response to 

esophageal instrumentation (EI), a LOR, and/or onset of IVD. A secondary aim was to 

use these observations to create response surface models for each effect measure. We 

hypothesized that (1) in a high percentage of volunteers, selected remifentanil and 

propofol Ces would allow EI yet avoid LOR and IVD and (2) the drug interaction for 

these effects would be synergistic.  

 

                                                 

 
*
 Reprinted with permission from Wolters Kluwer Health: LaPierre CD, Johnson KB, Randall BR, 

White JL, Egan TD: An Exploration of Remifentanil-Propofol Combinations That Lead to a Loss of 
Response to Esophageal Instrumentation, a Loss of Responsiveness, and/or Onset of Intolerable 
Ventilatory Depression. Anesth Analg 2011; 113: 490-9 ©Wolters 2011 
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2.1.2 Methods 

Twenty-four volunteers received escalating target controlled remifentanil and 

propofol infusions over ranges of 0-6.4 ng∙mL-1 and 0-4.3 mcg∙mL-1, respectively. At 

each set of target concentrations, responses to insertion of a blunt end bougie into the 

mid-esophagus (40 cm), level of responsiveness, and respiratory rate were recorded. 

From these data, response surface models of loss of response to EI and IVD were built 

and characterized as synergistic, additive, or antagonistic. A previously published model 

of LOR was used. 

 
2.1.3 Results 

Of the possible 384 assessments, volunteers were unresponsive to EI at 105 

predicted R-P Ces; in 30 of these, volunteers had no IVD; in 30 of these, volunteers had 

no LOR; and in 9 of these, volunteers had no IVD or LOR. Many other assessments over 

the same concentration ranges, however, did have LOR and/or IVD. The combinations 

that allowed EI and avoided IVD and/or LOR primarily clustered around remifentanil 

propofol Ces ranging from 0.8 to 1.6 ng∙mL-1 and 1.5 to 2.7 mcg∙mL-1, respectively, and 

to a lesser extent around 3.0 to 4.0 ng∙mL-1 and 0.0 to 1.1 mcg∙mL-1, respectively. 

Models of loss of response to EI and IVD both demonstrated a synergistic interaction 

between remifentanil and propofol. 

 
2.1.4 Discussion 

Selected remifentanil-propofol concentration pairs, especially higher propofol-

lower remifentanil concentration pairs, can block the response to EI while avoiding IVD 

in spontaneously breathing volunteers. It is, however, difficult to block the response to EI 

and avoid both LOR and IVD. It may be necessary to accept some discomfort and blunt 

rather than block the response to EI in order to consistently avoid LOR and IVD. 
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2.2 Introduction 

Propofol in combination with remifentanil is useful for medical procedures that 

require moderate sedation and analgesia. Both drugs are rapid acting and quickly 

dissipate once administration is terminated. They interact synergistically with one 

another,1 requiring less of each drug to achieve a desired effect when used in 

combination. For example, a synergistic interaction is present for loss of response to 

laryngoscopy1-3 and moderately painful stimuli,4 and to a lesser extent for loss of 

responsiveness.1-3,5 

Propofol and combinations of propofol with an opioid have been used to block 

the response to noxious stimuli during procedures in spontaneously breathing patients in 

the context of moderate sedation.6-11 In this setting, it is preferable to block the response 

to moderate noxious stimuli while avoiding intolerable ventilatory depression and 

minimizing loss of responsiveness.  

The aim of this study was to explore the effects of selected combinations of 

remifentanil and propofol. Effects of interest included a loss of response to esophageal 

instrumentation, a loss of responsiveness, and intolerable ventilatory depression. A 

secondary aim was to use these observations to create response surface models for 

each effect measure. We hypothesized that in a high percentage of volunteers, selected 

remifentanil-propofol effect-site concentrations would allow esophageal instrumentation 

yet avoid intolerable ventilatory depression and that the drug interaction for these effects 

would be synergistic. 

 
2.3 Methods 

2.3.1 Volunteer recruitment and instrumentation 

After approval by the Institutional Review Board at the University of Utah, 

informed written consent was obtained from 12 male and 12 female 
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(nonpregnant/nonlactating) volunteers. Eligible volunteers had an American Society of 

Anesthesiologists’ Physical Status of I or II, were nonsmokers 18 years of age or older, 

and had a body mass index between 18 and 28. Volunteers were not eligible if they had 

a history of significant alcohol or drug abuse, allergy to opioids or propofol, sleep apnea, 

or chronic drug requirements or medical illness that are known to alter the 

pharmacokinetics or pharmacodynamics of opioids or intravenous anesthetics.  

 
2.3.2 Monitoring 

Following overnight fasting, volunteers had a 20-gauge intravenous catheter 

placed for fluid and drug administration. A maintenance infusion of 0.9% sodium chloride 

was administered at 1 mL∙kg-1∙hour-1 throughout the study period. In addition, a 20-

gauge arterial catheter was placed in a radial artery for continuous blood pressure 

monitoring and intermittent arterial blood gas analyses. Volunteers were monitored with 

an electrocardiogram, pulse oximeter, noninvasive blood pressure, and expired carbon 

dioxide and inspired oxygen monitor. Inspired and expired airway flow and volumes were 

measured using a pneumotachometer (Novametrix, Louisville, KY) attached to a tight 

fitting mask. All volunteers received oxygen by face mask at 2 L∙min-1. A Mapleson E 

circuit was used to provide manual ventilation if required to maintain adequate 

oxygenation and ventilation. Before administration of the study drugs, volunteers were 

treated with 0.2 mg glycopyrrolate to prevent bradycardia and 30 mL sodium citrate by 

mouth. 

 
2.3.3 Experimental design 

The study was an open-label, randomized, parallel group study using a 

crisscross design as described by Short et al. to assess drug interactions.12 Each 

volunteer was randomly assigned to one of two groups: a basal infusion group of 

remifentanil or propofol. Each group was further randomized to receive three of six 
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possible sets of escalating predicted target effect-site concentrations (Ces) (Appendix 

A). For each set, one drug was stepped through five predetermined Ce targets (primary 

agent) while the second drug was held at a constant Ce (secondary agent). Following 

each set, the infusions were stopped until predicted Ces for both drugs returned to near 

0, at which time the next set would begin. This design provided a total of 61 possible 

pairs: one at baseline prior to drug administration, 30 for the remifentanil basal infusion 

group, and 30 for the propofol basal infusion group.  

Based on prior work,1,5,13 8 to 9 volunteers were randomly assigned to eight of 

the twelve sets (sets 1-4 of the remifentanil and propofol groups) of concentration pairs 

in the anticipated transition zone (less than 5.0 ng∙mL-1 and 3.3 mcg∙mL-1 for remifentanil 

and propofol, respectively) and one to two volunteers to the remaining four sets (sets 5 

and 6 of the remifentanil and propofol groups) anticipated to be near maximal effect. The 

predicted target effect-site concentrations ranged from (0.0–6.4 ng∙mL-1) for remifentanil 

and (0.0–4.3 mcg∙mL-1) for propofol. The study was designed so each experiment could 

be completed within 10 hours. 

 
2.3.4 Drug delivery and effect measures 

Target controlled infusions were administered using computer controlled infusion 

pumps (Pump 22; Harvard Apparatus, Limited, Holliston, MA) and drug infusion software 

(STANPUMP, Available from Steven L. Shafer, M.D., at 

http://www.opentci.org/doku.php?id=code:code. Posted November 25, 2008. Last 

accessed June 3, 2010). Pharmacokinetic parameters published by Minto et al. were 

used for remifentanil14 and Schnider et al. for propofol.15 Effect measurements began 5 

min after predicted Ces reached the targeted concentrations.  

At each target concentration pair, volunteers underwent an assessment period 

consisting of three measures. First, an assessment of responsiveness was made using 
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the Observers Assessment of Alertness and Sedation (OAA/S) scale (Table 2.1).16 A 

loss of response was defined as an OAA/S score = 1. Second, an assessment of 

respiratory rate was made using the capnography tracing. Intolerable ventilatory 

depression was defined as a respiratory rate of 4 or less breaths in a 1-min time window. 

During pilot studies, we arrived at this respiratory rate cutoff based on several 

observations: Below 4 breaths per minute, volunteers consistently began to (1) have a 

drop in their SpO2 levels (a rapid decline from 100 to low 90s), (2) the ETCO2 began to 

rise above 50 mmHg, and (3) without manual bag mask ventilation, the volunteers would 

become hypoxic. Third, an assessment of response to esophageal instrumentation was 

made. A 42 French (14 mm diameter, 215542, Teleflex Medical, RTP, NC) blunt end 

bougie was placed through the oropharynx and advanced 40 cm into the esophagus. 

Loss of response to esophageal instrumentation was defined as no gag reflex, no 

voluntary or involuntary movement, and no change in heart rate or blood pressure 

greater than 20% from baseline values recorded just prior to instrumentation. Each 

volunteer underwent a total of 16 assessment periods (one at baseline and five in each 

of three sets). 

Volunteers were verbally prompted to breathe if there were less than 2 breaths in 

30 seconds. If SpO2 was below 95% on 2 liters per min of face mask oxygen or expired 

carbon dioxide levels were greater than 55 mmHg and they did not respond to prompts 

to breathe, mask ventilation was provided. If airway obstruction was present, the airway 

was opened using a head tilt and chin lift and/or placement of an oral pharyngeal airway. 

If volunteers developed a mean arterial blood pressure or heart rate less than 20% of 

baseline, drug administration was terminated and the washout period begun. Ephedrine 

5-10 mg was administered intravenously to treat hypotension as needed. 
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Table 2.1: The Observers Assessment of Alertness/Sedation (OAA/S) score16 

Value Description 

5 Responds readily to name spoken in normal tone. 

4 Lethargic response to name spoken in normal tone. 

3 Responds only after name is called loudly and/or repeatedly  

2 Responds only after moderate prodding or shaking. 

1 Does not respond to moderate prodding or shaking 

An Observer’s Assessment of Alertness/Sedation score of 1 was considered unresponsive.  

https://www.medvis.com/twiki/bin/view/Main/PkPdValidationProtocol?sortcol=0;table=1;up=0#sorted_table
https://www.medvis.com/twiki/bin/view/Main/PkPdValidationProtocol?sortcol=1;table=1;up=0#sorted_table
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2.3.5 Response surface models 

Using modeling software (MATLAB R2008b, The MathWorks, Inc., Natick, MA), 

binary data (presence or absence of a response) for loss of response to esophageal 

instrumentation and onset of intolerable ventilatory depression were fit to a Greco 

model17 adjusted for categorical data18 using equation 2.1. For loss of responsiveness, a 

previously reported model based on data collected in volunteers in a similar fashion was 

used.5 

 
 

2.1 
 

 

P(LR = 1|CR, CP) is the probability of loss of response at a given remifentanil (CR) 

and propofol (CP) concentration. Emax is the maximal effect (i.e. loss of response to 

esophageal instrumentation) and is 1 for categorical data. CR and CP are the predicted 

Ces of remifentanil and propofol (ng∙mL-1 and mcg∙mL-1) as predicted by Stanpump. C50R 

and C50P are the concentrations of remifentanil and propofol that alone achieve 50% 

probability of no response. The parameter γ (gamma) determines the slope along the 

sigmoid surface, and α (alpha) is the drug interaction term.  

Models were built using a naïve pooled technique.19 Effect ranged from 0 (100% 

probability of response) to 1 (100% probability of no response). Model parameters were 

determined using an iterative approach minimizing the -2 Log Likelihood (-2LL), 

presented in equation 2.2.  

 
2.2 

 

 
N is the number of observations made for all volunteers combined, Ri is the observed 
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


CV  

response, and P is the corresponding probability of loss of response. 

To characterize variability, coefficients of variation (CV) for each model 

parameter were estimated using a bootstrap technique. One thousand subsamples were 

randomly drawn (with replacement) from the raw data, with each subsample containing 

the same number of data points as the raw data set. Estimates of model parameters 

were generated from each subsample using the same techniques described previously. 

The mean (μ) and standard deviation () of the 1000 estimates were used to compute 

the CV for each model parameter (equation 2.3). 

 
2.3 

 

The CV was computed in this manner at least 10 times for each effect measure. 

It was continued until the percent change between the average of all iterations and the 

average from all previous iterations was less than 5%. The final averaged CV was 

reported. 

For each effect measure, model fits were evaluated using a Chi-square (2) 

goodness-of-fit test. Response/no response data were divided into probability bins with 

at least 5 no response data points in each bin. The expected frequency of no response 

for each bin (Pi) was calculated by multiplying the mean predicted probability by the total 

number of observations in the bin. Observed frequency of no response (Oi) was the 

number of observations where no response occurred. The 2 test statistic was computed 

using equation 2.4: 

 
2.4 

 

 
k is the number of bins. The null hypothesis was that the expected (based on the 
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model’s prediction of probability of no response) and observed frequencies were from 

the same distribution and was rejected if the 2 test statistic exceeded the 2 critical 

value at a significance level of 5% with k-5 degrees of freedom (four parameters used to 

compute expected frequency are estimated from the data). 

Two graphical approaches were used to assess model fits. The first plot 

presented the observed responses and a topographical rendering of model predictions. 

A graphical representation of the model was created by plotting the 5, 50, and 95% iso-

effect lines (isoboles) representing predicted remifentanil-propofol Ces that produce an 

equivalent effect. This format was used to illustrate the number of volunteers that 

developed a loss of response alongside model predictions of the same effect measure. 

The second plot presented the observed responses and a three-dimensional rendering 

(response surface) of model predictions. This format was used to illustrate the 

differences between model predictions (ranging from 0 to 1 using equation 2.1) and 

observed responses (either 0 or 1). An assessment of how well the model predictions fit 

the observations was made by calculating the percentage of predictions that agreed with 

observations. Agreement was defined as an absolute difference less than 0.5. 

 
2.3.6 Comparison of model profiles 

Topographical plots of models of loss of response to esophageal instrumentation, 

loss of responsiveness, and intolerable ventilatory depression were superimposed on 

one another. Each plot included the 5, 50, and 95% isoboles. Visual inspection of 

superimposed isoboles was used to identify potential concentration pairs with a high 

probability of loss of response to esophageal instrumentation, but avoid loss of 

responsiveness or intolerable ventilatory depression.  
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2.4 Results 

All twenty-four volunteers (12 male and 12 female) completed the study. The 

mean ± standard deviation of the height, weight, body mass index, and age were 174 ± 

8 cm, 71 ± 12 kg, 23 ± 3 kg∙m-2, and 25 ± 4 years, respectively.  

Appendix A presents the observed responses for each effect measure over the 

61 concentration pairs investigated. Seventeen assessment periods were completely or 

partially aborted at higher target concentrations because blood pressure and/or heart 

rate were less than 20% of baseline. Portions of three assessment periods were aborted 

due to inadequate oxygenation after maneuvers to correct it failed. Of the possible 384 

evaluations and 61 possible concentration pairs, 367 were made for esophageal 

instrumentation at 56 concentration pairs, 373 were made for loss of responsiveness at 

58 concentration pairs, and 376 were made for intolerable ventilatory depression at 59 

concentration pairs (Appendix A).  

 
2.4.1 Effect measures 

For esophageal instrumentation, some or all of the volunteers in 38 out of the 56 

target concentration pairs exhibited no response (105 out of the 367 evaluations). Ten of 

the 38 concentration pairs consistently blocked the response to esophageal 

instrumentation (Figure 2.1). Responses at the remaining 28 concentration pairs were 

mixed (i.e. some volunteers responded, others did not). For example, with propofol at 

2.7 mcg∙mL-1 and remifentanil at 0.8 ng∙mL-1, 4 volunteers tolerated esophageal 

instrumentation and 4 did not.  

