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Purpose: Demonstrate a novel fast method for reconstruction of multi-dimensional
MR fingerprinting (MRF) data using deep learning methods.

Methods: A neural network (NN) is defined using the TensorFlow framework and
trained on simulated MRF data computed with the extended phase graph formalism.
The NN reconstruction accuracy for noiseless and noisy data is compared to conven-
tional MRF template matching as a function of training data size and is quantified in
simulated numerical brain phantom data and International Society for Magnetic Reso-
nance in Medicine/National Institute of Standards and Technology phantom data
measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF fast imag-
ing with steady state precession (FISP) sequences with spiral readout. The utility of
the method is demonstrated in a healthy subject in vivo at 1.5T.

Results: Network training required 10 to 74 minutes; once trained, data reconstruc-
tion required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP
sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in
a RMS error (RMSE) of 2.6 ms for T1 and 1.9 ms for T2. The reconstruction error in
the presence of noise was less than 10% for both T1 and T2 for SNR greater than 25
dB. Phantom measurements yielded good agreement (R25 0.99/0.99 for MRF EPI
T1/T2 and 0.94/0.98 for MRF FISP T1/T2) between the T1 and T2 estimated by the
NN and reference values from the International Society for Magnetic Resonance in
Medicine/National Institute of Standards and Technology phantom.

Conclusion: Reconstruction of MRF data with a NN is accurate, 300- to 5000-fold
faster, and more robust to noise and dictionary undersampling than conventional
MRF dictionary-matching.
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1 | INTRODUCTION

Magnetic resonance fingerprinting (MRF) 1 is an acquisition
strategy that uses a variable schedule of RF excitations and

delays to induce differential signal evolution in tissue of dif-
fering types. Quantitative tissue parameter maps are then
obtained by matching the acquired signal to a precomputed
dictionary consisting of the time evolution of the magnetiza-
tion for different values of the set of tissue parameters. Multi-
ple quantitative tissue parameter maps can be simultaneously
obtained from a single experiment, significantly reducing the
total scan time.
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To avoid errors in the reconstructed tissue maps, the
reconstruction dictionary is typically computed with fine
granularity over the entire range of possible tissue values.
Dictionary size, however, grows exponentially as the number
of tissue parameters (i.e., the dictionary dimension) is
increased, which can quickly result in prohibitively large dic-
tionaries that require extensive computational resources to
process.2 This increased memory, storage, and computational
burden is a limiting factor for clinical adoption of MRF
methods and is particularly pernicious in innovative high-
dimensional applications of MRF.3,4 Reducing the dictionary
density is a poor solution for this problem because it limits
the a priori accuracy of the reconstruction even before exper-
imental factors are accounted for.

Existing methods address aspects of this problem, but
important challenges remain. Dictionary compression5,6 uses
the compressibility of the fingerprints to reduce the dimen-
sionality of the dictionary, leading to faster postprocessing.
Unfortunately, to create the compressed dictionary, the full
fine-grained dictionary must first be generated prior to
decomposition with the singular value decomposition, itself
a computationally expensive operation. Recent work by
Yang et al.7 used a randomized singular value decomposition
with an iterative polynomial fit to reduce the memory
requirements, albeit at the cost of increased processing time.
Additionally, when optimized acquisition schedules are
used,8,9 the compressibility of the dictionary may be signifi-
cantly reduced, rendering these methods less effective. Opti-
mizing the acquisition schedule can indeed reduce the
number of image frames needed for accurate reconstruction,
but the reduction is smaller than the exponential growth of
the dictionary with increasing dimensions.

In recent years, the availability of inexpensive graphical
processing units has led to significant advances in neural net-
works (NN) and deep learning algorithms used to train these

networks.10 Mathematical work in NN theory has shown that
any Borel measurable function can be represented by a NN
with a finite number of neurons,11 which can thus offer a
compact representation of complicated functions. In this
paper, we exploit this property and describe a novel method
that reframes the MRF reconstruction problem as learning an
optimal function that maps the acquired signal magnitudes to
the corresponding tissue parameter values, trained on a
sparse set of dictionary entries.12 The trained neural network
reconstruction function is remarkably compact (�20 times
smaller than typical MRF dictionaries), and reconstruction is
nearly instantaneous (�300- to 5000-fold faster than conven-
tional dictionary-matching techniques) due to its rapid feed-
forward processing. We call our method the MRF Deep
RecOnstruction NEtwork (DRONE) and we validate it by
numerical simulations and phantom experiments at 2 differ-
ent magnetic field strengths and demonstrate its utility in the
brain of a healthy subject scanned at 1.5T.

