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Spatial encoding with nonlinear magnetic fields has recently drawn attention for its

potential to achieve faster gradient field switching within safety limits, tailored resolution in

regions of interest, and improved parallel imaging using encoding fields that complement

the sensitivity profiles of RF receive arrays. Proposed methods can broadly be divided into

those that employ phase encoding (PatLoc and COGNAC) and those that acquire nonlin-

ear projections (O-Space, Null Space imaging, and 4D-RIO). Projection methods typically

reconstruct images using iterative algorithms to backproject the data by exploiting the full

encoding matrix. For this reason, they are more sensitive than phase encoding methods to

systematic errors introduced by imperfect knowledge of the encoding trajectory.

In the present work, voxel-wise phase evolution is mapped at each acquired point in

an O-Space trajectory using a variant of chemical shift imaging, capturing all spin dynam-

ics caused by encoding fields, eddy currents, and pulse timing. Phase map calibration is

then applied to data acquired from a high-power, 12 cm, Z2 insert coil with a home-built

8-channel RF transmit-receive array on a 3T human scanner. We show the first experimen-

tal proof-of-concept O-Space images on in vivo and phantom samples, paving the way for

more in-depth exploration of O-Space and other nonlinear projection imaging methods.

We also use quadratic phase preparation with a Cartesian pulse sequence to image form

a localized field-of-view within the sample. This extends a previously presented method

(“GradLoc”) by creating localization with a 3-D encoding field and also by combining it

with parallel imaging for scan acceleration.
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Organization

This thesis is organized in five chapters. Chapter 1 offers a very abbreviated review of
the fundamentals of spatial encoding in MRI as described in the existing literature. Special
attention is given to parallel imaging methods that allow for reduced scan times by combin-
ing data from multiple RF receive coils. While some of the equations are expressed in a very
general form, the assumption in Chapter 1 is of conventional spatial encoding performed
using linear magnetic fields.

Chapter 2 introduces several encoding schemes that use nonlinear encoding fields,
notably O-Space imaging, which is the primary subject of the thesis. The bulk of the chap-
ter, Sections 2.1-2.4, is an elaboration of a paper published by the author in 2009 in Mag-
netic Resonance in Medicine (MRM). Section 2.4 briefly outlines a center placement opti-
mization study was conducted by Pelin Aksit Ciris and was reported in greater detail at the
International Symposium for Magnetic Resonance in Medicine (ISMRM) in 2009. Section 2.6
discusses a sensitivity analysis performed by the author on simulated O-Space images in
the presence of sinus and ear cavity inhomogeneity. This work was presented by the author
at ISMRM in 2010.

Chapter 3 goes on to describe experimental implementation of the O-Space encod-
ing using a 12-cm diameter insert coil. Sections 3.1-3.6 are described in a journal paper
submitted to MRM that is now in review. Section 3.7 presents additional analysis of the
O-Space image reconstruction algorithm and its convergence properties that could not be
included in the aforementioned MRM article due to length limitations. The material on
through-plane dephasing in Section 3.4 is adapted from the work of Gigi Galiana, as pub-
lished in MRM in 2011.

Chapter 4 describes three additional topics that involve the use of the quadratic field
insert coil. Section 4.2 is based on an abstract presented by the author at ISMRM 2011
showing the equivalence of the Fresnel transform and fractional Fourier transforms for
achieving scalable-FOV reconstructions in the presence of quadratic phase-scrambling fields
(a technique that had previously been demonstrated by several authors). Section 4.3 de-
scribes an extension of a method published by another research group called “GradLoc”
that uses quadratic phase-scrambling fields to achieve localized region-of-interest acquisi-
tions without aliasing. In the present study, GradLoc is combined with parallel imaging
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techniques to reduce the acquisition time, an approach that has not been previously pub-
lished. The section also introduces quadratic RF pulse phase pre-compensation as a way to
use three-dimensional encoding fields for GradLoc. Section 4.3 forms the basis of an ab-
stract submitted to ISMRM 2012 now awaiting review. Section 4.4 revisits the question of
O-Space image reconstruction, this time performed using an analytical approach based on
the variable-order fractional Fourier transform (VO-FrFT). This work was described in an
abstract presented by the author at ISMRM 2011. It builds on previous work from another
research group that uses the VO-FrFT to correct for field inhomogeneities in conventional
MR imaging.