Of the concentration pairs that blocked the response to esophageal 

instrumentation, 30 assessments at 19 concentration pairs had no intolerable ventilatory 

depression (Figure 2.1, Panel A). Of those, 4 assessments at 4 concentration pairs 

between 0.0 and 0.8 ng∙mL-1 for remifentanil and 3.3 and 4.3 mcg∙mL-1 for propofol 
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Figure 2.1: Presentation of raw data (observed responses) at 56 predicted remifentanil-

propofol effect-site concentration pairs. Open circle size indicates the total number of 

esophageal instrumentation (EI) assessments made. Solid green circles represent a 

subset of those assessments where volunteers had no response to EI. Circles with two 

colors represent smaller subsets that had a combination of selected responses. In Panel 

A, red and green circles represent a loss of response to EI and no intolerable ventilatory 

depression (IVD). In Panel B, blue and green circles represent a loss of response to EI 

and no loss of responsiveness (LOR). In Panel C, blue and red circles represent a loss 

of response to EI, no LOR, and no IVD. Circle size represents the number of 

assessments (see legend) for each circle type (open, solid green, etc.). Ce indicates 

effect-site concentration. IVD was defined as a respiratory rate of 4 or less breaths per 

minute. 
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consistently had no intolerable ventilatory depression and tolerated esophageal 

instrumentation. All other pairs had a mixed response; some volunteers tolerated 

esophageal instrumentation but had intolerable ventilatory depression while others did 

not. For example, with remifentanil at 1.6 ng∙mL-1 and propofol at 2.0 mcg∙mL-1, 5 out of 

7 volunteers tolerated esophageal instrumentation and 2 of those 5 (3 of the 7) had no 

intolerable ventilatory depression. 

Of the concentration pairs that blocked the response to esophageal 

instrumentation, 30 assessments at 19 concentrations pairs (not identical to the 30 

above) had no loss of responsiveness (Figure 2.1, Panel B). At 8 of the concentration 

pairs, 9 volunteers also had no intolerable ventilatory depression and no loss of 

responsiveness (Figure 2.1, Panel C). For example, with propofol at 1.5 mcg∙mL-1 and 

remifentanil at 0.8 ng∙mL-1, 2 of 8 volunteers tolerated esophageal instrumentation with 

no intolerable ventilatory depression and no loss of responsiveness, but the other 6 did 

not tolerate esophageal instrumentation. 

 
2.4.2 Response surface models 

With visual inspection of the raw data, it is clear that the development of 

intolerable ventilatory depression at high propofol, low remifentanil concentrations was 

beyond the range of target concentrations used in our study design. For model building 

purposes, 31 data points at higher concentrations taken from previous work in our 

laboratory as part of a study in similar volunteers conducted by Kern et al.1 were 

therefore included in our analysis. These additional data, presented in Appendix B, were 

collected using the same drugs, drug delivery technique, and approach to assessment of 

respiratory rate. Four hundred and seven data points were used to construct the model 

of intolerable ventilatory depression. 

Model parameters, coefficients of variation, and goodness-of-fit analysis for loss 
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of response to esophageal instrumentation and intolerable ventilatory depression are 

presented in Table 2.2. P values from the Chi squared goodness-of-fit test confirmed the 

null hypothesis that predicted and observed frequencies were from the same distribution, 

indicating a good fit for each model. Coefficients of variation ranged from 5 to 58%. More 

variability (i.e. larger coefficients of variation) was estimated about the alpha (interaction) 

model parameter. The positive alphas were consistent with a synergistic interaction for 

all models. The response surface models predicted transitions from responsive to 

unresponsive over a large range of the tested remifentanil and propofol concentrations 

(as indicated by the small gamma parameter values).  

Observed responses superimposed over response surface models for each 

effect measure are presented in Figure 2.2A and Figure 2.2C. In both models, 

predictions are consistent with observations; all volunteers above the 95% isobole are 

unresponsive, a large majority are unresponsive between the 50 and 95% isoboles, the 

responses are mixed between the 5 and 50% isoboles, and very few are unresponsive 

below the 5% isobole. 

Isoboles in both models bow toward the origin, indicating a synergistic 

interaction. The shape of the model of intolerable ventilatory depression and that of the 

model of esophageal instrumentation were different. Isoboles for intolerable ventilatory 

depression (Figure 2.2C) bow asymmetrically towards remifentanil, illustrating the large 

influence of opioids on this effect measure. By contrast, isoboles for esophageal 

instrumentation (Figure 2.2A) bow symmetrically between remifentanil and propofol.  

Agreement between model predictions and observations is presented graphically 

in Figure 2.2B and Figure 2.2D. For both models, agreement was high at concentration 

pairs below and above the slope of the response surface, but in the transition from 5 to 

95%, the difference between predictions and observations were greater than 0.5 at 

several of the observations. Using an absolute difference less than 0.5 as a cutoff for 
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Table 2.2: Interaction model parameters, coefficients of variation, and goodness-of-fit 

parameters  

Stimulus 
C50 remi  (CV) 

ng∙mL-1 
C50 prop  (CV) 

mcg∙mL-1 
α  (CV) 

(interaction) 
γ  (CV) 
(slope) 

p,Χ2 

LOR* 33.1 2.2 3.6 5.0  

LREI 9.8 (25%) 3.8 (5%) 4.5 (58%) 3.7 (10%) 0.643 

IVD 4.1 (24%) 7.0 (26%) 3.0 (38%) 3.2 (25%) 0.929 

LOR = Loss of responsiveness (OAA/S = 1), LREI = Loss of response to esophageal 
instrumentation, and IVD = Intolerable ventilatory depression, CV = coefficients of variation, remi 
=remifentanil, prop = propofol, C50 = predicted concentration associated with a 50% probability of 
maximum effect. *Previously reported by Johnson et al.

5
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Figure 2.2: Observed and response surface model predictions for loss of response to 

esophageal instrumentation (EI) and intolerable ventilatory depression (IVD). Panels A 

and C present topographical views of raw data and model predictions. In Panel A, open 

circles represent assessments of a response to EI and solid green circles represent a 

subset of those assessments where there was a loss of response to EI. In Panel C, 

open circles represent assessments of IVD and solid red circles represent a subset of 

those assessments where there was IVD. The dotted, solid, and dashed lines represent 

the 5, 50, and 95% iso-effect lines (isoboles) for each model, respectively. Panels B and 

D present three-dimensional views of the raw data, model predictions, and an 

assessment of model error. The grid and colored lines represent response surface 

model predictions with their associated isoboles. Circles represent observed responses. 

Circles at the bottom of the response surface (0% probability) represent a response to EI 

(Panel B) or no IVD (Panel D). Circles at the top (100% probability) represent no 

response to EI (Panel B) or the presence of IVD (Panel D). Open circles represent 

assessments where the difference between predicted and observed response is less 

than 50% while solid circles represent assessments where the difference is greater than 

50%. Circle size represents the number of assessments (see legend) for each circle type 

(open, solid, etc.). Ce indicates effect-site concentration. IVD was defined as a 

respiratory rate of 4 or less breaths per minute. 
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Figure 2.2 continued
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Figure 2.2 continued
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Figure 2.2 continued
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model goodness-of-fit, the percentage of model predictions consistent with observed 

responses was 79% and 81% for the EI (Figure 2.2B) and IVD (Figure 2.2D) models, 

respectively. 

Superimposed topographical plots of the loss of responsiveness, loss of 

response to esophageal instrumentation, and intolerable ventilatory depression models 

are presented in Figure 2.3. A comparison of isoboles between models revealed no 

regions of remifentanil-propofol concentration pairs that would have a high probability 

(>95%) of no response to EI and a low probability (<5%) of intolerable ventilatory 

depression and loss of responsiveness. Disregarding loss of responsiveness, there is a 

region of low remifentanil (0-1.5 ng∙mL-1) and high propofol (4-6 mcg∙mL-1) 

concentrations where there is a high probability (> 80-95%) of loss of response to 

esophageal instrumentation and a moderate probability (40-70%) of intolerable 

ventilatory depression. 

 
2.5 Discussion 

We explored the effects of various combinations of remifentanil-propofol target 

concentrations on responsiveness, esophageal instrumentation, and ventilatory 

depression. We hypothesized that in a high percentage of volunteers, selected 

concentration pairs would allow esophageal instrumentation yet avoid intolerable 

ventilatory depression. Our results in part confirmed this hypothesis; we found that low 

remifentanil (0.8 ng∙mL-1) and high propofol (2 -3 mcg∙mL-1) concentration pairs blocked 

the response to esophageal instrumentation and avoided intolerable ventilatory 

depression in a majority of volunteers (Figure 2.1). At higher propofol concentrations, the 

response to esophageal instrumentation was blocked completely with no intolerable 

ventilatory depression, but the number of assessments was small, making it difficult to 

conclude that these concentration pairs would consistently lead to the desired response. 
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Figure 2.3: Superimposed topographical plots for probability of loss of responsiveness 

(blue), loss of response to esophageal instrumentation (green), and intolerable 

ventilatory depression (red) response surface models. Isobole probability is indicated by 

line style: dotted lines represent 5%, solid lines represent 50% and dashed lines 

represent 95%. The loss of responsiveness model was created using parameters 

previously reported by Johnson et al.5 
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2.5.1 Effect measures 

By comparison to studies by Kazama and Drover who also explored propofol 

requirements for esophageal instrumentation, our results are somewhat different; we 

had to use higher concentrations to achieve conditions that would allow esophageal 

instrumentation than what these authors have reported. The differences are most likely 

due to variations in study design. Kazama et al. studied the use of target controlled 

infusions in patients of various ages undergoing endoscopy 20. They reported a propofol 

C50 of 2.8 mcg∙mL-1 to blunt the response to esophageal instrumentation in 17-49 year 

old patients. Higher concentrations were required to blunt the gag reflex (C50 = 3.0 

mcg∙mL-1). These are both lower than what we reported (C50 of 3.8 mcg∙mL-1). By 

design, they considered some movement and coughing NOT to be a response during 

endoscope placement. By comparison, our criteria to consider movement and heart rate 

change as responses are perhaps overly stringent and not reflective of clinical practice. 

Endoscopists may tolerate some level of patient movement or heart rate change to blunt 

rather than completely block the response to esophageal instrumentation. 

Drover et al. have studied the use of target controlled infusion in pediatric 

patients ages 3-10 years old undergoing endoscopy.21 Similar to Kazama et al., minimal 

movement was NOT considered a response to esophageal instrumentation. They 

reported a propofol C50 of 3.7 mcg∙mL-1. Drover also explored how a remifentanil infusion 

would alter propofol requirements for esophageal instrumentation. Using a continuous 

remifentanil infusion of 0.025 mcg∙kg-1∙min-1, the propofol requirement decreased to 2.8 

mcg∙mL-1. For ease of comparison, we simulated this remifentanil infusion in a 55 year 

old, 75 kg, 175 cm male, which lead to a steady state predicted remifentanil Ce near 0.7 

ng∙mL-1. This concentration pair is consistent with our findings and very close to the 50% 

isobole we reported in Figure 2.2. Drover et al. also explored 0.05 and 0.10 mcg∙kg-

1∙min-1 remifentanil infusion rates, which, when simulated in the same demographic, lead 
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to remifentanil Ces of 1.4 and 2.8 ng∙mL-1, but patients developed significant respiratory 

depression requiring positive pressure ventilation. They concluded that lower 

remifentanil infusion rates may be more appropriate for pediatric endoscopies. 

In addition to defining the loss of response to esophageal instrumentation, we 

also sought to characterize the extent of intolerable ventilatory depression and loss of 

responsiveness over the same set of target remifentanil and propofol concentrations. We 

found that many of the volunteers tolerated esophageal instrumentation and did not 

develop intolerable ventilatory depression, but this profile of responses was highly 

variable. At the same concentration pair, some volunteers would tolerate esophageal 

instrumentation, others would not; some would have significant ventilatory depression, 

others would not. The raw data revealed no pattern between volunteers who tolerated 

esophageal instrumentation and those that had intolerable ventilatory depression. A 

majority of the volunteers that tolerated esophageal instrumentation without significant 

ventilatory depression were at target concentration pairs consisting of high propofol, low 

remifentanil levels (Figure 2.1A). Similarly, we found that many of the volunteers 

tolerated esophageal instrumentation and did not lose responsiveness, but this profile 

was also quite variable (Figure 2.1B). By contrast, a majority of the volunteers that 

tolerated esophageal instrumentation and did not lose responsiveness were at target 

concentration pairs consisting of high remifentanil, low propofol levels. Finally, there 

were very few volunteers that tolerated esophageal instrumentation with no intolerable 

ventilatory depression and no loss of responsiveness.  

With regard to intolerable ventilatory depression, we made our evaluations in an 

un-stimulated state. This was done to facilitate data collection using the capnograph, 

mimicking the scenario where patients receive anesthetics to blunt the response to a 

brief, painful stimulus followed by a period of relatively little stimulus, and to explore the 

impact this dosing approach has on ventilatory function. It is conceivable that 
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observations of respiratory rate during stimuli such as calling out their name during the 

OAA/S assessment would increase their ventilatory rate and shift the observed onset of 

intolerable ventilatory depression to higher concentrations. 

We also chose respiratory rate as a measure of ventilatory function because of 

its familiarity among practitioners and its availability on many physiologic monitors. 

There are limitations to this measure. For example, we did not account for tidal volume; 

we acknowledge that minute volume may have been adequate to achieve both 

oxygenation and ventilation despite a slow respiratory rate. Many volunteers achieved 

tidal volumes greater than 1000 mL at slow respiratory rates. Furthermore, we did not 

account for changes in arterial CO2 on respiratory drive as many other authors have.22-25 

Nevertheless, in the setting of moderate sedation, most clinicians would agree that a 

ventilatory rate of 4 or less per minute is concerning. 

 
2.5.2 Response surface models 

We constructed a response surface model for loss of response to esophageal 

instrumentation and the presence of intolerable ventilatory depression. Both graphical 

and statistical approaches indicated that the models fit the observed data well. From a 

graphical perspective (Figure 2.2), the models appear to capture the transition from 

responsive to unresponsive well and this was confirmed by the 2 analysis and 

percentage of model predictions consistent with observed responses. We hypothesized 

that the interaction between these drugs would by synergistic for both effect measures. 

Our results confirmed this hypothesis as illustrated by the positive alpha values 

presented in Table 2.2. 

To our knowledge, no prior interaction model exists for esophageal 

instrumentation. Judged in terms of the concentrations required to blunt the response, 

the stimulus associated with esophageal instrumentation is much less than what we 
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previously reported for loss of response to laryngoscopy but similar to reports by 

Bouillon et al. (Table 2.2). For laryngoscopy, we reported remifentanil and propofol C50’s 

for loss of response to laryngoscopy of 48.9 ng∙mL-1 and 5.6 mcg∙mL-1 respectively1 and 

Bouillon et al. reported 9.0 ng∙mL-1 and 5.6 mcg∙mL-1 respectively.2 With regard to 

intolerable ventilatory depression, prior work by Nieuwenhuijs et al. explored the onset of 

respiratory depression at remifentanil-propofol concentrations ranging from 0.0 to 2.0 

ng∙mL-1 and 0.0 to 2.0 mcg∙mL-1 respectively.23 They used a 50% decrease from 

baseline minute ventilation as their effect measure (i.e. presence or absence of 

respiratory depression). They constructed a response surface model from their data 

using a nonlinear pharmacodynamic model structure. Although the effect measures and 

model constructs were different than ours, the C50’s reported were similar considering 

the range of drugs they tested (4.2 versus 3.3 ng∙mL-1 for remifentanil and 6.8 versus 

15.8 mcg∙mL-1 for propofol). 

To further explore the behavior of propofol in combination with remifentanil, we 

compared model predictions from three response surfaces: the two presented in this 

study and a previously reported response surface for loss of responsiveness.5 In 

attempting to orient oneself to the clinical meaning of response surfaces, a simple “take 

home” message is that target concentrations of approximately 2 ng∙mL-1 of remifentanil 

and 2 mcg∙mL-1 of propofol produce about a 50% probability of no response to 

esophageal instrumentation, no response to verbal and tactile stimuli, and intolerable 

ventilatory depression. Similarly, target Ces of 1 ng∙mL-1 of remifentanil and 1 mcg∙mL-1 

of propofol have a low probability (i.e. 5%) and concentrations above 3 ng∙mL-1 for 

remifentanil and 3 mcg∙mL-1 have a high probability (i.e. 95%) (Figure 2.3) of producing 

those end points.  

As illustrated in Figure 2.3, model predictions from each model had considerable 

overlap. This was consistent with our observations; there was no set of concentration 
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pairs that consistently provided conditions for esophageal instrumentation yet avoided 

intolerable ventilatory depression and loss of responsiveness. 

In all models, the zone of transition from responsiveness to unresponsiveness 

(between the 5 and 95% isoboles) covered a wide range of remifentanil and propofol 

effect-site concentrations. In fact, some of the C50’s are outside the range of predicted 

concentrations we used during data collection. This is a limitation of our study design. 