2 | METHODS

2.1 | Neural network

A 4-layer, fully connected NN composed of input and output
layers and 2 hidden layers was defined using the TensorFlow
framework,13 as shown in Figure 1. The input layer consisted
of 25 or 50 nodes to correspond to the magnitude images
acquired with our schedule optimized (EPI) MRF sequence8

or 571 nodes to correspond to images acquired with a con-
ventional MRF sequence with sliding-window filtering.14,15

Complex-valued images can also be processed by this net-
work topology by splitting the real and imaginary channels,
or through the use of a complex-valued network.16 In this
proof-of-concept study, only T1 and T2 were considered;
therefore, the output layer consisted of 2 nodes. Reconstruc-
tion of additional parameters would require a larger output

FIGURE 1 Schematic of the reconstruction approach used in this study.MRI data acquired with theMRF sequence is fed voxelwise to a 4-layer neu-
ral network containing two 3003 300 hidden layers. The network is trained by a dictionary generated with the extended phase graph algorithm, with the
tanh function used as activation function of the hidden layers. The network then outputs the underlying tissue parameters T1 and T2. Additional tissue
parameters, such asM0, B0, and B1 (gray boxes), can similarly be obtained by training the network with a suitable dictionary
FA, flip angle; MRF, MR fingerprinting; M0, proton density.
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layer. Each of the 2 hidden layers had 300 nodes. The net-
work size was empirically selected to ensure accurate func-
tional mapping while avoiding the risk of overfitting. The
chosen size represented a good compromise between the
required training time, storage space, and accuracy of the
resultant reconstructions. The network was trained by the
adaptive moment estimation stochastic gradient descent algo-
rithm,17 with the learning rate set to 0.001 and the loss func-
tion (cost) defined as the mean squared error:
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where k ranges over the n training samples and P is the training
or reconstructed tissue parameter of interest (T1 or T2 in this
study). Two different activation functions were defined. A
hyperbolic tangent (tanh) function was used for the hidden
layers with a sigmoid function used for the output layer. In total,
the NN required storage of 3003 3005 90000 coefficients.

2.2 | Pulse sequence

Numerical simulations and phantom and in vivo experiments
in this study used a modified gradient-echo EPI MRF pulse
sequence with Cartesian sampling for which the flip angles
and TR were set according to an optimized measurement
schedule, shown in Supporting Information Figure S1, as
previously described.8,18,19 To illustrate the flexibility of the
proposed reconstruction, a conventional MRF fast imaging
with steady state precession (FISP) pulse sequence,20–23 with
a variable density spiral readout and 600 time-points (571
after sliding-window filtering), was also used14,15 for the
phantom experiments.

2.3 | Network training

Numerical simulations and phantom experiments were car-
ried out using a training dictionary of �69 000 entries, con-
sisting of T1 and T2 in the range 1 to 2500 ms in increments
of 2 ms between 1 to 300 ms and increments of 10 ms
between 300 to 2500 ms, excluding entries in which T1<T2.
An additional set was also defined, consisting of T1 and T2

values absent from the training dictionary, to test the net-
work’s ability to reconstruct tissue parameters values outside
its training set. The same range and increments of T1 and T2

values were used for the test set but with a different starting
point to ensure that there was no overlap with the training
dictionary. Reconstruction of the test set data was used to
verify the efficacy of training by comparing the resultant val-
ues to the true values. A larger range dictionary was used for
the in vivo experiments, which consisted of T1 in the range 1
to 5000 ms, in increments of 5 ms in the range 1 to 300 ms,
increments of 10 in the range 300 to 1500 ms, and incre-
ments of 50 ms in the range 1500 to 5000 ms. The same set

of increments was used for T2 but only up to 3000 ms. The
magnetization due to each (T1, T2) pair was calculated using
the extended phase graph formalism.20,24 Gaussian noise
with 1% SD and 0 mean was added to the training dictionary
to promote robust learning, as previously exhibited with
denoising autoencoders.25 This dictionary was used to train
the network to convergence, requiring approximately 10 to
74 mins on an Nvidia K80 GPU (Nvidia Corp., Santa Clara,
CA) with 2GB of memory. The size of the dictionary
required approximately 13 MB of storage for the MRF EPI
sequence and 313 MB for the MRF FISP sequence.