Chapter 5 is a brief discussion of new work by other investigators who are studying
nonlinear encoding fields. All material in this chapter has been presented at a conference or
appeared in print within the last year, representing an emerging method.
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Glossary

B0 : static background field. 2

B1 : transmitted radio frequency field applied by a coil, usually to generate spin flip angle.
3

E : encoding matrix used as the forward model of the signal acquisition process, evaluated
on a discrete grid of source voxels in the object. Typically has size nKnc × n2

ρ. 11

F : reconstruction matrix that operates on the acquired data to produce an image. Typi-
cally of size nρ × nKnc. 11

N : image size; the number of voxels along each dimension of a presumably square image..
14

Ns : number of sampled acquired by the ADC, at bandwidth BW, during readout. xviii,
10

R : acceleration factor used to describe the acceleration of an MR acquisition due to un-
dersampling of the data. In the context of parallel imaging, acquisitions are typically
performed in 1/R of the time required for a fully-sampled (Nyquist) acquisition. 16

T1 : longitudinal (spin-lattice) relaxation, the recovery of the Z-component of nuclear spin
magnetization towards its thermal equilibrium value; after T1 has elapsed, the longi-
tudinal magnetization recovers 67% of its equilibrium value. xviii

T2 : transverse (spin-spin) relaxation time, governing decay of the magnetization com-
ponent transverse to B0; after T2 has elapsed, the transverse magnetization drops to
37% of its initial value. xviii

Ts : length of the readout acquisition window. 11

X : TheX-axis is defined as parallel to the floor and extending rightward from the scanner
isocenter if you are facing the front of the scanner. 23

xvii
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Y : The Y -axis is defined as extending upward toward the ceiling from the scanner isocen-
ter. 23

Z : The Z-axis is defined as originating at the scanner isocenter and then extending out-
ward through the front of the scanner bore. 23

in : an index known as the cyclic control for iterative algorithms. Used to index through the
rows of the encoding matrix, E, during iterative reconstruction performed using the
Kaczmarz method. This index varies between 1 and nKnc in any desired order. 43

nK : number of acquired k-space data points. 11

nc : number of receive coils used in an acquisition. 5, 11

s : readout signal acquired during MR imaging. Indexed according to the qth coil element
used for detection, the lth readout performed, and the tth time point in each readout.
Each readout has Ns samples. In the entire experiment, the total number of acquired
samples is nKnc, where nK is the equal to Ns multiplied by the number of readouts
acquired. 5

g-factor : geometry factor, the spatially-varying map of noise amplification in SENSE re-
constructions. The g-factor tracks the condition number of the unaliasing matrix for
each voxel in the reduced FOV. 17, 48

m(x) : underlying spin density of the object that finds representation in an image; in this
thesis ρ is also taken to incorporate the effects of T1 recovery and T2 decay. 1

ADC : analog-to-digital converter, an important part of the scanner’s RF receiver system
that is used to collect discrete samples from a time-varying voltage detected by receive
coils. Typically each receive coil has a dedicated receiver channel and ADC. xvii, xviii,
10, 11

α : used in this thesis to denote the angle of rotation α in the time-frequency domain
caused by the fractional Fourier transform (FrFT) operator of order α. 112

NPEx : number of phase encoding steps used in the X direction during phase mapping
calibration of a pulse sequence. Equal to the resulting resolution of the phase map
along X. 83

NPEy : number of phase encoding steps used in the Y direction during phase mapping
calibration of a pulse sequence. Equal to the resulting resolution of the phase map
along Y . 83

BW : Bandwidth. xvii

xviii



Glossary

CP : center placement. The center of the quadratic SEM used for spatial encoding in O-
Space imaging. The location of the SEM remains fixed during each readout, but
changes between readouts. The location of the quadratic field offset is determined by
the strength of X and Y SEMs played during readout. 35

DFT : discrete Fourier transform. 7, 13

EPI : echo planar imaging. 8

FFT : fast Fourier transform. xx, 7

flip angle : the rotation angle introduced to the net magnetization vector by a transverse
RF pulse. xvii, 3