We designed our study with the intent of making assessments over a range of 

concentrations that were below, at, and above the concentrations necessary to produce 

a loss of response to esophageal instrumentation or intolerable ventilatory depression. In 

a majority of our observations, volunteers were either responsive or within the transition 

zone from responsive to unresponsive. Few of our observations were made where 

responses were completely blocked. With relatively little data at higher concentrations, 

our best fit models may have generated parameter sets that were skewed to higher 

concentrations due to the larger amount of response data at lower concentrations.  

With the Greco model structure, when data are well distributed about the C50, the 

fit is reasonable. When the C50 is outside the range of concentrations evaluated, it is 

extrapolated; in this scenario, small changes in the data can result in large changes in 

the C50, particularly when the interaction is synergistic. Model predictions will fit the data 

well at concentrations where observations were made, but can inflate to clinically 

unrealistic levels for just one drug (i.e. propofol in the intolerable ventilatory depression 

model). When this occurs, the alpha (interaction) term must also increase to ensure that 

the model characterizes the data rich portions of the response surface. Caution should 

be used when interpreting the magnitude of the alpha parameter when C50 estimates lie 

well outside the range of drugs tested.  

In summary, we explored the feasibility of blocking the response to esophageal 

instrumentation in volunteers at various target effect-site concentration pairs of 
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remifentanil and propofol. In general, our results suggest that although it is possible to 

identify target concentration pairs that produce significant sedation and analgesia while 

preserving responsiveness and adequate ventilation, rendering a patient completely 

unresponsive to esophageal instrumentation requires target concentration pairs that 

produce a clinical state beyond moderate sedation. In comparison to other similar work 

and typical clinical practice, the criteria we used to define a loss of response to 

esophageal instrumentation were perhaps too strict. Our results suggest that in order to 

stay within the boundaries of moderate sedation, it may be necessary to accept some 

discomfort and blunt rather than block the response to esophageal instrumentation in 

order to always avoid intolerable ventilatory depression. Alternatively, it may also be 

necessary to accept brief unresponsiveness while instrumenting the esophagus. An 

important clinical feature in this setting is the ability to prompt patients to breathe. 

Clinicians may tolerate a loss of responsiveness as long as patients continue to breathe; 

however, in the presence of intolerable ventilatory depression, clinicians are likely to find 

a prolonged loss of responsiveness and the inability to prompt a patient to breathe 

unacceptable. In conclusion, our results represent a preliminary finding in healthy 

volunteers. Further work is warranted to validate these models in patients undergoing 

moderate to deep sedation for procedures that require esophageal instrumentation.  
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2.6 Appendix A: Target Effect-site Concentration Sets 

and Observed Responses.  

 
Table 2.3: Target effect-site concentration sets and observed responses 

Remifentanil Group  Propofol Group 

 

 

Primary 
Infusion 

Secondary 
Infusion 

Effect Measures  
 

 

Secondary 
Infusion 

Primary 
Infusion 

Effect Measures 

Set N 
Remi 

(ng∙mL
-1
) 

Prop 
(mcg∙mL

-1
) 

LREI LOR IVD  Set N 
Remi 

(ng∙mL
-1
) 

Prop 
(mcg∙mL

-1
) 

LREI LOR IVD 

0 12 0.0 0.0 0/12 0/12 0/12  0 12 0.0 0.0 0/12 0/12 0/12 
1 9 0.0 0.8 0/9 0/9 0/9  1 8 1.2 0.0 0/8 0/8 1/8 

1 9 0.4 0.8 0/9 0/9 0/9  1 8 1.2 0.3 0/8 0/8 0/8 

1 9 0.8 0.8 0/9 0/9 2/9  1 8 1.2 0.6 0/8 0/8 0/8 

1 9 1.6 0.8 1/9 0/9 3/9  1 8 1.2 1.1 1/8 0/8 2/8 

1 9 3.3 0.8 3/9 0/9 6/9  1 8 1.2 2.2 5/8 6/8 5/8 

2 8 0.0 1.5 0/8 0/8 0/8  2 8 2.2 0.0 0/9 0/9 0/9 

2 8 0.4 1.5 0/8 2/8 0/8  2 8 2.2 0.3 0/9 0/9 1/9 

2 8 0.8 1.5 2/8 0/8 0/8  2 8 2.2 0.6 0/9 0/9 2/9 

2 8 1.6 1.5 1/7 3/8 2/8  2 8 2.2 1.1 3/9 2/9 6/9 

2 8 3.3 1.5 5/7 5/7 7/7  2 8 2.2 2.2 6/7 6/8 9/9 

3 9 0.0 2.0 0/9 1/9 0/9  3 8 3.0 0.0 2/8 0/8 5/8 

3 9 0.4 2.0 2/9 5/9 0/9  3 8 3.0 0.3 1/8 0/8 3/8 

3 9 0.8 2.0 4/9 7/9 1/9  3 8 3.0 0.6 2/8 0/8 5/8 

3 9 1.6 2.0 5/7 7/8 3/7  3 8 3.0 1.1 6/8 2/8 6/8 

3 9 3.3 2.0 5/6 7/7 6/6  3 8 3.0 2.2 7/8 7/8 8/8 

4 8 0.0 2.7 1/8 5/8 0/8  4 8 4.0 0.0 1/8 0/8 4/8 

4 8 0.4 2.7 2/8 8/8 0/8  4 8 4.0 0.3 1/8 0/8 1/8 

4 8 0.8 2.7 4/8 8/8 1/8  4 8 4.0 0.6 1/8 0/8 4/8 

4 8 1.6 2.7 7/8 8/8 5/8  4 8 4.0 1.1 2/8 1/8 6/8 

4 8 3.3 2.7 8/8 8/8 8/8  4 8 4.0 2.2 6/7 5/7 8/8 

5 1 0.0 3.3 1/1 0/1 0/1  5 2 5.0 0.0 0/2 0/2 1/2 

5 1 0.8 3.3 0/1 1/1 0/1  5 2 5.0 0.6 0/2 0/2 1/2 

5 1 1.6 3.3 - 1/1 1/1  5 2 5.0 1.1 2/2 2/2 2/2 

5 1 3.3 3.3 - 1/1 -  5 2 5.0 2.2 - - 2/2 

5 1 3.9 3.3 - 1/1 -  5 2 5.0 2.6 - - 2/2 



 

 

3
7
 

Table 2.3 continued 

 

Remifentanil Group  Propofol Group 

 

 

Primary 
Infusion 

Secondary 
Infusion 

Effect Measures  
 

 

Secondary 
Infusion 

Primary 
Infusion 

Effect Measures 

Set N 
Remi 

(ng∙mL
-1

) 

Prop 
(mcg∙mL

-1
) 

LREI LOR IVD  Set N 
Remi 

(ng∙mL
-1

) 

Prop 
(mcg∙mL

-1
) 

LREI LOR IVD 

6 1 0.0 4.3 1/1 1/1 0/1  6 2 6.4 0.0 0/1 0/1 1/1 
6 1 0.4 4.3 1/1 1/1 0/1  6 2 6.4 0.3 0/1 0/1 1/1 

6 1 0.8 4.3 1/1 1/1 0/1  6 2 6.4 0.6 1/1 0/1 1/1 

6 1 1.6 4.3 1/1 1/1 1/1  6 2 6.4 1.1 1/1 1/1 1/1 

6 1 2.4 4.3 1/1 1/1 1/1  6 2 6.4 1.6 1/1 - 1/1 

total 192   56/182 83/188 47/184   192   49/185 32/185 89/192 

Remi = Remifentanil, Prop = Propofol, N is the number of subjects assigned to each set based on the study design. Effect measures: LOR = Loss 
of responsiveness (OAA/S = 1), LREI = Loss of response to esophageal instrumentation, and IVD = Intolerable ventilatory depression defined as a 
respiratory rate of 4 breaths per minute or less. Dashes (-) = unable to complete evaluation of effect measure. The numerator represents the 
number of subjects at maximum effect and the denominator represents the total number of subjects assessed at that concentration pair. Subjects 
were randomly assigned to three sets in a two-step approach. Subjects were first randomized to either the remifentanil or the propofol group. Each 
subject was further randomized to receive three of the six possible sets of infusions within their group. In the propofol group, we incorrectly dosed 
one volunteer, which caused there to be nine subjects in set two instead of two subjects in set six. 
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2.7 Appendix B: Target Effect-site Concentrations and  

Observed Responses for Intolerable Ventilatory  

Depression from Prior Work 

 
Table 2.4: Target effect-site concentrations and observed responses for intolerable 

ventilatory depression from prior work (data unpublished).1 

 
Secondary 

Infusion 
Primary 
Infusion 

Effect 
Measures 

Set Remi 
(ng∙mL

-1
) 

Prop 
(mcg∙mL

-1
) 

IVD 

1 0.0 5.0 4/8 

1 0.0 7.5 6/8 

1 0.0 10.0 6/8 

    
2 1.0 5.0 1/3 

2 1.0 7.5 1/2 

    
3 5.0 3.0 0/1 

3 5.0 5.0 0/1 

Remi = remifentanil, Prop = propofol, IVD = intolerable ventilatory depression defined as a 
respiratory rate of 4 or less breaths per minute. 
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3 CHAPTER 3 

 
A SIMULATION STUDY OF COMMON PROPOFOL 

AND PROPOFOL-OPIOID DOSING REGIMENS 

FOR UPPER ENDOSCOPY: IMPLICATIONS 

ON THE TIME COURSE OF RECOVERY 

 
3.1 Abstract 

3.1.1 Background 

Using models of respiratory compromise, loss of response to esophageal 

instrumentation and loss of responsiveness, we explored through simulation published 

dosing schemes for endoscopy using propofol alone and in combination with selected 

opioids. We hypothesized that models would predict adequate conditions for esophageal 

instrumentation and once drug administration is terminated, rapid return of 

responsiveness and minimal respiratory compromise. 

 
3.1.2 Methods 

Four published dosing regimens of propofol alone or in combination with opioids 

were used to predict the probability of loss of response to esophageal instrumentation 

for a 10-min procedure and the probability of respiratory compromise and return of 

responsiveness once the procedure had ended. 

 
3.1.3 Results 

Propofol alone provided a low probability (9-20%) and propofol-opioid techniques 

provided a moderate probability (15-58%) of loss of response to esophageal 
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instrumentation. Once the procedure ended, all techniques provided a high likelihood of 

rapid return of responsiveness (<3 min). Propofol-opioid techniques required more time 

than propofol alone to achieve a high probability of no respiratory compromise (7 versus 

4 min). 

 
3.1.4 Conclusions 

Propofol alone would likely lead to inadequate conditions for esophageal 

instrumentation but would provide a rapid return to responsiveness and low probability of 

respiratory compromise once the procedure ended. The addition of remifentanil or 

fentanyl improved conditions for esophageal instrumentation and had an equally rapid 

return to responsiveness. The time required to achieve a low probability of respiratory 

compromise was briefly prolonged; this is likely inconsequential given that patients are 

responsive and can be prompted to breathe.  

 
3.2  Introduction 

Propofol alone and in combination with selected opioids are used by clinicians 

with no formal training in anesthesia to provide moderate or deep sedation for 

procedures associated with mild to moderately painful stimuli such as cardiac 

catheterizations,1 upper endoscopies,2-4 and colonoscopies.5 This is of particular clinical 

interest and controversy6,7† because doses used to blunt responses to moderately 

painful stimuli can be associated with loss of responsiveness,8-10 ventilatory 

depression9,11,12 and/or airway obstruction. 

Prior work in our laboratory on healthy unstimulated volunteers explored the 

presence or absence of intolerable ventilatory depression, defined as a respiratory rate 

                                                 

 
†
 AANA-ASA Joint Statement Regarding Propofol Administration, April 14, 2004. Available at: 

http://www.aana.com/resources2/professionalpractice/Documents/PPM%20PS%20Joint%20AAN
A-ASA%20Propofol.pdf. Accessed January 17, 2012 
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of ≤4 breaths per minute, over a wide range of propofol-remifentanil concentration pairs 

administered in a laboratory setting. From this data, a propofol-remifentanil interaction 

model of intolerable ventilatory depression was built. While conducting this study, it was 

clear that intolerable ventilatory depression was not the only adverse respiratory effect 

that developed. In many instances, volunteers developed partial to complete airway 

obstruction at higher drug concentrations. 

To build upon our interaction model for intolerable ventilatory depression, the first 

aim of this study was to construct a propofol-remifentanil interaction model that 

accounted for both airway obstruction and intolerable ventilatory depression. We named 

the combined effect respiratory compromise. We hypothesized that the interaction 

between propofol and remifentanil for respiratory compromise would be synergistic. 

Using the same volunteers, we also explored the loss of response to esophageal 

instrumentation, defined as no response to placing a surrogate of an endoscope (42F 

blunt end bougie) 40 cm into the esophagus. Non-responsiveness was defined as no 

gag, no change in heart rate or blood pressure greater than 20% from baseline, and no 

voluntary or involuntary movement. When comparing our model results with other similar 

modeling and dosing studies for endoscopy,8,9,12 the criteria we used to define loss of 

response to esophageal instrumentation were perhaps overly stringent and not reflective 

of clinical practice. Endoscopists may tolerate some level of patient movement, gag 

response, and heart rate or blood pressure change rather than expect to block 

completely the response to esophageal instrumentation in order to avoid intolerable 

ventilatory depression. Thus a second aim of our study was to revise our loss of 

response to esophageal instrumentation model by redefining the response criteria to 

better reflect clinical practice. We hypothesized that the revised model would predict 

adequate conditions at lower propofol-remifentanil target concentrations and that the 

interaction would be synergistic. 
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A third aim of our study was to explore through simulation the behavior of 

published dosing schemes for endoscopy in terms of the probability of loss of response 

to esophageal instrumentation during a brief (10-min) procedure and the probabilities of 

respiratory compromise and loss of responsiveness in an unstimulated state following 

the procedure. We hypothesized that simulations of these dosing regimens would predict 

a 50 to 95% probability of loss of response to esophageal instrumentation and a rapid 

decline in the probabilities of respiratory compromise and loss of responsiveness once 

drug administration ended. 

 
3.3 Materials and Methods 

Previously collected data were used in this analysis; details regarding volunteer 

recruitment, study design, and physiologic monitoring have been previously reported.13 In 

brief, the University of Utah Internal Review Board (Salt Lake City, Utah, USA) approved 

the study. After receiving informed, written consent, twenty-four volunteers were enrolled 

and received escalating target controlled infusions of propofol and remifentanil covering 

a range of effect-site concentrations (Ces) for each drug (propofol 0 to 4.3 mcg∙mL-1 and 

remifentanil 0 to 6.4 ng∙mL-1). Volunteers were randomly assigned to receive three of 12 

possible sets of target concentrations (360 evaluations at 60 unique target concentration 

pairs plus 24 baseline). Each set consisted of five target concentration pairs (Appendix). 

Measures of inspired and expired airway flow and tidal volumes were recorded using a 

pneumotachometer (Novametrix, Louisville, KY) and chest and abdominal wall excursion 

were recorded using inductive plethysmography (Respitrace, Ambulatory Monitoring Inc., 

Ardsley, NY) at each target concentration pair. 

 
3.3.1 Effect measures 

Assessments of intolerable ventilatory depression and airway obstruction were 

made in the fourth minute after reaching predicted target Ces. We previously reported 
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the presence or absence of intolerable ventilatory depression (respiratory rate of ≤4 

breaths per minute) at each target concentration pair.13 The presence of airway 

obstruction was defined as partial or complete. Partial airway obstruction was defined as 

a 30 second average inspired tidal volume <3 ml∙kg-1 AND >2 breaths in the same time 

period. Complete airway obstruction was defined as the absence of airway flow detected 

by the pneumotachometer in the presence of a respiratory effort detected by the 

plethysmograph. Respiratory compromise was defined as the presence of intolerable 

ventilatory depression and/or airway obstruction. 

Revised assessments of esophageal instrumentation were made at the same set 

of Ces as described for respiratory compromise. No response was defined as no 

voluntary movement when placing the bougie and no request by the volunteer (by 

raising their hand) that placement of the bougie stop. Involuntary movement, gag 

response, and changes in heart rate or blood pressure were not considered responses. 