2.4 | Numerical simulations

The performance of the network in reconstruction of realistic
brain T1 and T2 values was assessed using the BrainWeb dig-
ital brain phantom (http://brainweb.bic.mni.mcgill.ca/brain-
web/).26 An MRF EPI acquisition was simulated, as
described above, and the resulting signal used as an input to
the network.

2.4.1 | SNR versus reconstruction error

Monte Carlo simulations were used to test the network
reconstruction of noisy data. Complex Gaussian random
noise was added to the data for variable levels of SNR. The
SNR was defined as 20 � log10(S/N), where S is the average
white matter signal intensity in the acquisition and N is the
noise SD. The SNR was varied from 10 to 40 dB in incre-
ments of 5 dB, and the noisy data reconstructed with the pro-
posed network. This was repeated 100 times for each SNR
level. The resulting T1 and T2 maps were compared to their
ground truth values according to the formula: Error5
1003 jTrue – Measuredj/True and the mean and SD of the
percent error calculated.

2.4.2 | Training dictionary density versus
reconstruction error

The effect of the training dictionary density on the resulting
reconstruction error was measured by subsampling the initial
dictionary variously from 2- to 60-fold. The network was
then trained with each subsampled dictionary and used to
reconstruct the initial, fully sampled dictionary for which the
entries were corrupted by 0 mean Gaussian noise with SD of
either 0 (i.e., noiseless) or 1%. No noise was injected into the
training dictionary for reconstruction of the noiseless data.
This was repeated 5 times for each undersampling factor and
the RMSE calculated for each repetition. The DRONE recon-
struction was also compared to a conventional MRF diction-
ary-matching reconstruction by matching the initial, fully
sampled dictionary to each subsampled dictionary and calcu-
lating the resultant error. The mean and SD of the RMSEs,
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across the 5 repetitions, of the reconstructed T1 and T2 maps
of each reconstruction method were then calculated as a
function of the dictionary subsampling factor.

2.5 | MRI

All experiments with the optimized MRF EPI sequence were
conducted on a 1.5T whole-body scanner (Avanto, Siemens
Healthineers, Erlangen, Germany). The manufacturer’s body
coil was used for transmit, and a 32-channel head coil array
used for receive. The TI/TE/BW was set to 19 ms/13 ms/
2009Hz/pixel. The slice thickness was set to 5mm, and the
in-plane resolution set to 23 2mm2, with a matrix of
1283 128 and an acceleration factor R5 2, for a total scan
time of �3 seconds for the 25 frames acquired with the opti-
mized schedule. A higher in-plane resolution could be
obtained by increasing the number of phase-encoding steps,
hence the echo time, or alternatively by increasing the accel-
eration factor at the cost of decreased SNR. To ensure
sufficient SNR in the in vivo experiments, the same
acquisition parameters were used but with a slightly longer
(�5 s) acquisition. The images were reconstructed online
using the GRAPPA27 method.

The MRF FISP experiments were conducted on a 3T
whole-body scanner (Prisma, Siemens Healthineers) with 2-
channel parallel transmit and 20-channel parallel receive array.
The TI/TE/BW was 20 ms/2.5 ms/261Hz/pixel, with a 5-mm
slice thickness, an in-plane resolution of 1.23 1.2mm2, and a
matrix size of 2003 200. A 30-point sliding-window filter was
applied to the 600 time points to yield the 571 images used in
the DRONE reconstruction, as described in Ref. 14.14 The total
acquisition time was�7.5 s for the 600 frames acquired.