FOV : field of view. xviii, xxi, 28

Fresnel transform : Fresnel transform. xx, 112

FrFT : fractional Fourier transform. xviii, xx, 110, 112

FSE : fast spin echo. 8

Gibbs ringing : Oscillatory distortions introduced into a function when its Fourier spec-
trum is truncated, providing only finite spectral support for the function. Ringing is
most pronounced near sharp edges in an image. In the context of MRI, Gibbs ring-
ing is introduced by the (usually rectangular) window on the acquired readout data.
Application of a tapered weighting function to the spectral data is used to suppress
Gibbs ringing, at the expense of introducing a modest blur. 43

GradLoc : GRAdient LOCalization. This method uses a phase scrambling quadratic SEM
pulse prior to readout to acquire signal only from a desired square window within the
FOV, permitting localized, accelerated imaging without aliasing.. 110, 120

GRAPPA : generalized autocalibrating partially parallel acquisitions. 21

gyromagnetic ratio : The ratio, denoted γ, between the frequency of precession for a par-
ticular isotope and the B0 field strength (42.57 MHz/Tesla for 1H). 2

Kaczmarz method : an iterative row-action backprojection algorithm used in this thesis to
obtain an image estimate when the forward model is described by a very large system
of equations in the form of an encoding matrix, E. This method is particularly useful
when the reconstruction matrix, F , can not be practically computed due to the large

xix
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size ofE. When suitable value is chosen for the relaxation parameter, λ, the Kaczmarz
method has been shown to converge to the minimum-norm least squares estimator.
xviii, xx, 43

λ : relaxation parameter used to control the rate of convergence when performing iterative
image reconstruction using the Kaczmarz method. xx, 43, 102

Larmor frequency : the frequency, ω0, at which nuclear spins precess around the static
background field, B0. 2

LCT : linear canonical transform, a generalization of the Fourier transform. Special cases
of this operator include the Fourier transform (FFT), fractional Fourier transform
FrFT, and Fresnel transform. 110

LSQR : a conjugate gradients-style matrix solver intended for use with sparse matrices.
41, 57

MRI : magnetic resonance imaging. xix, xxi

NMR : nuclear magnetic resonance. xxi, 2

noise matrix : a covariance matrix whose diagonal elements specify the noise variance in
each voxel of a reconstructed image using a given encoding matrix and reconstruction
matrix, and whose off-diagonal terms specify noise correlations between voxels. xxi,
11

PatLoc : PArallel imaging Technique using LOCal gradients. A scheme that uses pairs of
higher-order, multi-polar SEMs for spatial encoding, with one SEM played as read-
out and the other as phase encoder. The inherent non-bijectivity of the SEMs is re-
solved using receive coil sensitivities, which permit unwrapping of aliased signals
from points lying on the same frequency isocontour. In the simplest case, PatLoc
image reconstruction is a generalization of SENSE. 26

PSF : point spread function, which describes the contribution of the source in a given
voxel to the image magnitude and phase in all other reconstructed voxels in the FOV.
Compare to SRF. xxi

Ψ : receiver noise covariance matrix, incorporating the noise variance in each receive chan-
nel as well as correlations across all available channels. Do not confuse with the image
noise matrix. 11

xx
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q : used to index coil elements from an array of nc channels. 6

radial : k-space trajectory consisting of spokes of data spaced every π/N radians, when N

readouts are acquired. 8

receive coil : one or more radio-frequency probes used to detect signals from precessing
spins in a sample. The precessing magnetization of the spins induces a time-varying
voltage in each receive element. A receive coil often includes multiple elements ar-
rayed so as to provide localized sensitivities around the ROI being imaged. 3

RF : radio frequency. xix, 3

ROI : the region of interest within an object or image. xxi, 22, 103, 120

SEM : spatial encoding magnetic field. A more general term for “gradient” field, which
some consider appropriate only for describing fields that vary linearly over the FOV.
xix, 4

SENSE : sensitivity encoding, a method for performing parallel imaging in the image do-
main with multiple receiver coils. xviii, xx, 16

SMASH : simultaneous acquisition of spatial harmonics. 20

spiral : spiral k-space trajectory. 9

SRF : spatial response function, which describes the contribution of all sources in the FOV
to the image magnitude and phase at a given reconstructed voxel. Compare to PSF.
xx, 12

static background field : the fixed magnetic field in an NMR experiment, typically rang-
ing in strength between 1.5 Tesla and 7 Tesla for human MRI applications, with
higher field strengths under investigation as of this writing. xx, 2