 
3.3.2  Response surface models 

Response surface models for respiratory compromise and loss of response to 

esophageal instrumentation were constructed by fitting binary effect data (presence or 

absence of effect) to a Greco model construct14 adjusted for categorical data15 using a 

naïve pooled technique16 and modeling software (MATLAB R2008b, The MathWorks, 

Inc., Natick, MA). Model parameters and their coefficients of variation were estimated as 

previously described.13 There were insufficient data points collected from individual 

subjects to construct post-hoc individual models. 

Model fits were evaluated using a Chi-square (2) goodness-of-fit test. 

Response/no response data were divided into probability bins with at least five no 

response data points in each bin. The expected frequency of no response for each bin 

(Pi) was calculated by multiplying the mean predicted probability by the total number of 



 

 

47 







k

i i

ii

P

PO

1

2 )(


 

observations in the bin. Observed frequency of no response (Oi) was the number of 

observations where no response occurred. The 2 test statistic was computed using 

equation 3.1: 

 
3.1 

 

k is the number of bins. The null hypothesis was that the expected (based on the 

model’s prediction of probability of no response) and observed frequencies were from 

the same distribution and was rejected if the 2 test statistic exceeded the 2 critical 

value at a significance level of 5% with k-5 degrees of freedom (four parameters used to 

compute expected frequency are estimated from the data). 

Two graphical approaches were used to assess model fits. The first plot 

presented the observed responses and a topographical rendering of model predictions 

created by plotting the 5%, 50%, and 95% iso-effect lines (isoboles). Isoboles represent 

all predicted propofol-remifentanil Ce combinations that produce the same probability of 

observing a modeled effect. This format was used to illustrate the number of volunteers 

that developed a loss of response alongside model predictions of the same effect 

measure. The second plot presented the observed responses on a three-dimensional 

rendering (response surface) of model predictions. This format was used to illustrate the 

differences between model predictions (ranging from 0 to 1) and observed responses 

(either 0 or 1). An assessment of how well model predictions fit the observations was 

made by calculating the percentage of predictions that agreed with observations. 

Agreement was defined as an absolute difference ≤0.5. 
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3.3.3 Identification of published endoscopy dosing regimens 

Keyword searches were performed in PubMed to identify published dosing 

regimens for upper endoscopy. Only those dosing schemes that administered propofol, 

remifentanil and/or fentanyl were considered. Any studies using additional local or 

topical agents were excluded. All searches included the keyword propofol in combination 

with one or more of the following: dosing, endoscopic retrograde 

cholangiopancreatography, endoscopic ultrasound, endoscopist-directed propofol 

sedation, endoscopy, esophagogastroduodenoscopy, nurse administered propofol 

sedation, protocol, and sedation. 

 
3.3.4 Simulations of published dosing regimens for endoscopy 

A series of simulations were conducted to explore the duration of drug effects 

using published dosing regimens for endoscopy. Of particular interest was the ability of 

the dosing regimens to provide analgesia for esophageal instrumentation and the time to 

recovery (respiratory compromise and loss of responsiveness in an unstimulated state) 

once the procedure ended. 

Simulations consisted of an induction period and a 10-min maintenance period 

followed by a 10-min washout. Ces were estimated for remifentanil, propofol and 

fentanyl using published pharmacokinetic models.17-19 For purposes of using propofol-

remifentanil models of drug effects, fentanyl was converted to remifentanil equivalents 

using a remifentanil:fentanyl equivalency ratio of 1:1.2.20,21  

Simulated drug Ces from each dosing regimen were then used to predict the 

probability of drug effects over time using the response surface models described above 

for respiratory compromise and loss of response to esophageal instrumentation and a 

previously reported response surface model for loss of responsiveness22 (Table 3.1). 

Low, moderate, and high probabilities of drug effect were defined as <25%, 25-75% and  
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Table 3.1: New, revised, and published propofol-remifentanil pharmacodynamic 

interaction model parameters for selected drug effects. 

Effect 
C50 remi (CV) 

ng∙mL
-1 

C50 prop (CV) 
mcg∙mL

-1 
α (CV) 

(interaction) 

γ(CV) 
(slope) 

p,
2
 

RC 6.7 (22%) 4.3 (26%) 9.7 (49%) 2.0 (14%) 0.724 

LREI (revised) 9.6 (25%) 4.1 (8%) 7.7 (49%) 2.7 (11%) 0.708 

LOR
22

 33.1 2.2 3.6 5.0 – 

CV = coefficient of variation; remi =remifentanil, prop = propofol; C50 = predicted concentration 

associated with a 50% probability of effect; 
2
=Chi-square goodness-of-fit, RC = respiratory 

compromise; LREI = loss of response to esophageal instrumentation; LOR = loss of 
responsiveness. 
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>75% respectively. Once the simulated 10-min procedure ended, the time required for 

drug effects to dissipate were estimated using the time to reach a high probability of no 

respiratory compromise and no loss of responsiveness (<5% probability). 

 
3.4  Results 

Data were obtained from all 24 subjects. The Appendix presents the observed 

responses for each effect measure. Of the possible 384 assessments at 61 possible 

concentration pairs, 376 assessments for intolerable ventilatory depression, 247 

assessments for airway obstruction and 370 assessments for esophageal 

instrumentation were made at 59, 48 and 59 concentration pairs respectively. Twenty 

assessment periods were completely or partially aborted at higher target concentrations; 

seventeen because blood pressure and/or heart rate changed more than 20% from 

baseline and three due to inadequate oxygenation. This included eight intolerable 

ventilatory depression, eleven airway obstruction, three respiratory compromise and 14 

esophageal instrumentation assessments. Results from an additional eight assessments 

were not used because of recording difficulties with the pneumotachometer. 118 

assessments of airway obstruction could not be made because volunteers were 

experiencing intolerable ventilatory depression. 

 
3.4.1 Effect measures 

Airway obstruction was observed in 27 of the 61 target concentration pairs (59 of 

247 assessments) and consistently in ten (11 of 11 assessments). Airway obstruction 

occurred more often at high propofol Ces. Intolerable ventilatory depression was 

observed in 41 of the 61 target concentration pairs (137 of 376 assessments) and 

consistently in 17 (59 of 59 assessments). Intolerable ventilatory depression occurred 

more often at high remifentanil Ces. Combining airway obstruction and intolerable 

ventilatory depression, respiratory compromise was present in 54 of the target 
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concentration pairs (189 of 377 assessments). Volunteers in 25 of the 54 concentration 

pairs (86 of 86 assessments) consistently developed respiratory compromise (Figure 

3.1A). Responses in the remaining 29 concentration pairs were mixed (i.e. some 

volunteers developed respiratory compromise others did not). For example, with propofol 

at 2.0 mcg∙mL-1 and remifentanil at 0.8 ng∙mL-1, 7 volunteers developed respiratory 

compromise and two did not. 

Loss of response to esophageal instrumentation was observed in 48 of the 61 

target concentration pairs (135 of 370 assessments). Volunteers in 19 of the 48 

concentration pairs (51 of 51 assessments) consistently had a loss of response to 

esophageal instrumentation (Figure 3.1B). Responses at the remaining 29 concentration 

pairs were mixed (i.e. some volunteers responded, others did not). For example, with 

propofol at 2.7 mcg∙mL-1 and remifentanil at 0.8 ng∙mL-1, 5 volunteers tolerated 

esophageal instrumentation and 3 did not. 

 
3.4.2 Response surface models 

Model parameters, coefficients of variation, and the p-value from the Chi-square 

goodness-of-fit test are presented in Table 3.1. The positive alpha (interaction term) 

values indicate a synergistic relationship between remifentanil and propofol for 

respiratory compromise and loss of response to esophageal instrumentation. The small 

gamma value indicates a large range of concentrations covering the transition from 

responsive to unresponsive. Coefficients of variation indicated low parameter variability 

(<30%) except for the alpha parameters (49% for both the respiratory compromise and 

loss of response to esophageal instrumentation models). The Chi-square goodness-of-fit 

tests indicate good model fits to the raw data. 

Observed responses and topographical representation of model predictions are 

presented in Figure 3.1A for respiratory compromise and Figure 3.1B for loss of 
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Figure 3.1: Observed responses and model predictions for respiratory compromise (RC) 

and loss of response to esophageal instrumentation (EI). Panels A and B: 

Topographical plot of raw data and model predictions. Open circle size indicates the 

number of RC and loss of response to EI assessments made at the corresponding drug 

effect-site concentration (Ce) pairs respectively. Filled circle size indicates the number of 

subjects with RC and loss of response to EI. RC data is further characterized using pie 

charts to indicate the source of RC: either intolerable ventilatory depression (IVD, red) or 

airway obstruction (AO, black) or both (green). Panels C and D: Response surface plot 

of model prediction and model error. Model predictions are presented as a mesh 

surface. Dotted, solid, and dashed lines represent drug concentration pairs resulting in a 

5%, 50% and 95% probability of effect (RC in orange and loss of response to EI in 

green). Model error is presented as open (error ≤0.5) and filled (error >0.5) circles. Circle 

size indicates the number of observations and corresponding effect at each 

concentration pair (0 = no RC or no loss of response to EI, 1 = RC or loss of response to 

EI). 
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Figure 3.1 continued 
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Figure 3.1 continued
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response to esophageal instrumentation. Model predictions were consistent with 

observations. The observed frequency of respiratory compromise and loss of response 

to esophageal instrumentation below the 5% isobole was 2.5% and 6.7% respectively 

and 100% for both above the 90% isobole. Along the 50% isobole, approximately half 

the assessments at each target concentration pair developed respiratory compromise or 

loss of response to esophageal instrumentation. Most assessments between the 50% 

and 95% isoboles had respiratory compromise and loss of response to esophageal 

instrumentation while most between 5% and 50% did not. 

Observed responses and prediction errors are presented in Figure 3.1C and 

Figure 3.1D. For respiratory compromise, 79% of the model predictions and for loss of 

response to esophageal instrumentation, 81% of the model predictions agreed with 

observed responses using an absolute difference of ≤0.5. 

One previously published propofol-remifentanil interaction model for loss of 

responsiveness is also presented in Table 3.1.22 Loss of responsiveness was defined as 

an Observer’s Assessment of Alertness/Sedation score of 1.23 Volunteers experienced 

verbal and tactile stimuli during these assessments. 

 
3.4.3 Identification of published endoscopy/colonoscopy dosing regimens 

Ten published manuscripts were identified using search criteria for endoscopy 

and propofol alone or in combination with an opioid. They were characterized according 

to drugs used: four describing techniques with propofol alone, three for propofol in 

combination with fentanyl using various bolus and infusion strategies for propofol, and 

one using target controlled infusion of propofol and remifentanil. Four dosing schemes 

were selected for simulation purposes and are presented in Table 3.2: (1) intermittent 

boluses of propofol alone,24 (2) loading bolus of fentanyl with intermittent boluses of 

propofol,25 (3) a loading bolus of fentanyl followed by a propofol bolus and infusion 
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Table 3.2: Selected published propofol and propofol – opioid dosing regimens for upper endoscopy for a 55 year old, 75 kg, 175 cm 

male. 

Author Technique Published Recommendation Simulated Dosing Regimen 

Technique #1: 
Cohen et al., 
200724* 

Propofol Boluses Initial bolus of 10-60 mg. Additional 10-
20 mg boluses as needed with a 
minimum of 20 to 30 seconds between 
doses 

Initial bolus of 35 mg followed by 15 mg 
boluses 0.5, 3.5, 5.5, 8 and 10.5 
minutes later 

Technique #2: 
Cohen et al., 200325 

Propofol Boluses 
 
& 

Initial bolus of 5-10 mg. Additional 5-15 
mg boluses as needed with a minimum 
of 30 seconds between doses 

Initial bolus of 7.5 mg followed by 10 
mg boluses 0.5, 2, 4.5, 7, 9.5 and 12 
minutes later 

Fentanyl Bolus Initial bolus of 75 mcg Initial bolus of 75 mcg 

Technique #3: 
Pambianco et al., 
20084,26 

Propofol Bolus and 
Infusion 
 
 
 
& 

Loading dose of 0.5 mg∙kg-

1∙(maintenance infusion rate)∙75-1 
started 3 minutes after fentanyl bolus 
and administered over 3 minutes 
followed by a maintenance infusion of 
25-75 mcg∙kg-1∙min-1 that is titrated to 
effect 

Three minutes after fentanyl bolus, a 
loading dose of 8.3 mg∙min-1 for 3 
minutes followed by a 10 minute 
infusion at 50 mcg∙kg-1∙min-1 

Fentanyl Bolus Initial bolus of 50-100 mcg 3 minutes 
prior to administration of propofol 

Initial bolus of 75 mcg 

Technique #4: 
Gambus et al., 
201127 

Propofol TCI & 2.8 to 1.8 mcg∙mL-1 Ce target of 1.8 mcg∙mL-1 

Remifentanil TCI 0 to 1.5 ng∙mL-1 Ce target 1.5 ng∙mL-1 

*Dosing recommendation reported by the American Gastroenterological Association Institute and cited by the American Society for 
Gastrointestinal Endoscopy. TCI=Target Controlled Infusion. Ce=effect-site concentration. 
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administered by SEDASYS (Ethicon Endo-Surgery, Inc., Cincinnati, OH),4,26 and target 

controlled infusions of propofol and remifentanil.27 

 
3.4.4 Simulations of published dosing regimens for endoscopy 

Published dosing recommendations were used to simulate a 10-min upper 

endoscopy procedure. Published recommendations were converted to dosing regimens 

(Table 3.2) assuming a 75 kg, 175 cm, 55-year-old male patient. Predicted Ces for 

propofol, fentanyl (in remifentanil equivalents), and remifentanil for each dosing scheme 

are presented in Figure 3.2. During the 10-min procedure, estimated propofol 

concentrations ranged from 1.2 to 3.0 mcg·mL-1 and remifentanil concentrations ranged 

from 0.7 to 1.5 ng·mL-1. Predictions of time to recovery for respiratory compromise and 

loss of responsiveness are presented in Figure 3.2D. and predictions of loss of response 

to esophageal instrumentation throughout the 10-min procedure are presented in Figure 

3.3. 

3.4.4.1 Technique #1: For the intermittent propofol boluses, the resultant propofol 

concentrations during the 10 min procedure ranged from 2 to 3 mcg∙mL-1 and then 

dissipated to near 0.5 mcg∙mL-1 over the next 10 min. This led to a low probability of 

respiratory compromise and a moderate probability of loss of responsiveness at the end 

of the procedure that both quickly dissipated. This technique led to a low probability of 

loss of response to esophageal instrumentation during the 10-min procedure that 

dissipated within 3 min from the end of the procedure. 

3.4.4.2 Technique #2: For the fentanyl bolus followed by intermittent propofol 

boluses, fentanyl reached a peak of about 1.2 ng∙mL-1 (in remifentanil equivalents) within 

5 min of starting induction and then slowly dissipated to near 0.8 ng∙mL-1 at 10 min. The 

accompanying propofol concentrations ranged between 1 and 2 mcg∙mL-1 and 

dissipated to less than 0.5 mcg∙mL-1 over the next 10 min. This led to a moderate 
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Figure 3.2: Predicted propofol, fentanyl (in remifentanil equivalents), and remifentanil 

effect-site concentrations (Ce) for selected published dosing regimens for endoscopy 

(Panels A and B). Time 0 corresponds to the peak propofol Ce for techniques #1 and 

#2, the start of the propofol infusion for technique #3, and achievement of the propofol 

target for technique #4. Panel C presents a topographical plot of propofol versus 

remifentanil concentrations for each dosing regimen. Arrows indicate the time course of 

the dosing; dotted and solid orange lines represent drug concentration pairs that 

produce 5% and 50% probabilities of respiratory compromise. Panel D shows the time 

to recovery using a topographical plot of propofol versus remifentanil concentrations 

during the 10-min washout period for each dosing regimen. Arrows indicate the time 

course of the dosing; closed circles represent the Ces at the end of the procedure, and 

dotted blue and orange lines represent drug concentration pairs that produce 5% 

probabilities of loss of responsiveness and respiratory compromise. Numbers represent 

time (in minutes) to recovery, defined as a probability of effect <5%, and are placed next 

to the corresponding washout curve and isobole. 
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Panel A: Simulated Propofol Effect-Site Concentrations 
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Figure 3.2 continued

Panel B: Simulated Remifentanil Effect-Site Concentrations 
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Figure 3.2 continued

Panel C: Simulated Propofol and Remifentanil Effect-Site Concentrations 
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Figure 3.2 continued

Panel 0 : Simulated Time to Recovery 
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Figure 3.3: Simulations of loss of response to esophageal instrumentation over time for 

selected published dosing regimens for upper endoscopy (solid lines). Simulations were 

designed to provide sedation and analgesia for a 10-min procedure (gray vertical lines). 