2.6 | Phantom

The accuracy and precision of the DRONE reconstruction was
assessed using the International Society for Magnetic Reso-
nance in Medicine/National Institute of Standards and Tech-
nology multi-compartment phantom, with calibrated T1 and
T2 values similar to those of the human brain.28 The phantom
was scanned at the 2 magnetic field strengths with the pulse
sequences described above and the images reconstructed with
both the proposed NN as well as conventional dictionary-
matching. The resulting T1/T2 maps were compared to the true
phantom values, which were characterized by NIST for each
magnetic field strength and calculated using gold-standard
NMR spectroscopy inversion-recovery and Carr-Purcell-Mei-
boom-Gill sequences.28,29

2.7 | In vivo human

A healthy 35-year-old male subject was recruited for this
study and provided informed consent prior to the experiment

in accordance with our institution human research commit-
tee. Following DRONE reconstruction of the measured data,
regions of interest of 10 pixels were defined corresponding
to gray matter, white matter and CSF. The mean6SD of the
T1/T2 values within those regions of interest were calculated
and compared to values from the literature.

3 | RESULTS

3.1 | Network training

The reconstructed test data is shown in Figure 2 in compari-
son to the true values. Excellent agreement was obtained
between the true and reconstructed T1 and T2 values, yield-
ing a correlation coefficient of R25 0.99 for both T1 and T2,
with a negligible bias of 1.6 ms for T1 and 3.2 ms for T2.
The RMSE was 3.8 ms for T1 and 16 ms for T2. The T1 and
T2 values at the edge of the training dictionary range showed
increased deviation from the true values, likely due to the
vanishing gradient of the activation function in these
regions,30 as described in the Discussion section below.

3.2 | Numerical simulation

The true and reconstructed T1 and T2 maps of the noiseless
numerical brain phantom are shown in Figure 3, along with
the associated error map calculated as the absolute value,
that is, Error5 jTrue-Reconstructedj. The RMSE for each
map was 2.6 and 1.9 ms for T1 and T2, respectively. The
largest error in the brain was less than 0.5% in T1 and less
than 3% in T2.

3.2.1 | SNR versus reconstruction error

The mean T1 and T2 error as a function of SNR is shown in
Figure 4. The error was relatively large (�15% and �48%
for T1 and T2) at the lowest SNRs but dropped rapidly with
increasing SNR, reaching less than 2% for the highest SNR
levels tested.

3.2.2 | Training dictionary density versus
reconstruction error

The mean T1 and T2 RMSEs across the 5 repetitions are
shown as a function of the dictionary undersampling factor
in Supporting Information Figure S6 for the different noise
levels tested. For a noiseless acquisition with small diction-
ary undersampling, the error was similar for both the NN and
MRF dictionary-matching reconstructions. The error
increased with increasing undersampling factors for both
methods but at a significantly higher rate for the dictionary-
matching. Indeed, at the largest undersampling factor tested
(360), the error in the NN reconstruction was 2-fold smaller
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than the dictionary-matching for T1 and 4-fold smaller for T2

(Supporting Information Figures S2, S3, S6). Moreover, the
dictionary-matching performance degraded rapidly in the
presence of noise. In particular, dictionary-matching of short
(< 11 ms) T2 tissues resulted in large errors that dominated
the total RMSE (Supporting Information Figures S4, S5).
Such T2 values were not estimable by conventional
dictionary-matching (but were estimable by DRONE recon-
struction) and were therefore not included in the RMSE cal-
culations shown in Supporting Information Figure S6, unlike
the DRONE reconstruction, which included all tissues.
Despite the smaller set of tissues used in calculation of the

dictionary-matching error, the DRONE reconstruction error
was still 7% to 44% smaller for T1 and 2% to 8% smaller for
T2 in the presence of noise.

3.3 | Phantom

The DRONE reconstruction accuracy was evaluated by esti-
mating T1 and T2 values in the well-characterized calibrated
International Society for Magnetic Resonance in Medicine/
National Institute of Standards and Technology phantom.
The measured T1 and T2 values were derived from the mean
T1 and T2 values estimated within each compartment.

FIGURE 2 Shown is a comparison between the true T1 and T2 and those reconstructed by a network trained on a distinct dictionary. The red line indi-
cates the least-squares fit curve. The reconstructed T1 and T2 values showed excellent agreement (R25 0.99), with the true values with a negligible bias in
T1 and T2 of 1.6 and 3.2 ms, respectively, validating the feasibility of the proposed approach. Very short and very long T1 and T2 values showed increased
deviation from the true values due to vanishing gradient of the activation function used for those ranges
RMSEs, RMS error.

FIGURE 3 True and reconstructed T1 and T2 images from the numerical brain phantom shown on a commonms scale and the associated absolute
error map. The true phantom values approximate those of the in vivo brain, for example, white matter T2> 70ms. Note the close agreement between the
reconstructed and truemaps. The T1 and T2 RMSEs of 2.6 and 1.9 ms, respectively, are shown inset in white in the error map for this noiseless acquisition
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3.3.1 | MRF EPI

The estimated T1 and T2 values from all compartments
(Figure 5) showed good agreement to the true phantom val-
ues (R25 0.99) and a small estimation bias of 6.3 ms for T1

and 15 ms for T2. The calculated T1 and T2 RMSEs were 49
and 42 ms, respectively. In contrast, conventional dictionary-
matching yielded higher RMSEs (89 and 56 ms for T1 and
T2). The reconstruction of the 1283 128T1 and T2 maps
required �10 ms with the NN, which was �300-fold faster
than the �3 s required with conventional dictionary-
matching using a �69 000 entries dictionary.

3.3.2 | MRF FISP

The T1 and T2 values estimated with the MRF FISP sequence
also showed good agreement to the true phantom values
(R25 0.94 for T1 and 0.98 for T2) with an estimation bias of
49 ms for T1 and 3.8 ms for T2. The T2 RMSE was similar to
that of the MRF EPI acquisition at 59 ms, but the T1 RMSE
(150 ms) was larger. Although B1 correction was not applied
to either sequence, the B1 inhomogeneity is greater at 3T,
which likely contributed to the larger error in the MRF FISP
sequence. The larger number of time points in the MRF FISP
sequence naturally required a longer time for reconstruction
(76 ms) compared to the MRF EPI acquisition. Remarkably,
despite the nearly 23-fold increase in the number of time
points, the increase in reconstruction time was only �7 fold.
Conventional dictionary-matching with the same size diction-
ary yielded RMSEs of 141 and 80 ms for T1 and T2 and
required �380 seconds or 5000 times longer.

3.4 | In vivo human brain

The T1 and T2 maps reconstructed by DRONE are shown in
Figure 6, along with the regions of interest chosen. The
mean6SD T1 and T2 for each tissue compartment are listed
in Table 1 and are similar to values obtained from the
literature.1,31

4 | DISCUSSION

MRF enables quantitative tissue mapping in a short acquisi-
tion time at the cost of increased complexity in the recon-
struction. Although computational resources are typically
cheaper and more accessible than scanner time, the large
dictionaries required for MRF applications can overburden
even the most advanced hardware. To avoid this problem,
multi-parametric MRF dictionaries are by necessity under-
sampled in some dimensions, entailing an a priori reduction
in accuracy. Instead, in this work, a 4-layer NN capable of
modeling the history-dependent Bloch equations used in
MRF sequences was demonstrated. Unlike conventional
dictionary-matching in which the acquired signals can only
be matched to the discrete entries computed in the diction-
ary, the proposed method relies on the functional represen-
tation of the NN, which yields continuous-valued parameter
outputs. This is a notable advantage of the NN reconstruc-
tion because the reconstruction accuracy is no longer
strictly limited by the dictionary density. Moreover, the net-
work training process results in a signal-to-parameter map-
ping that is more robust to noise than a conventional
dictionary-matching approach (Figure 4 and Supporting
Information Figure S6) because the mapping is forced to
be expressed in low-dimensional space and is thus insensi-
tive to small corruptive input perturbations. This mapping
need not result in a loss of accuracy provided that the
salient features of the signal are adequately preserved by
the NN, in analogy with truncation of small singular values
in the singular value decomposition.32 Because conven-
tional MRF dictionaries are generated from combinations
of tissue parameters, each T1 and T2 value can be repeated
multiple times in the dictionary. Despite this natural redun-
dancy, the error in the DRONE reconstruction was still
smaller for increasing dictionary undersampling than with
conventional dictionary-matching.