Horizontal dashed lines represent the boundary between low and moderate (25%) and 

moderate and high (75%) probabilities of effect. The horizontal dotted line represents the 

boundary for high probability of recovery (<5%). 
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probability of respiratory compromise and a low probability of loss of responsiveness at 

the end of the procedure. Respiratory compromise dissipated within 8 min while loss of 

responsiveness dissipated in less than 2. This technique led to a moderate probability of 

loss of response to esophageal instrumentation during the 10-min procedure that 

dissipated within 4 min. 

3.4.4.3 Technique #3: For the fentanyl bolus 3 min prior to the start of a propofol 

bolus followed by infusion, fentanyl had a concentration profile similar to that of 

Technique #2 with the difference that it reached its peak near the start of the propofol 

bolus. Propofol concentrations ranged between 1.4 and 2 mcg∙mL-1 and then dissipated 

to less than 0.5 mcg∙mL-1 within 5 min following the procedure. This led to a moderate 

probability of respiratory compromise and a low probability of loss of responsiveness at 

the end of the 10-min procedure. Respiratory compromise dissipated within 8 min while 

loss of responsiveness dissipated in less than 2. This technique led to a moderate 

probability of loss of response to esophageal instrumentation for 8 min followed by a low 

probability for the rest of the procedure and dissipated within 4 min. 

3.4.4.4 Technique #4: For the target controlled infusions, propofol was 

maintained at 1.8 mcg∙mL-1 and remifentanil at 1.5 ng∙mL-1 for 10 min. This led to a 

moderate probability of respiratory compromise and loss of responsiveness at the end of 

the procedure that required 8 and 3 min to dissipate, respectively. This technique also 

led to a moderate probability of loss of response to esophageal instrumentation during 

the procedure that dissipated within 5 min of terminating the infusions. 

 
3.5 Discussion 

Predicting the likelihood, magnitude and duration of adverse effects such as 

ventilatory depression, airway obstruction and/or loss of responsiveness is important in 

formulating rational dosing regimens for procedural sedation. In a prior study, we 
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explored the feasibility of completely blocking the response to esophageal 

instrumentation in volunteers at various target remifentanil and propofol Ce pairs. Similar 

to what other authors have reported, we found that rendering a volunteer completely 

unresponsive to esophageal instrumentation often required doses that were associated 

with loss of responsiveness, intolerable ventilatory depression, or both.9,10,25 In clinical 

practice, patient movement and/or discomfort for a brief duration rather than completely 

blocking the response to esophageal instrumentation may be acceptable in order to 

avoid unwanted side effects from these drugs. 

In this present study, we modified our previously reported interaction model of 

intolerable ventilatory depression to include a measure of airway obstruction and called 

the combined effect respiratory compromise. We also modified our interaction model of 

loss of response to esophageal instrumentation by changing the criteria used to define a 

“response” to esophageal instrumentation. In this revised model, we categorized heart 

rate or blood pressure changes, non-purposeful movement, and gag response to 

esophageal instrumentation as “unresponsive” to be more consistent with other 

published work8,9,12 and better reflect clinical practice during endoscopy. 

 
3.5.1 Effect measures 

By combining measures of partial or complete airway obstruction with the 

intolerable ventilatory depression data, volunteers were found to have respiratory 

compromise at more of the concentration pairs studied. As expected, airway obstruction 

primarily occurred at high propofol concentrations and intolerable ventilatory depression 

primarily occurred at high remifentanil concentrations. 

When interpreting this data, some important limitations merit discussion. First, all 

measures of loss of responsiveness, airway obstruction and intolerable ventilatory 

depression were made with volunteers in an unstimulated state. It is well known that 
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stimulation shifts the concentration-effect relationship of anesthetics to the right (i.e. 

higher concentrations are needed to achieve the same effect).28 Thus, in the presence of 

procedural stimulation, the number of volunteers that we observed with either loss of 

responsiveness and/or respiratory compromise would likely decrease. Second, it is likely 

that once an endoscope is in place, much of the partial or complete airway obstruction 

would resolve because the endoscope would stent the airway open.12 Furthermore, an 

increase in body habitus may lead to more prevalent airway obstruction than what we 

observed. Third, our measures of partial airway obstruction were rather simplistic. More 

sophisticated techniques exist.29-35 It is possible that our criteria for partial airway 

obstruction (tidal volume <3 mL·kg-1) did not accurately capture clinically significant 

partial airway obstruction. Fourth, the time course of airway obstruction or intolerable 

ventilatory depression necessary to produce clinically significant hypoxia or hypercarbia 

is not established; nevertheless, we believe that a respiratory rate ≤4 breaths per minute 

or a 30-second average tidal volume <3 mL·kg-1 would potentially lead to worrisome 

hypoxia and/or hypercarbia. Fifth, debilitated patients will likely require less propofol and 

remifentanil to achieve the same airway and respiratory effects. 

By changing our criteria for loss of response to esophageal instrumentation, 

more assessments were considered “unresponsive” than in our original model. In our 

prior work,13 volunteers were unresponsive in 105 out of 367 assessments,. With our 

revised criteria, 135 were unresponsive. For example, with propofol at 2.7 mcg∙mL-1 and 

remifentanil at 0.8 ng∙mL-1 and using the original response criteria, 4 volunteers tolerated 

esophageal instrumentation and 4 did not. With the revised criteria, 5 volunteers 

tolerated esophageal instrumentation and 3 did not. 

One potentially important nuance to consider when interpreting these results is 

the difference in anesthetic requirements between placing an endoscope versus 

tolerating one already in place. Our anecdotal experience was that during placement of 
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the bougie, some volunteers exhibited a gag response or involuntary movement that 

resolved once it was in place. Hence, less propofol or propofol with an opioid may be 

required to keep patients analgesic and sedated during endoscopy once the scope is in 

place. This concept is confirmed by other authors who observed that endoscope 

insertion is the most stimulating portion of the procedure.9,12 

 
3.5.2 Response surface models 

We constructed a response surface model for respiratory compromise and loss 

of response to esophageal instrumentation. Graphical and statistical approaches 

indicated that the models fit the observed data well. From a graphical perspective 

(Figure 3.1C and D), the models captured the transition from no effect to effect well. This 

was confirmed by the 2 analysis and percentage of model predictions that agreed with 

observed responses. Our results confirmed our hypothesis that the interaction between 

propofol and remifentanil would be synergistic for both effect measures as illustrated by 

the positive alpha values presented in Table 3.1. 

The respiratory compromise model had a propofol C50 of 4.3 mcg·mL-1 compared 

to our previously reported 7.0 mcg·mL-1 for intolerable ventilatory depression and is due 

to the additional airway obstruction data along the propofol axis. In the region of low 

remifentanil Ces (i.e. <1 ng·mL-1), as propofol Ces increase from 0, any worrisome 

ventilation is preliminarily likely due to airway obstruction and can be resolved with a 

head tilt/chin lift and/or insertion of an oral airway. However, as propofol Ces approach 

7.0 mcg·mL-1, intolerable ventilatory depression is increasingly present, requiring 

prompting to breathe or manual ventilations to maintain adequate ventilation. 

In contrast, the respiratory compromise model had a remifentanil C50 of 6.7 

ng·mL-1 compared to our previously reported 4.1 ng·mL-1 for intolerable ventilatory 

depression. The increase in remifentanil C50 is likely a function of a few more volunteers 
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developing respiratory compromise due to airway obstruction at higher remifentanil 

concentrations (i.e. near 3 ng·mL-1) and the mathematical limitations of the Greco model 

structure.14,36 Specifically, the Greco model is an adaptation of the model proposed by 

Berenbaum for two non-interacting drugs37 and assumes each drug can be 

independently modeled using the Hill equation (sigmoid-Emax model).14 This 

assumption imposes mathematical constraints on what type of behavior can be 

modeled, a limitation that has been described by other authors as insufficiently 

flexible.36,38 Specifically, the interaction (alpha) and slope (gamma) are held constant for 

all drug combination ratios. In reality, each drug ratio can itself be considered a unique 

drug and could potentially have different alpha and gamma values from its neighbors. 

Additionally, assuming a sigmoid shape imposes an inflection point on the fit, which 

could lead to poor model fit in some data sets. Various models and techniques have 

been introduced by other authors to correct for these limitations.36,38,39 

The revised loss of response to esophageal instrumentation model is somewhat 

similar to our previously reported model. The C50’s and gamma terms are similar 

(propofol C50: original 9.8 versus revised 9.6 mcg·mL-1, remifentanil C50: original 3.8 

versus revised 4.1 ng·mL-1, and gamma: original 3.7 versus revised 2.7) but the alpha 

term is larger in the revised model (original 4.5 versus revised 7.7). Although the C50’s 

are similar, the larger alpha in the revised model indicates a more significant drug 

synergy, meaning less of either drug is required to achieve the same effect. In graphical 

terms, the iso-effect lines (isoboles) have more of a bow towards the origin with the 

larger alpha. 

For both models, the gamma value ranges from 2 to 3. These relatively small 

values indicate that the range between the 5% and 95% probability isoboles will be 

large. A wider range indicates more uncertainty of the concentration at which a given 

subject will transition from no effect to effect, with the typical patient transitioning near 
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the 50% isobole. 

 
3.5.3 Simulations of published dosing regimens for endoscopy 

With regard to a rapid recovery, the propofol only technique had the fastest 

recovery (i.e. both no loss of responsiveness and no respiratory compromise within 3-4 

min) once the procedure was completed. Nevertheless, it only achieved a low probability 

of loss of response to esophageal instrumentation during all but the very beginning of 

the procedure (Figure 3.3).  

An important clinical implication of these simulations is that should patients 

require prompting to breathe to avoid ventilatory depression, techniques that minimize 

loss of responsiveness may be more desirable because patients can respond to the 

prompting. This may be especially important when dosing with propofol alone; given that 

propofol has minimal analgesic effect, clinicians may be tempted to administer more 

propofol and over sedate patients to compensate for the lack of analgesia.24 

Simulations of the propofol-opioid techniques did lead to moderate probabilities 

of respiratory compromise and loss of responsiveness at the end of the procedure, but 

they also provided a moderate probability of loss of response to esophageal 

instrumentation. Once drug administration was terminated, the time to return of 

responsiveness was faster for some of these techniques than it was for propofol alone 

(Figure 3.2D). More time was required for the respiratory compromise effect to dissipate 

with the propofol-opioid techniques (7-9 min), but a majority of this time would be with a 

patient in a responsive state and likely be receptive to prompting to breathe or open their 

airway. 

By way of comparison, authors have published observations using propofol in 

combination with opioids for endoscopy and colonoscopy. For example, in a trial where 

496 patients received a fentanyl bolus followed by a computer administered feedback-
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controlled propofol infusion (SEDASYS), Pambianco et al.26 found that over 95% of the 

patients experienced mild to moderate sedation during brief procedures (on average <4 

min for upper gastrointestinal endoscopy and <14 min for colonoscopy) and a rapid 

recovery. There was a very low incidence of deeper than intended sedation and adverse 

respiratory events. They reported an area under the desaturation curve as a surrogate 

measure of the risk of hypoxic injury. Propofol combined with fentanyl led to a lower on 

average area under the curve than conventional dosing with midazolam, meperidine, 

and fentanyl (on average, 23 %∙seconds versus 88 %∙seconds). Although these results 

are not directly comparable, simulations presented in Figure 3.2C predicted only brief 

periods of a moderate probability of respiratory compromise. 

Some additional limitations deserve special emphasis. First, our models assume 

steady state conditions. This assumption is violated whenever drug concentrations are 

rapidly changing (e.g., such as after a bolus is injected). The respiratory depression 

associated with bolus doses of ventilatory depressants is greater than when the same 

drugs are administered by infusion to similar target concentrations.40,41 Thus, the 

simulations involving bolus drug administration are likely to be associated with more 

respiratory compromise than our models predict. Second, simulation predictions are 

based on population pharmacokinetic models associated with substantial variability. For 

example, using target controlled infusions, median absolute performance errors for 

propofol only and remifentanil only of 25%42 and 22%43 have been reported, 

respectively. The median performance error of propofol in the presence of remifentanil 

has been reported as 49%.43 Third, some of the published dosing regimens did not 

provide weight adjusted dosing. When conducting our simulations, we assumed a 

patient weight of 75 kg. Predictions would be different for simulations using a patient 

weight of 45 or 100 kg. Fourth, when implementing dosing recommendations, some 

degree of interpretation was required to formulate a dosing regimen; time intervals 
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between doses and infusion rates were published as ranges. We chose dosing intervals 

based on a published regimen44 but as with any simulation, we may have inappropriately 

interpreted the dosing regimens. Fifth, although the models we used to predict propofol 

and remifentanil concentrations do account for age, our pharmacodynamic models do 

not. As reported by Kazama et al. and Hammer et al., age is an important covariate 

when considering doses of propofol for endoscopy.8,9  

Finally, although there are obvious limitations to the volunteer setting, particularly 

the problem of lack of stimulation, the volunteer paradigm is a necessary first step 

towards building models that can then be perfected and eventually validated in patients. 

In patients, it is not practically feasible to target the numerous concentration pairs 

necessary to build a response surface; these volunteer studies typically require an entire 

day for each subject. Furthermore, it is unethical to intentionally anesthetize or sedate a 

patient inadequately. In the volunteer setting, using noninvasive stimulation techniques, 

it is acceptable to produce inadequate anesthesia or sedation intentionally. 

In summary, we modified two previously reported propofol-remifentanil 

interaction models of loss of response to esophageal instrumentation and intolerable 

ventilatory depression. Revised models fit observed responses well. We used them and 

an additional model to make predictions regarding the temporal profile of recovery for 

sedation and respiratory endpoints using published dosing regimens for propofol alone 

and in combination with an opioid for upper endoscopy. Simulations of propofol-opioid 

techniques led to a moderate probability of conditions that allow esophageal 

instrumentation whereas propofol only techniques led to a low probability. Once the 

procedure was terminated, techniques that used a fentanyl bolus just prior to the 

procedure and propofol throughout the procedure provided the highest likelihood of rapid 

return of responsiveness. 
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3.6 Appendix: Target Effect-site Concentrations and Respiratory 

and Esophageal Instrumentation Outcomes 

 
Table 3.3: Target effect-site concentrations and respiratory and esophageal instrumentation outcomes 

Remifentanil Group  Propofol Group 

 
   Effect Measures   

   Effect Measures 

Set n 
Remi 

(ng∙mL
-1
) 

Prop 
(mcg∙mL

-1
) 

IVD AO RC 
LREI 

(revised) 
 Set n 

Remi 
(ng∙mL

-1
) 

Prop 
(mcg∙mL

-1
) 

IVD AO RC 
LREI 

(revised) 

0 12 0.0 0.0 0/12 0/12 0/12 0/12  0 12 0.0 0.0 0/12 0/12 0/12 0/12 
1 9 0.0 0.8 0/9 0/8 0/8 0/9  1 8 1.2 0.0 1/8 0/7 1/8 1/8 

1 9 0.4 0.8 0/9 0/8 0/8 0/9  1 8 1.2 0.3 0/8 0/8 0/8 1/8 

1 9 0.8 0.8 2/9 2/7 4/9 0/9  1 8 1.2 0.6 0/8 0/8 0/8 2/8 

1 9 1.6 0.8 3/9 2/6 5/9 2/9  1 8 1.2 1.1 2/8 0/6 2/8 2/8 

1 9 3.3 0.8 6/9 1/3 7/9 3/9  1 8 1.2 2.2 5/8 0/3 5/8 6/8 

2 8 0.0 1.5 0/8 1/8 1/8 0/8  2 8 2.2 0.0 0/9 0/9 0/9 1/9 

2 8 0.4 1.5 0/8 1/8 1/8 0/8  2 8 2.2 0.3 1/9 0/8 1/9 1/9 

2 8 0.8 1.5 0/8 2/7 2/7 2/8  2 8 2.2 0.6 2/9 0/7 2/9 1/9 

2 8 1.6 1.5 2/8 2/5 4/7 2/7  2 8 2.2 1.1 6/9 0/3 6/9 3/9 

2 8 3.3 1.5 7/7 – 7/7 6/7  2 8 2.2 2.2 9/9 – 9/9 7/7 

3 9 0.0 2.0 0/9 3/9 3/9 0/9  3 8 3.0 0.0 5/8 1/3 6/8 2/8 

3 9 0.4 2.0 0/9 3/9 3/9 3/9  3 8 3.0 0.3 3/8 0/5 3/8 2/8 

3 9 0.8 2.0 1/9 7/9 7/9 5/9  3 8 3.0 0.6 5/8 0/3 5/8 3/8 

3 9 1.6 2.0 3/7 5/5 8/8 6/7  3 8 3.0 1.1 6/8 0/2 6/8 6/8 

3 9 3.3 2.0 6/6 2/2 8/8 6/6  3 8 3.0 2.2 8/8 1/1 8/8 7/8 

4 8 0.0 2.7 0/8 3/8 3/8 1/8  4 8 4.0 0.0 4/8 0/4 4/8 1/8 

4 8 0.4 2.7 0/8 4/8 4/8 4/8  4 8 4.0 0.3 1/8 0/7 1/8 2/8 

4 8 0.8 2.7 1/8 7/8 7/8 5/8  4 8 4.0 0.6 4/8 1/5 4/8 1/8 

4 8 1.6 2.7 5/8 3/3 8/8 8/8  4 8 4.0 1.1 6/8 0/2 6/8 3/8 

4 8 3.3 2.7 8/8 – 8/8 8/8  4 8 4.0 2.2 8/8 1/1 8/8 7/7 

5 1 0.0 3.3 0/1 0/1 0/1 1/1  5 2 5.0 0.0 1/2 0/1 1/2 0/2 

5 1 0.8 3.3 0/1 1/1 1/1 1/1  5 2 5.0 0.6 1/2 0/1 1/2 0/2 

5 1 1.6 3.3 1/1 1/1 1/1 1/1  5 2 5.0 1.1 2/2 – 2/2 2/2 

5 1 3.3 3.3 – 1/1 1/1 1/1  5 2 5.0 2.2 2/2 – 2/2 – 

5 1 3.9 3.3 – 1/1 1/1 1/1  5 2 5.0 2.6 2/2 – 2/2 – 
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Table 3.3 continued 
 
 

Remifentanil Group  Propofol Group 

 
   Effect Measures   

   Effect Measures 

Set n 
Remi 

(ng∙mL
-1
) 

Prop 
(mcg∙mL

-1
) 

IVD AO RC 
LREI 

(revised) 
 Set n 

Remi 
(ng∙mL

-1
) 

Prop 
(mcg∙mL

-1
) 

IVD AO RC 
LREI 

(revised) 

6 1 0.0 4.3 0/1 1/1 1/1 1/1  6 2 6.4 0.0 1/1 – 1/1 0/1 
6 1 0.4 4.3 0/1 1/1 1/1 1/1  6 2 6.4 0.3 1/1 – 1/1 0/1 

6 1 0.8 4.3 0/1 1/1 1/1 1/1  6 2 6.4 0.6 1/1 – 1/1 1/1 

6 1 1.6 4.3 1/1 – 1/1 1/1  6 2 6.4 1.1 1/1 – 1/1 1/1 

6 1 2.4 4.3 1/1 – 1/1 1/1  6 2 6.4 1.6 1/1 – 1/1 1/1 

total 192   47/184 55/141 99/185 71/185   192   89/192 4/106 90/192 64/185 

Remi = Remifentanil, Prop = Propofol, N is the number of subjects assigned to each set based on the study design. Effect measures: IVD = 
Intolerable ventilatory depression defined as a respiratory of ≤4 breaths per minute, AO = Airway obstruction defined as a 30 second average tidal 
volume <3 ml/kg AND respiratory rate >2 breaths in the same time period OR absence of airway flow in the presence of respiratory effort, RC = 
Respiratory compromise defined as the presence of IVD and/or AO, LREI = Loss of response to esophageal instrumentation. Dashes (–) = unable 
to complete evaluation of effect measure. The denominator is the total number of subjects assessed at that concentration pair for the 
corresponding effect. The numerator is the number of subjects at maximum effect. Totals for each effect are provided at the bottom. After being 
randomized to either the remifentanil or the propofol group, each subject was further randomized to receive three of the six possible sets of 
infusion targets within their group. One subject was incorrectly dosed in the propofol group, which caused there to be nine subjects in set two 
instead of two subjects in set six. 
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4 CHAPTER 4 

 
DEVELOPMENT OF PROPOFOL-REMIFENTANIL DOSING 

MULTIOBJECTIVE OPTIMIZATION ALGORITHM FOR 

MODERATELY PAINFUL PROCEDURES REQUIRING 

ESOPHAGEAL INSTRUMENTATION

 
4.1 Abstract 

4.1.1 Introduction 

Anesthesia for upper endoscopy balances drug requirements with patient safety. 

The ideal dosing scheme provides adequate analgesia and sedation while avoiding loss 

of responsiveness (LOR), respiratory depression (RD), and airway obstruction (AO). 

Clinicians often accept some LOR, RD, and/or AO to achieve their overall therapeutic 

goals. We hypothesized that optimization techniques applied to response surface drug 

interaction models can identify dosing regimens that minimize LOR, RD, and AO yet 

provides satisfactory conditions for upper endoscopy. 

 
4.1.2 Methods 

Six experts in procedural sedation were asked to achieve a consensus on the 

allowable duration of LOR, RD, and AO during a 10-min upper endoscopy procedure 

using propofol and remifentanil. Objective functions were developed that used this 

expert opinion to identify an optimal dosing regimen for propofol and remifentanil. Using 

previously developed propofol-remifentanil interaction models of LOR, RD, respiratory 

compromise (RC) and loss of response to esophageal instrumentation (LREI), the 
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objective functions were evaluated using 3840 different propofol-remifentanil dosing 

regimens. Each dosing regimen varied in terms of the propofol and remifentanil bolus 

sizes and infusion rates. 

 
4.1.3 Results 

Ideal times and acceptable ranges were obtained from experts. A lexicographic 

goal programming optimization algorithm was developed. An optimal dosing 

recommendation was identified for a simulated 55 year-old, 75 kg, 175 cm male 

undergoing an anticipated 10-min upper endoscopy and consisted of a propofol bolus of 

0.8 mg/kg and infusion rate of 40 mcg/kg/min and a remifentanil bolus of 0.2 mcg/kg and 

an infusion rate of 0.05 mcg/kg/min. This optimal dosing regimen produced peak Ces of 

~3 mg/mL of propofol and ~1 ng/mL of remifentanil during placement. When the 

procedure ended, Ces were ~1.3 mcg/mL for propofol and ~1.3 ng/mL for remifentanil. 

 
4.1.4 Discussion 

Our hypothesis was confirmed. Optimization techniques identified a remifentanil 

propofol dosing regimen that minimizes the duration of LOR, RD and AO and, according 

to expert opinion and models of drug effect, provides conditions that will permit upper 

endoscopy procedures. This dosing regimen merits clinical validation in patients 

undergoing brief endoscopic procedures.  

 
4.2 Introduction 

Sedatives or analgesics are administered to alleviate patient discomfort and 

provide optimal conditions for esophagogastroduodenoscopy. Use of anesthetics also 

introduces risks of adverse respiratory effects such as airway obstruction and respiratory 

depression. Those administering sedatives and analgesics must balance patient comfort 

and procedure needs against the risk of these adverse effects. 
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Propofol and, to a lesser extent, propofol in combination with opioids have been 

used by clinicians with no formal training in anesthesiology for procedures associated 

with mild to moderate stimulation. Nonanesthesiologists have presented an impressive 

number of cases (646,080) with low rates of adverse effects (0.1% mask ventilation, 

0.002% endotracheal intubation, 0.0006% death).1 Prior work in our laboratory explored 

through simulation several published dosing regimens for propofol alone and in 

combination with selected opioids for upper endoscopic procedures.2 Drug interaction 

models were used to predict the probability over time of creating conditions that would 

allow esophageal instrumentation while avoiding airway obstruction, loss of 

responsiveness, and ventilatory depression. In that preliminary analysis, we found that 

the probability of adverse events (prolonged airway obstruction, ventilatory depression, 

or loss of responsiveness) was low for the simulated 10-min procedure. Published 

dosing techniques primarily used low dose opioids mixed with moderate doses of 

propofol. However, given the wide range of combination possibilities, it is potentially 

feasible that other combinations of propofol mixed with an opioid may have better 

probability profiles for these adverse effects. 

In this study, we utilized control theory to explore a wide range of opioid-propofol 

combinations to meet the needs of an upper endoscopic procedure. In this effort, we 

built an optimization algorithm that accounted for the duration of loss of responsiveness, 

ventilatory depression, and airway obstruction along with the need to provide conditions 

where patients would tolerate esophageal instrumentation. We solicited expert opinion to 

prioritize clinical endpoints (i.e. time needed to place an endoscope in the duodenum vs. 

duration of loss of responsiveness) and identify goal times for each clinical endpoint (i.e. 

what is an acceptable duration of loss of responsiveness). Analysis of patient data 

identified target probabilities for clinical endpoints (i.e. what probability of loss of 

response to esophageal instrumentation must be obtained). 
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The aim of this study was to use the optimization algorithm to identify an ideal 

propofol-remifentanil dosing regimen for upper endoscopy procedures from a wide range 

of possibilities. We hypothesized that a dosing regimen existed that would adequately 

meet these clinical objectives. 

 
4.3 Methods 

To test our hypothesis, propofol-remifentanil dosing regimens were simulated 

and an optimization algorithm was developed to identify an optimal propofol-remifentanil 

dosing regimen based on patient age, weight, height and gender. The optimization 

process accounted for (i) the pharmacokinetic behavior of each drug, (ii) the 

pharmacodynamic interaction between propofol and remifentanil, (iii) the analgesic and 

sedative requirements for esophageal instrumentation and (iv) the respiratory and 

sedative effects of propofol and remifentanil. 

 
4.3.1 Objective functions 

Objective functions were defined for six clinical endpoints: time until esophagus 

can be instrumented, time needed to maintain no response while endoscope is placed in 

the duodenum, time with no response while the procedure is performed, and once the 

procedure has ended, time to ventilatory depression recovery, time to airway obstruction 

recovery, and time to return of responsiveness. 

“Time until esophagus can be instrumented” represents how long a clinician must 

wait to start the procedure once drug administration has begun. For the purposes of this 

study, the procedure could start once the probability of loss of response to esophageal 

instrumentation was greater than or equal to 70%. This probability was obtained from 

data collected in 110 ultrasonographic endoscopy patients3 and was defined as the 

probability at which 85% of patients tolerated esophageal instrumentation (Figure 4.1). 

This objective function returned the time elapsed from the start of drug administration to 
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Figure 4.1: An evaluation of the loss of response to esophageal instrumentation model 

in 110 ultrasonographic endoscopy patients. For each patient, the probability at which 

they tolerated esophageal instrumentation is calculated (green circles). Probabilities are 

sorted and plotted against percent of total patients. The line of identify (black line) 

indicates pairs where model predictions and observed responses are equal. The point 

where 85% of patients tolerated esophageal instrumentation was selected as the target 

for the ready for esophageal instrumentation objective and corresponded to a 70% 

probability of loss of response to esophageal instrumentation (dashed green). 
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the first time the probability of loss of response to esophageal instrumentation was 

greater than or equal to 70%. If this probability was never reached, the objective function 

returned infinity. 

Anecdotal observations from previous work and corroborated by other 

researchers indicated that placing an endoscope was the most stimulating part of upper 

endoscopies.2,4,5 Once the endoscope had been placed, drug requirement decreased. 

For this study, the initial elevated phase is termed “time needed to maintain no response 

while endoscope is placed in the duodenum” and the dosing provided for the balance of 

the procedure is termed “time with no response while the procedure is performed” or 

simply “maintenance dosing”. 

The “time needed to maintain no response while endoscope is placed in the 

duodenum” objective returned the total elapsed time from when the probability of loss of 

response to esophageal instrumentation first reached 70% to when it first dropped below 

the upper limit for maintenance dosing, which is defined in the next paragraph. If the 

probability never exceeded 70% or did but never fell below the upper limit for 

maintenance, the objective function returned infinity. 

Gambus, et al. report in their findings in 110 ultrasonographic endoscopy patients 

that optimal sedation was achieved in unstimulated patients at Ce pairs ranging from 2.8 

mcg/mL propofol and 0 ng/mL remifentanil to 1.8 mcg/mL and 1.5 ng/mL.3 When 

converted to probabilities of loss of response to esophageal instrumentation, these 

correspond to probabilities of 26% and 58% respectively. “Time with no response while 

the procedure is performed” was the total time the probability of loss of response to 

esophageal instrumentation was greater than or equal to 26% and less than or equal to 

58% during the procedure. If the predicted probability of loss of response to esophageal 

instrumentation never entered this targeted region, the objective function returned 

infinity. 
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Our models for intolerable ventilatory depression, respiratory compromise and 

loss of responsiveness were collected in unstimulated, healthy volunteers and, as 

suggested in previous work, are best applied to patients recovering from a procedure.2 

We also postulate that respiratory depression and airway obstruction are more 

worrisome when the subject is unresponsive and therefore unable to respond to prompts 

to breathe. Therefore, “time to ventilatory depression recovery” is the time to reach a 

probability of intolerable ventilatory depression < 5% or return of responsiveness (loss of 

responsiveness < 5%), whichever occurs first, once the procedure has ended. If both 

probabilities were less than 5% before the procedure ended, the objective function 

returned zero. 

The respiratory compromise model is comprised of both airway obstruction and 

intolerable ventilatory depression data. We do not know of a model for airway 

obstruction alone. However, intolerable ventilatory depression and airway obstruction 

predominantly occur in different regions of drug combinations. Airway obstruction tends 

to occur at low remifentanil Ces while intolerable ventilatory depression tends to occur at 

high remifentanil concentrations. Therefore, the predicted probability of respiratory 

compromise tends to be for intolerable ventilatory depression in one region and airway 

obstruction in the other. The probability of airway obstruction was approximated as the 

difference between the probabilities of respiratory compromise and intolerable ventilatory 

depression. Any negative values were set equal to zero. The “time to airway obstruction 

recovery” was the shorter of either time to reach a <5% probability of airway obstruction 

or time to return of responsiveness following the end of the procedure. If both 

probabilities were less than 5% before the procedure ended, the objective function 

returned zero. 

The “time to return of responsiveness” objective was the elapsed time from when 

the procedure ended to when the probability of loss of responsiveness dropped below 
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5%. If the probability of loss of responsiveness was below 5% before the end of the 

procedure, the objective function returned zero. 

Priorities, ideal times and acceptable ranges for each objective were obtained 

from experts in sedation, analgesia and airway management using the Delphi 

technique.6 A questionnaire was distributed to six board certified anesthesiologists 

(Appendix) repeatedly until an acceptable concordance was reached for objective 

priority. Concordance was defined as a Kendall W statistic of 0.75 or greater. Once 

concordance was reached, questioning continued until agreement was obtained on ideal 

objective times and acceptable ranges. Agreement was defined as experts all agreeing 

with the median times from the previous round. 

To control for variance in each objective, times were transformed to 

dimensionless parameters with identical ideal scores (0) and ranges (-1 to 1), in a two-

step process. First, times for each objective were normalized as shown in equation 4.1. 

 

4.1 

 

 

Fj
Norm

(x) is a normalized, dimensionless parameters with a lower limit of -1 and no 

upper limit. Fj(x) is the objective function time for the j
th objective while Fj

o is the 

corresponding ideal time (assuming Fj
o ≠ 0). When the objective function time Fj(x) and 

ideal time Fj
o are equal, Fj

Norm is zero.  

Second, objective times were scaled to express percent deviation from ideal. The 

difference between actual objective function time and ideal time was divided by the 

corresponding acceptable range (equation 4.2), determined by the value Fj
Norm. Fj

trans
(x) is 

the final objective score and is the percent deviation of the objective time within the ideal 

range. Fj
o,max and Fj

o,min are the maximum and minimum values of the acceptable range, 
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respectively. An objective time equal to the minimum or maximum acceptable value was 

transformed to a score of -1 or +1, respectively, while an objective time equal to the ideal 

time was transformed to zero. Negative values indicated a less than ideal score while 

positive values indicated greater than ideal scores (Figure 4.2). As an example, if the 

ideal time for an objective was 1 min and minimum and maximum acceptable times were 

0.25 and 3, then objective times of 0.5, 1, and 2 would be transformed to scores of -

67%, 0% and 50% respectively. 