Conventional dictionary-matching does not learn a func-
tional mapping, relying instead on the similarity between
the normalized measured data and the corresponding nor-
malized dictionary entry. An unfortunate side effect of the
normalization is that noisy signals, arising from tissues
with short T2, for example, are amplified and then matched
to some dictionary entry, leading to increased reconstruc-
tion errors (Supporting Information Figure S4). The

FIGURE 4 The T1 and T2 reconstruction error in percent as a func-
tion of the SNR. The mean (circles) and SD (whiskers) were calculated
across the 100Monte Carlo iterations. Reconstructions at the lowest SNR
level showed significant error that nevertheless dropped rapidly with
increasing SNR and was less than 2% for T1 and T2 at the highest SNR
level tested
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FIGURE 5 NN andMRF dictionary-matching reconstructions of the ISMRM/NIST phantom for the sequences tested. Shown is a comparison
between the reference and measured compartment T1 and T2 values for data acquired with the optimizedMRF EPI sequence at 1.5T (top) and with the
MRF FISP sequence at 3T (bottom). The reference values were calculated by NIST using spectroscopic inversion-recovery and Carr-Purcell-Meiboom-
Gill sequences. The dashed line is the identity line and the error bars represent the SD of the measured T1 and T2 values within each compartment. The
uncorrected larger B1 inhomogeneity at 3Tmay have contributed to the larger T1 RMSEwith theMRF FISP sequence
FISP, fast imaging with steady-state precession; ISMRM, International Society for Magnetic Resonance in Medicine; NIST, National Institute of Standards and Technology;
NN, neural network.

FIGURE 6 In vivo quantitative T1 and T2 maps from the brain of a healthy subject reconstructed with DRONE. Because no fat suppression was
applied, a mild chemical shift artifact is visible in the images (white arrows). The numbered black circles indicate the locations of the graymatter, white
matter, and CSF ROIs used to calculate the mean T1 and T2 values shown in Table 1
ROI, region of interest.
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dictionary-matching was greatly influenced by the low
SNR of the short T2 values, rendering them nonestimable.
Those values, corresponding to T2 s smaller than 11 ms,
were excluded from the calculations of the dictionary-
matching error but were included in those of the DRONE
reconstruction. It should be noted that as the noise is
increased, the smallest detectable T2 value will become cor-
respondingly larger. Because the NN was trained on noisy
signals, it yielded smaller error for both T1 and T2 (Figure
4 and Supporting Information Figures S4, S5, S6).

The in vivo MRF EPI T1 and T2 maps reconstructed by
DRONE (Figure 6) correspond well to the known anatomy,
and the average values of the associated regions of interest
are similar for gray and white matter to those reported by Ma
et al. and references therein.1 The average CSF value
obtained in our study (�1600 ms for T2) was similar to other
studies33,34 but significantly larger than the 550 ms reported
by Ma et al. Susceptibility of the MRF bSSFP sequence to
out-of-plane flow, as proposed in that paper, may explain the
discrepancy, although recent work by Daoust et al.34 suggests
that flow only has a small effect on the T2 of CSF at 1.5T.

A successful application of deep learning networks
requires large and high-quality training data. In a clinical
context, large and high-quality datasets may be difficult to
obtain and expensive to generate. Training the network on
simulated dictionary data eliminates this concern and permits

generating arbitrarily large training sets. Our results (Figures
5–6) show that networks trained on simulated data can accu-
rately reconstruct measured data despite the presence of inev-
itable noise and other sources of errors in the measurements.

The compact size of the NN solves many of the problems
inherent to conventional dictionary-matching. Specifically,
DRONE required merely �5% of the storage and memory
needed for storing even the small training dictionary used;
larger dictionaries would reduce this fraction further.
Because of its feedforward structure, reconstruction with the
network was 300-fold faster than conventional dot product
dictionary-matching of the optimized MRF EPI data and up
to 5000-fold faster for the larger MRF FISP data. Acceler-
ated matching techniques, such as that reported by Cauley
et al.,5 still necessitated 2 s per slice for reconstruction,
which was �16-fold longer than what would be required
with a DRONE reconstruction of an equivalent number of
time points. Although the dictionary used in that study was
larger than the one used in this work, the number of entries
in the training dictionary has no effect on the final recon-
struction time once the network is fully trained. Because the
network topology is fixed, additional training entries simply
modify the weights/biases of the network but do not increase
the reconstruction time. Similarly, because the architecture of
our network (3003 300 fully connected hidden layers) theo-
retically allows up to 6002 degrees of freedom (1 weight and
1 bias per node), the inclusion of additional parameters in the
reconstruction would only require increasing the size of the
training dictionary, which would not affect the post-training
reconstruction time. In theory, a larger network can better
represent complicated functional mappings, albeit at the cost
of increased reconstruction time and increased risk of overfit-
ting the data. The relatively simple network architecture used
in this study provided accurate reconstructions at near instan-
taneous processing time.