 

 

 

4.2 
 

 

 

 

4.3.2 Optimization model 

This study used the lexicographic goal programming method to identify an 

optimal dosing regimen from a set of simulated dosing regimens (x).7 This process 

minimizes the total deviation (j) of all objective functions (Fj(x)) from defined goals (bj) 

as shown in equation 4.3. The subscript j is used to indicate the objective.  

  
 

4.3 

 

The minimization is conducted iteratively and optimizes multiple objectives in 

order of their assigned priorities i = 1 to n, with the optimization only considering those 
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Figure 4.2: Graphical representation of objective times (Panel A) and transformed 

objective scores (Panel B). Time in minutes is represented on the horizontal axis while 

the vertical axis represents the six objectives. Ready = ready for esophageal 

instrumentation. Placing = placing endoscope. Maintenance = maintenance dosing. RD 

= respiratory depression. AO = airway obstruction. Recovery = return of responsiveness. 

Red circles and squares represent the minimum and maximum values considered 

acceptable for each objective, respectively. Green circles represent the ideal time 

obtained from experts using the Delphi technique. Cyan circles represent actual 

objective times for a simulated dosing regimen. Transformed objective scores have 

identical acceptable ranges (-1 to 1) and ideal scores (0), removing potential biases 

introduced by an objective’s magnitude or range. 
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b) 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2 continued 
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dosing regimen is identified as the remaining simulation with the minimum total 

deviation. The general equation is shown as equation 4.4.  

 

4.4 

 

The tolerance can be a fixed amount or a percentage, and can be the same for 

all objectives or can be a function of objective priority. For this study, j will be a value 

multiplied by objective priority. The value was determined by increasing from 0 in 

increments of 0.05 until at least one simulation was within the tolerance of all objectives. 

All solutions containing at least one objective score of infinity were eliminated 

from the simulated set. Additionally, any simulation with a probability of loss of response 

to esophageal instrumentation less than 25% at the end of the procedure was also 

eliminated for not providing adequate sedation and analgesia for the entire procedure.  

The first time an objective was included, a minimum solution was identified from 

the remaining set of simulations. The next iteration found a compromise solution 

between it and all other objectives. In all remaining iterations, only simulations with an 

objective score within a specified tolerance of the compromise solution were considered. 

The tolerance around the compromise solution for each objective was proportional to 

objective priority and took the form (j = objective priority * value). After seven iterations, 

the optimal dosing regimen was identified as the simulation with the minimum total score 

in the remaining set. Following is a description of the iterative optimization process. 

First iteration: The first iteration identified the simulation with the minimum 

absolute deviation from ideal for the objective with a priority of one (F1(x)). We will 

call this solution A. 

Second iteration: A compromise solution for F1(x) was identified by adding the 
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absolute change in objective scores for F1(x) from solution A to the absolute 

value of the objective scores for F2(x). The new optimal solution was identified as 

the simulation with the lowest summed score. We will call this solution B. 

Third iteration: This round identified a compromise solution for F2(x). The 

absolute change in objective scores for F1(x) and F2(x) from solution B was 

calculated and summed with the absolute objective scores for F3(x). In addition, a 

constraint was added that only simulations with an objective score for F1(x) within 

±1 of solution B were considered. The new optimal solution was identified as the 

simulation with the lowest summed score. We will call this solution C. 

Fourth iteration: This iteration identified a compromise solution for F3(x). The 

absolute changes in objective scores for F1(x) from solution B and F2(x) and F3(x) 

from solution C were added to the absolute objective scores for F4(x). An 

additional constraint that only solutions with objective scores for F2(x) within ±2 

of solution C was added to the constraint of ±1 of solution B’s score for F1(x). 

The simulation with the lowest total score was identified as the new optimal 

solution, which we will call solution D. 

Fifth iteration: A compromise solution for F4(x) was identified in this iteration. The 

absolute differences between objective scores for F1(x) and solution B, F2(x) and 

solution C and F3(x) and F4(x) and solution D were added to the absolute 

objective scores for F5(x). In addition to constraining the results to those 

simulations with objective scores within ±1 of solution B’s score for F1(x) and ±2 

of solution C’s score for F2(x), scores for F3(x) were constrained to ±3 of solution 

D’s score. The simulation with the lowest total score was identified as the new 

compromise solution, which we will call solution E. 

Sixth iteration: This round identified a compromise solution for F5(x). The 
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absolute differences in objective scores for F1(x), F2(x), and F3(x) were computed 

as has been described and added to the absolute difference between the scores 

for F4(x) and F5(x) and solution E. The absolute objective scores for F6(x) were 

added to the totals. The final compromise solution was identified as the minimum 

total score that was also within ±1 of solution B’s score for F1(x), ±2 of solution 

C’s score for F2(x), ±3 of solution D’s score for F3(x) and ±4 of solution E’s score 

for F4(x). This solution is referred to as F. 

Seventh iteration: identifying optimal solution: The final score for each simulation 

was computed by adding the absolute differences in objective scores for F1(x), 

F2(x), F3(x) and F4(x) as has been described to the absolute difference between 

scores for F5(x) and F6(x) and solution F. After eliminating all simulations that 

were not within ±1 of solution B’s score for F1(x), ±2 of solution C’s score for 

F2(x), ±3 of solution D’s scores for F3(x), ±4 of solution E’s score for F4(x) and 

±5 of solution F’s score for F5(x), the remaining simulation with the minimum 

score was identified as the best compromise solution for the demographic 

simulated. 

 
4.3.3 Recommended dosing regimens 

Dosing simulations assumed a 10-min upper endoscopic procedure in a 

spontaneously breathing 55 year-old, 75 kg, 175 cm male. Simulations were performed 

using custom pharmacokinetic and pharmacodynamic modeling software. (MATLAB 

R2008b; MathWorks, Inc., Natick, MA) using published pharmacokinetic models for 

propofol and remifentanil and a 10 second time step.8,9 

Dosing simulations consisted of a propofol bolus (0-1.4 mg/kg) administered over 

3 min beginning at t = -3 min and a remifentanil bolus (0-1 mcg/kg) administered over 1 

min starting at t = -1 min. At t = 0 min, parallel but independent fixed-rate infusions of 
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propofol (0-150 mg/kg/min) and remifentanil (0-0.2 mcg/kg/min) were started and run for 

the duration of the procedure. All possible combinations of bolus sizes and infusion rates 

were simulated using the increments indicated in Table 4.1. Probabilities of no response 

to esophageal instrumentation, loss of responsiveness, intolerable ventilatory depression 

and respiratory compromise were computed for each time step using published 

remifentanil propofol interaction models.2,10,11 

 
4.4 Results 

 
4.4.1 Objective functions 

Six board-certified anesthesiologists from the University of Utah Department of 

Anesthesiology with an average of twelve years of experience participated in our survey. 

Consensus on objective priority was reached in three rounds and agreement on ideal 

objective times and ranges was obtained in the fourth round. Priorities and times are 

listed in Table 4.2. Times for “time to ready for esophageal instrumentation” were 

increased by 2 min to coincide with the start of the remifentanil bolus. Minimum times for 

“time to ventilatory depression recovery”, “time to airway obstruction recovery”, and “time 

to return of responsiveness“ were changed to zero under the assumption no effect 

during recovery would also be acceptable. Ideal times and ranges were successfully 

used to convert objective times in minutes to a unit-less number representing percent 

deviation from ideal time for each objective. 

 
4.4.2 Optimization model 

Objectives in order by priority are 1) time to ventilatory depression recovery 

(respiratory depression), 2) time to airway obstruction recovery (airway obstruction), 3) 

time until esophagus can be instrumented (ready for esophageal instrumentation), 4) 

time to return of responsiveness (return of responsiveness), 5) time needed to maintain 
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Table 4.1: Dosing bolus and infusion rate ranges simulated for each patient demographic. Step sizes indicate the interval within the 

corresponding range. Simulations will be run for all 3,840 possible combinations of bolus and infusion rate. 

 Bolus Infusion 
 Range Step Size Range Step Size 

Remifentanil 0 – 1 mcg/kg 0.2 0 – 0.2 mcg/kg/min 0.05 

Propofol 0 – 1.4 mg/kg 0.2 0 -150 mg/kg/min 10 
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Table 4.2: Ideal objective times, ranges, and priorities obtained from experts in anesthesiology for the six optimization objectives 

following four rounds of questioning.  

 Ideal Min Max Priority 

Time to ready for esophageal 
instrumentation 

4* 3* 5* 3 

Placing endoscope 2.25 2 4 5 

Maintenance dosing 6 5 10 6 

Respiratory depression 1.75 0† 2 1 

Airway obstruction 1 0‡ 2.5 2 

Return of responsiveness 2 0‡ 4.5 4 

* Times presented have had 2 min added to them to adjust for administering the propofol bolus over 3 min. 
†

 Time has been reduced from 0.5 to 0. 
‡
 Time has been reduced from 1 to 0 
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no response while endoscope is placed in the duodenum (placing endoscope) and 6) 

time with no response while the procedure is performed (maintenance dosing). 

Tolerance took the form (j = objective priority * value). The value identified in this 

study was 0.2. Some steps in the iteration were modified once final objective priority was 

known. In the fourth iteration, objective scores for F4(x) (return of responsiveness) were 

added instead of absolute objective scores. The fifth iteration used the difference 

between the objective scores for F4(x) and solution D instead of the absolute difference. 

The sixth iteration subtracted objective scores for F6(x) instead of adding the absolute 

objective scores. 

 
4.4.3 Recommended dosing regimens 

A total of 3,840 dosing regimens were simulated from the possible dosing 

combinations shown in Table 4.1. Probabilities of no response to esophageal 

instrumentation, loss of responsiveness, intolerable ventilatory depression and 

respiratory compromise were computed and objective scores calculated. As was 

expected, no simulated dosing regimen optimally satisfied all objectives (objective 

scores = 0). In addition, only 17 of the simulated dosing regimens had every objective 

score within the acceptable range (objective scores between -1 and 1). The dosing 

combinations for these 17 simulations are shown in Table 4.3 and the corresponding 

probabilities of loss of response to esophageal instrumentation are shown in Figure 4.3. 

An optimal dosing recommendation was identified for the simulated 55 year old, 

75 kg, 175 cm male undergoing an anticipated 10-min upper endoscopy. It consisted of 

a 0.8 mg/kg bolus of propofol administered over 3 min starting at t = -3 min and a 0.2 

mcg/kg bolus of remifentanil administered over 1 min starting at t = -1 min. At t = 0 min, 

infusions of 40 mg/kg/min of propofol and 0.05 mcg/kg/min of remifentanil were started. 

The resulting Ces of propofol and remifentanil are shown in Figure 4.4 along with 
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Table 4.3: Dosing regimens that produce objective scores within the ideal ranges for all 

six objective scores when run on a 55 year-old, 75 kg, 175 cm male demographic 

assuming a 10-min procedure length. The propofol bolus is administered over a 3 min 

period beginning at t=-3 min. The remifentanil bolus is given over a 1 min time period 

beginning at t=-1 min. Both infusions are started at t=0 min and run for 10 min. 

Bolus Infusion 
Prop 

(mg/kg) 
Remi 

(mcg/kg) 
Prop 

(mg/kg/min) 
Remi 

(mcg/kg/min) 

0.2 1 10 0.15 

0.2 1 10 0.20 

0.2 1 20 0.10 

0.2 1 20 0.15 

0.2 1 30 0.10 

0.2 1 40 0.05 

0.2 1 70 0 

0.4 0.6 0 0.20 

0.4 0.6 10 0.15 

0.4 0.6 20 0.10 

0.4 0.6 40 0.05 

0.4 0.6 50 0.05 

0.6 0.2 0 0.20 

0.6 0.4 40 0.05 

0.6 0.4 50 0.05 

0.8 0.2 40 0.05 

1.4 0 30 0.05 

Prop = propofol. Remi = remifentanil. 
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Figure 4.3: Of the 3,840 dosing combinations simulated, only 17 had every objective 

score within the minimum and maximum ideal range. Shown are the probabilities of loss 

of response to esophageal instrumentation for these 17 (solid black) along with a solid 

green line showing the target for ready for placement as well as dashed green lines 

showing the range for maintenance dosing. 



 

 

 

Figure 4.4: Dosing scheme recommended for a 55 year-old, 75 kg, 175 cm male 
presenting for an anticipated 10-min upper endoscopy (solid blue). The X-axis displays 
remifentanil effect site concentrations while the Y-axis displays propofol effect-site 
concentrations. The other lines on the plot represent drug iso-effect isoboles and 
indicate the propofol-remifentanil drug combinations that would be expected to produce 
the same probability of effect. Open blue circles represent time in minutes while blue 
arrows indicate the direction of time. In terms of optimization objective functions in order 
of occurrence, the dosing must first reach at least a 70% probability of loss of response 
to esophageal instrumentation (P(LR to EI) = 70%, dashed black). It then must drop 
within the maintenance dosing range (solid black) and remain there until the end of the 
procedure (sharp elbow around Propofol = 1.3 mcg/mL, remifentanil = 1.3 ng/mL). It then 
must drop below a 5% probability of loss of response to esophageal instrumentation 
(P(LOR) = 5%, dotted cyan), 5% probability of respiratory depression (dash-dot red), or 
5% probability of airway obstruction (not shown). Because there is no model for airway 
obstruction, it was approximated as the actual probability of respiratory compromise 
(P(RC), orange) minus the actual probability of respiratory depression. 
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topographical representations of the pharmacodynamic targets. The final total objective 

score was 0.5. 

A typical patient in this demographic would be ready for esophageal 

instrumentation in 3.8 min (ideal = 4). The dosing regimen would provide 2.9 min of 

elevated drug levels while the scope is placed in the duodenum (ideal = 2.25) and 6.5 

min (ideal = 6) of maintenance dosing. Once the procedure had ended, return of 

responsiveness would occur within 1.3 min (ideal = 2), at which point respiratory 

compromise and respiratory depression would no longer be worrisome. This optimal 

dosing regimen produced peak Ces of ~3 mg/mL of propofol and ~1 ng/mL of 

remifentanil during placement. When the procedure ended, Ces were ~1.3 mcg/mL for 

propofol and ~1.3 ng/mL for remifentanil. 

 
4.5 Discussion 

When selecting drugs to administer for a procedure, care must be taken to 

consider the drug effects – good and bad – as well as the drug interactions for these 

effects. While propofol and remifentanil can offer rapid onset of effect, ease of titration to 

effect and rapid recovery times, a limitation to their safe use is lack of experience with or 

knowledge of their interaction profile. Previous work has explored the effects of propofol-

remifentanil combinations for loss of response to esophageal instrumentation, loss of 

responsiveness, respiratory depression and respiratory compromise. This current work 

seeks to combine effect models with optimization techniques to identify an optimal 

propofol-remifentanil dosing regimen for mild to moderately painful procedures requiring 

esophageal instrumentation. 

 
4.5.1 Objective functions 

The dosing strategy used in this study administered the loading bolus of propofol 

over a 3 min time period. This was done to provide dosing consistent with the propofol 
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packet insert. However, it also increased the time required to reach a 70% probability of 

loss of response to esophageal instrumentation, making it unlikely an optimal solution 

would reach this probability in less than 3 min. To compensate, the times were increased 

by 2 min, coinciding with the start of the remifentanil bolus instead of the propofol bolus. 

Minimum times for “time to ventilatory depression recovery”, “time to airway obstruction 

recovery”, and “time to return of responsiveness“ were reduced to 0 to allow dosing 

regimens with objective scores of 0 (no effect during recovery) to also be considered. 

A change in objective priority will influence the results obtained from the 

optimization model. Experts placed the highest priorities on minimizing respiratory 

depression and airway obstruction. Because models for these effects only apply to 

unstimulated subjects, objective scores for respiratory depression and airway obstruction 

corresponded to recovery once the procedure had ended. The application of these 

models in this way corresponded to optimizing propofol and remifentanil Ces at the end 

of the procedure. Additionally, these effects were considered worrisome only if the 

subject was unresponsive and, except for high remifentanil dosing regimens 

(remifentanil Ces > 1.5 ng/mL), maintenance dosing produced probabilities of loss of 

responsiveness in excess of 5%. The lowest probability of respiratory depression and 

<5% probability of loss of responsiveness corresponded to Ces of ~1 mcg/mL for 

propofol and ~1.5 ng/mL for remifentanil (Figure 4.4). Therefore, optimal dosing 

regimens recommend loading boluses and infusion rates predicted to come closest to 

this point once drug administration is terminated for the specific demographic. 

It was also noted that ideal objective times influenced the final dosing 

recommendation. For example, time to ready for esophageal instrumentation, the third 

priority in this implementation, principally determined the sizes of the loading boluses. 

Shorter times required higher propofol boluses, but also resulted in a larger overshoot of 

the targeted 70% probability of loss of response to esophageal instrumentation. This 



 

 

104 

produced longer times for the placing endoscope objective and lower total time for the 

maintenance dosing objective. This objective is not critical to patient safety and the start 

of drug administration could be adjusted so the patient is ready for esophageal 

instrumentation at the clinician’s discretion. Therefore, it may be best to optimize all 

other criteria and have the final solution dictate when the subject is ready for esophageal 

instrumentation. 

Some limitations must be also addressed. First, pharmacokinetic and 

pharmacodynamic models are population-based models and represent what may be 

expected in a typical person. Large variability is associated with these models and actual 

drug needs may be more or less than what is recommended. Next, priorities and 

objective criteria were obtained using the Delphi technique. The responses may be 

different if a different set of panelists were queried, or if the panel was made up of 

clinicians instead of anesthesiologists. Also, it is possible we have misspecified or left 

out an objective. However, we were limited to the pharmacodynamic models available 

for propofol-remifentanil combinations. Finally, it is possible that some aspects cannot be 

quantified, making it impossible to include in an objective function. 

 
4.5.2 Optimization model 

The lexicographic goal programming technique allows detailed a priori 

articulation of preferences. Compromise between objectives is necessary independent of 

the dosing regimen used and all drug effects are not equal. This technique provides a 

methodology whereby objective priorities are considered, ranges of deviation from ideal 

can be specified, and flexibility exists within the construct to allow for identification of a 

compromise solution. 

However, it must be understood that these recommendations are based on 

population models and suffer from the same limitations mentioned for objective 
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functions. They are meant to assist in the selection of doses prior to sedating and not as 

absolutes to be fed into an automated dosing system. There is no mechanism for real-

time patient feedback so careful observation of a patient by a dedicated person is still 

necessary.  

In our approach, we defined dosing regimens using fixed intervals for boluses 

and infusion rates. While these were selected to ensure the simulated dosing regimens 

covered the full range of drug effects, it is possible this approach excluded a more 

optimal dosing regimen. However, intervals were selected in increments that allowed 

them to be easily administered by a clinician and accounted for the limited resolution in 

both syringes and infusion pump rates. 

 
4.5.3 Recommended dosing regimens 

An ideal dosing would provide rapid loss of response to esophageal 

instrumentation, mild sedation, and no risk of respiratory depression and airway 

obstruction. However, previous work has shown this condition is not likely to exist in a 

majority of patients.2,11 Instead, compromises between effects must be made. In this 

work we present a multiobjective optimization function that evaluates the tradeoffs 

between the effects mentioned for procedures requiring esophageal instrumentation and 

provides an a priori dosing regimen recommendation for a specific patient demographic. 

The optimization model recommended an optimal dosing regimen for a 55 year-

old, 75 kg, 175 cm male. In comparison to propofol-fentanyl (in remifentanil equivalents) 

simulations conducted for this same demographic in previous work, endoscope 

placement occurs at higher propofol Ces (~3 mcg/mL compared to ~1.3 mcg/mL) while 

the procedure ends at higher remifentanil Ces (~1.3 ng/mL compared to ~0.8 ng/mL).2 

However, previous simulations administered drugs based on time and did not target 

probabilities of loss of response to esophageal instrumentation, resulting in peak 
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probabilities between 20-30%. The optimized dosing strategy targets a peak probability 

of 70% and necessarily reaches higher propofol Ces to do so. In addition, previous 

simulations administered fentanyl as a single bolus at the beginning of the procedure. 

Fentanyl is longer-acting than remifentanil and no additional fentanyl was needed for the 

10-min procedure simulated. Fentanyl Ces were therefore decreasing during the 

procedure. In contrast, additional remifentanil is needed and is administered with a fixed-

rate infusion throughout the procedure, causing remifentanil Ces to increase. 

The optimal dosing regimen identified is not the best solution for any single 

objective. However, it does incorporate compromises between all objectives and does 

recommend a dosing regimen that would produce objective times within the acceptable 

ranges obtained from our expert panel in the typical 55 year-old, 75 kg, 175 cm male 

patient. When compared to previous work, the simulated optimal dosing regimen 

produces peak probabilities of loss of response to esophageal instrumentation in a 

region where a high number of volunteers had no response to esophageal 

instrumentation but a high probability of loss of responsiveness. Predicted Ces at the 

end of the simulated procedure corresponded to a region where a high number of 

unstimulated volunteers did not have respiratory depression or respiratory compromise. 

While our results confirmed our hypothesis, it is possible other solutions exist. In 

this study, drug administration was limited to propofol or propofol in combination with 

remifentanil. This was principally because of their rapid pharmacokinetics and ease of 

titration to effect. In addition, previous research on propofol and propofol in combination 

with remifentanil during upper endoscopy had been conducted and pharmacodynamic 

models of their interaction for needed drug effects existed.  

Besides choice of drugs, the dosing strategy used was simplistic. In this 

preliminary look at dose optimization, this was intentional but it is possible a different 

dosing strategy would lead to a more optimal recommendation. However, the strategy 
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used has several benefits. First, its simplicity makes it easy to implement. A fixed-rate 

infusion of drug provides more stable sedation and analgesia for the duration of the 

procedure than current intermittent bolusing techniques. Stimulation in upper 

endoscopies is intermittent and transient. Waiting until a patient responds to a 

stimulation to administer additional drug often means peak drug effects are occurring 

when there is no more need. In addition, steady drug administration allows the natural 

buildup of carbon dioxide to stimulate respiratory drive. Rapid changes in drug level may 

produce periods of respiratory depression before carbon dioxide levels reach levels that 

stimulate respiration. However, incorporation of “negative boluses”, or periods where 

drug infusion is paused, could potentially allow larger boluses to be given up front 

without causing prolonged overshoot as well as more rapid drop in Ces once the 

endoscope is placed.  

The objective function scores developed in this study provide a means of 

quantifying and evaluating the performance of propofol-remifentanil dosing regimens for 

procedures requiring esophageal instrumentation independent of the dosing strategy 

used. Dosing regimens that come closest to ideal times achieve lower scores. In this 

way, the optimization algorithm presented may also prove useful in evaluating various 

dosing strategies and identifying and optimal technique.  

In summary, an optimal dosing regimen was identified from a set of simulated 

dosing regimens that, according to expert opinion and models of drug effect, provides 

conditions that will permit upper endoscopy procedures. Dosing recommendations in a 

55 year old, 75 kg, 175 cm male for a simulated 10-min upper endoscopic procedure 

were consistent with our previous work. Future work is needed to validate recommended 

dosing regimens in patients undergoing brief procedures requiring esophageal 

instrumentation. 
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4.6 Appendix: Questionnaire 

Background: 
We would like to identify the optimal sedation and analgesia conditions for upper 
endoscopic procedures when using propofol or propofol in combination with 
remifentanil. The ideal dosing regimen provides optimal working conditions for the 
endoscopist while preserving patient safety and comfort. We are seeking expert 
consensus to define ideal conditions. 
 
Please provide answers for the current procedure (10 minute upper endoscopy) 
 
Definitions: 
Unresponsive: Does not respond to “shake and shout” 
Respiratory depression: Four or less breaths per minute (bpm). This state is corrected 
by prompting the patient to breathe or manual ventilations 
Airway Obstruction: Either complete or partial airway obstruction (AO). This state is 
corrected with a chin lift or oral airway 
Unresponsive to placement of an endoscope: No gag reflex or response to placement of 
an endoscope 
 
Instructions: You will be asked to provide the ideal time and acceptable range of times 
(section I) and priority (section II) for each objective presented. 
 
When formulating your responses, please consider patient safety, patient satisfaction, 
and procedural demands. The comment section provides you an opportunity to explain 
to other participants if your answer is different from the mean/median response.  
Comments you make will be available for other experts to review during the subsequent 
round. 
 

I. Ideal Times and Acceptable Ranges 

Instructions: Please specify both an ideal time AND an acceptable range of 
times (with resolution to half a minute) for each objective presented below. (e.g. 
ideal time of 1.5 mins, range of 1 – 3 mins). 
 
Case Stem: You will provide sedation and analgesia to a healthy 55 year old, 75 
kg (165 lbs), 170 cm (5’ 7”) male undergoing an upper endoscopy. Assume the 
procedure will last 10 minutes. 
 

1. Once drug administration has begun, how many minutes should it take before 
the patient tolerates esophageal instrumentation? 
Ideal:  ______  minutes 
Acceptable range:  min  ______ – max  ______  minutes 
 

2. How many minutes are needed to place a scope in the duodenum? 
Ideal:  ______  minutes 
Acceptable range:  min  ______ – max  ______  minutes 
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(balance of the procedure is 10 mins – ideal time for #1 – ideal time for #2) 
Ideal:  ______  minutes 
Acceptable range:  min  ______ – max  ______  minutes 
 

(assume all vital signs start at normal levels) 
Ideal:  ______  minutes 
Acceptable range:  min  ______ – max  ______  minutes 

 

(assume all vital signs start at normal levels)? 
Ideal:  ______  minutes 
Acceptable range:  min  ______ – max  ______  minutes 

 

6. Once the procedure has ended, how long should it take for the patient to return 
to responsiveness? 
(responds to name spoken in a normal tone without any tactile, painful or noxious stimulation) 
Ideal:  ______  minutes 
Acceptable range:  min  ______ – max  ______  minutes 

 

II. Objective Priority 

Instructions: Prioritize each of the 6 objectives from 1 (most important) to 6 
(least important).  
Each objective must be assigned a priority. Each priority can only be used once. 

 

_____  Time to ready for esophageal instrumentation 

_____  Time needed to place scope in duodenum 

_____  Providing maintenance dosing for the balance of the procedure 

_____  Duration of time requiring corrective action for respiratory 

depression 

_____  Duration of time requiring corrective action for airway obstruction 

____  Time to return of responsiveness 
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prompting to breathe or manual ventilations to correct respiratory depression? 

5. How many minutes will you allow the patient to be in a state where they require 
a chin lift or oral airway to correct airway obstruction? 
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5 CHAPTER 5 

 
DISCUSSION 

 
This dissertation was undertaken to determine if a dosing combination exists that 

provides adequate sedation and analgesia for esophageal instrumentation while 

minimizing the risk of adverse effects. Work conducted for each aim has contributed to 

the field and provided pieces needed to answer to this question. 

 
5.1 Summary 

5.1.1 Pharmacodynamic models of drug effect 

Pharmacodynamic models of drug effect for esophageal instrumentation, 

intolerable ventilatory depression and respiratory compromise were not available prior to 

this work. Therefore, novel techniques were developed to capture and process this data, 

in particular, the use of respiratory rate and tidal volume to determine clinically significant 

respiratory depression and airway obstruction. 

Response to esophageal instrumentation could be blocked at low remifentanil 

(0.8 ng∙mL-1) and high propofol (2-3 mcg∙mL-1) concentration pairs. Procedures ending at 

these same concentrations also avoided intolerable ventilatory depression. Response to 

esophageal instrumentation could be blocked while avoiding loss of responsiveness for 

high remifentanil low propofol combinations, but would not be recommended due to the 

increased risk of intolerable ventilatory depression. 

A revised model of loss of response to esophageal instrumentation was created 

when comparison of our preliminary model was found to be overly stringent. Model fit 
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improved after relaxing the classification of response to only those with purposeful 

movement. This infers that clinicians are willing to tolerate some level of patient 

discomfort and blunt rather than completely block the response to esophageal 

instrumentation. 

Limitations associated with interpreting models are that for loss of 

responsiveness, respiratory depression and respiratory compromise, data were collected 

in unstimulated volunteers. Because procedures requiring esophageal instrumentation 

are stimulating, the models cannot be applied to stimulated patients. They do, however, 

apply to periods when there is no stimulation such as when the procedure has ended. In 

addition, all models were generated from data collected in young, healthy volunteers and 

do not have covariates for age, etc.  

Stimulation provided by the procedure would likely minimize the occurrence of 

loss of responsiveness, intolerable ventilatory depression and respiratory compromise 

during a procedure. In addition, intolerable ventilatory depression and respiratory 

compromise are only worrisome when a subject in unresponsive to prompting to 

breathe.  

 
5.1.2 Evaluation of common dosing strategies 

A review of published dosing regiments found the most common dosing 

combination referenced was propofol and fentanyl. The most frequently referred to 

dosing technique was a loading bolus of propofol and fentanyl followed by intermittent 

boluses of propofol titrated to effect. Only one published recommendation for propofol 

and remifentanil was identified but used target controlled infusions, a technique not 

approved in the United States. 

Through simulation it was shown that propofol only techniques would lead to 

longer time of unresponsiveness following the procedure but quicker recovery times for 
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respiratory compromise. Combined techniques had a quicker return of responsiveness 

yet longer time of respiratory compromise. An important clinical implication of these 

simulations is that should patients require prompting to breathe to avoid ventilatory 

depression, techniques that minimize loss of responsiveness may be more desirable 

because patients can respond to the prompting.  

A limitation of interpreting these simulations is that dosing recommendations 

were published as ranges. Some degree of interpretation was needed when designing 

the simulations and the dosing may be misspecified. 

 
5.1.3 Identification of optimal drug combination and dosing 

An optimal dosing recommendation was identified for a simulated 55 year-old, 75 

kg, 175 cm male undergoing an anticipated 10-min upper endoscopy and consisted of a 

propofol bolus of 0.8 mg/kg and infusion rate of 40 mcg/kg/min and a remifentanil bolus 

of 0.2 mcg/kg and an infusion rate of 0.05 mcg/kg/min. This optimal dosing regimen 

produced peak Ces of ~3 mg/mL of propofol and ~1 ng/mL of remifentanil during 

placement. When the procedure ended, Ces were ~1.3 mcg/mL for propofol and ~1.3 

ng/mL for remifentanil. One difference of note between the recommended dose and 

those simulated in aim 2 was that opioid concentration is increasing throughout the 

procedure while in aim 2 it was decreasing. This is a result of using a remifentanil 

infusion instead of a single loading bolus of fentanyl. 

This optimization approach was based on a priori articulation of preferences and 

population-based pharmacokinetic models. Conditions in an actual patient may vary 

widely from these predictions. Also, a simplified drug dosing strategy has been 

implemented to minimize the number of optimization parameters. A more complex 

strategy may provide a more optimal dosing recommendation. Finally, the optimization is 

a function of the objectives as defined and is therefore susceptible to any error they 
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contain. Important objective functions may be missing and unnecessary objectives may 

have been added.  

In summary, propofol-remifentanil pharmacodynamic effect models for loss of 

response to esophageal instrumentation, respiratory depression and respiratory 

compromise were built. When overlaid with each other, a prospective target region of 

high probability of loss of response to esophageal instrumentation and low probability of 

intolerable ventilatory depression was identified. Research into common dosing 

regimens discovered intermittent bolus dosing techniques of propofol-fentanyl were 

commonly used. For simplicity in optimizing, this technique was converted to a loading 

bolus of propofol and remifentanil followed by fixed rate infusions. An optimal dosing 

regimen was identified from a set of simulated dosing regimens that, according to expert 

opinion and models of drug effect, provides conditions that will permit upper endoscopy 

procedures. 

 
5.2 Future Work 

Dosing recommendations from this dissertation could be improved. First, models 

of loss of responsiveness, respiratory depression and respiratory compromise should be 

validated. Additionally, models created in stimulated patients would provide insight to the 

probability of these adverse effects occurring during a procedure. 

Validation of the priorities, ideal times and ranges is necessary to add confidence 

to the optimization targets. A dosing strategy that incorporated more variations in drug 

administration (e.g. ability to pause infusion, administer additional boluses) may be 

better at reaching ideal times. Finally, dosing recommendations should be validated in 

patients undergoing brief procedures requiring esophageal instrumentation. 

 