This work represents an initial proof of concept for MRF
reconstruction by a NN and can be optimized to further
improve the results. For instance, although the training time
for the network used in this study was relatively small (�10–
74min), alternative methods may yield faster training. The
size of the network and the small number of images used
with the optimized MRF EPI schedule contributed to the
short training time, but conventional MRF sequences that
require a greater number of acquisitions (10- to 100-fold
higher) will require a longer training time, as will simultane-
ous reconstruction of additional tissue parameters given the
larger training dictionary needed. The sigmoid and tanh acti-
vation functions used in this study are a common choice for
NN training35 but skew the accuracy of the network toward
the middle of the training dictionary range (Figure 2), where
the gradient is largest and the back-propagation algorithm is
thus most effective. This problem is well known in the
machine-learning literature, with a number of techniques

TABLE 1 Mean6 SD T1 s and T2 s values of the regions of
interest selected

ROI T1 (ms) T2 (ms)

White matter

1 6086 9 626 3

2 6426 12 676 4

3 6336 9 666 3

Average 6276 10 656 3

Gray matter

4 8956 153 926 14

5 11826 65 1026 10

6 12416 187 1206 17

Average 11066 135 1056 14

CSF

7 32926 515 14756 118

8 36656 413 17106 332

9 40266 123 15446 147

Average 38156 424 15766 199
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available for addressing it.36 Alternative training strategies
and activation functions such as softmax and rectifier linear
unit are beyond the scope of this work and will be examined
in future studies.

5 | CONCLUSION

We have demonstrated the feasibility of using deep learning
networks for reconstruction of MRF data. The proposed
approach yields fast and accurate reconstruction with a lim-
ited storage requirement, despite training on sparse diction-
aries, and can therefore resolve the technical issues inherent
to the exponential growth of multi-dimensional dictionaries.
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SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article.

FIGURE S1 Schedule of FAs and TRs used for the opti-
mized MRF EPI and the MRF FISP sequences.
FIGURE S2 MRF dictionary matching reconstruction of
the noiseless T1 and T2 values tested in comparison to the

true values for the lightly undersampled (X2) and 60-fold
undersampled (X60) training dictionaries.
FIGURE S3 NN reconstruction of the noiseless T1 and T2

values tested in comparison to the true values for the
lightly undersampled (X2) and 60-fold undersampled
(X60) training dictionaries.
FIGURE S4 MRF dictionary matching reconstruction of
the T1 and T2 values corrupted by 1% Gaussian noise in
comparison to the true values for the lightly undersampled
(X2) and 60-fold undersampled (X60) training dictionaries.
The dictionary matching of noisy data was particularly sus-
ceptible to short (<11 ms) T2 values for the noise level
tested resulting in large errors.
FIGURE S5 NN reconstruction of the T1 and T2 values
corrupted by 1% Gaussian noise in comparison to the true
values for the lightly undersampled (X2) and 60-fold
undersampled (X60) training dictionaries. Because the NN
reconstruction was trained on noisy data it was more robust
to the effects of noise.
FIGURE S6 RMSE of the MRF dictionary matching
(open circles) and NN reconstruction (closed circles) for
the different undersampling factors and noise levels tested.
For the noiseless acquisition (blue curves) the error in the
NN reconstruction was 2 fold smaller for T1 and 4 fold
smaller for T2 at the largest undersampling factor tested.
For the noisy acquisition (red curves) only tissues with T2

s> 11 ms were included in the error calculation for the
MRF dictionary matching whereas all tissues were included
in the NN reconstruction error. Nevertheless, the NN
reconstruction error was still smaller or equal to the MRF
error for all undersampling factors tested.
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