SVD singular value decomposition. 49

xxi
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Spatial encoding and parallel MRI

1.1 The physics of spatial encoding in Magnetic Resonance

Imaging

Note: Wherever possible, I have chosen to adopt the notation used in (1)

In magnetic resonance imaging, the signal originating from an object of interest,

m(x), depends on the density of water protons in the object, the longitudinal relaxation

rate T1, and the spin-spin dephasing rate T2. These properties may vary spatially within

an object or tissue, imparting useful information both about its bulk properties and the lo-

cal chemical environment of the water. The resulting image contrast also depends on the

repetition time TR and echo time TE of the pulse sequence used. Magnetic Resonance

Imaging, or MRI, has a rich history of tailoring pulse sequences to emphasize one or more

sources of contrast. The most exhaustive inventory to date is available in the Handbook of

Pulse Sequences (2). This thesis will treat m(x) as point of departure, focusing instead on

ways to localize this signal during the process of image acquisition and reconstruction.

The quantum mechanical basis of nuclear magnetic resonance is described elsewhere

in the context of imaging, so I will here give only the most cursory overview. The conven-

tional MRI signal is obtained from the nuclear magnetic moments in the hydrogen protons

1



1.1 The physics of spatial encoding in Magnetic Resonance Imaging

in the water molecules of the organism being imaged. For simple NMR experiments, spin

behavior may be described by a classical model consisting of small magnetic moments sub-

ject to torques from applied magnetic fields. The spins precess at the Larmor frequency,

ω0 = γB0 around the constant, uniform static background field, B0, oriented in the Z-

direction. The gyromagnetic ratio, γ, is the ratio between the frequency of precession for a

particular isotope and the B0 field strength (267.47 × 106 radians/Tesla for 1H). The B0

field is sustained by liquid helium-cooled superconducting current loops in the core of the

magnet system.

Protons are spin 1/2 particles, thus representing a spin-1/2 system. In the absence

of a magnetic field the spins are statistically distributed between the two states, with equal

probability of occupying each state. NMR and MRI exploit isotopes with odd number of

nuclei, since this leaves one spin unpaired, thus imparting the nucleus with a net magnetic

moment. In the presence of a strong magnetic field, a slight excess of spins align them-

selves along the field, with the surplus fraction assuming a Boltzmann distribution, e−
hν
kT ,

where k is the Boltzmann constant, T is temperature, and hν is the quantized energy gap

between the two spin states. In this way, a net magnetization is said to exist along the di-

rection of B0 in thermal equilibrium. Excitation by radio frequency pulses at frequency ω0

results in a certain fraction of the spins becoming excited into a superposition of spin up

and spin down states. This manifests itself as a precessing transverse magnetic moment,

which induces a voltage in nearby pick-up loop, providing the NMR signal. Without some

mechanism of spatial localization, the acquired signal can supply only spectral localization

according to the chemical shift of each molecule in the sample for a nucleus resonating at

the chosen frequency (3).

Signals arising from unpaired spins can in principle be detected from any odd-numbered

isotope, and 13C, 31P , 17O, 23Na are commonly used in nuclear magnetic resonance spec-

troscopy, and increasingly in spectroscopic imaging. However, this thesis will only conven-
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1.1 The physics of spatial encoding in Magnetic Resonance Imaging

tional MRI, which relies on 1H, which provides by far the strongest signal of any isotope

in vivo, given the abundance of water in the human body.

The Bloch equations (2) govern the evolution of the magnetization at each location

in the object as a function of the applied magnetic fields. Spin evolution is usually described

in a coordinate system that is rotating at ω0 relative to the lab frame. Positive or negative

applied magnetic fields then cause spins to lead or lag the Larmor frequency, resulting in

simple rotation about the Z-axis in the rotating frame. Spins can also be manipulated with

radio frequency (RF) pulses whose frequency is at or near the Larmor frequency. RF pulses

result in rotation of the net magnetization around the axis of the transmitted field, known

as B1. To tip spins into the transverse plane, the applied RF pulse must have a B-field com-

ponent lying in the transverse plane.

Transmit and receive radio-frequency probes are known as RF coils. Typically the

transmit coil is designed to generate a circularly polarized B-field, which appears fixed in

the rotating frame. Linearly-polarized coils can also be used, since a linear polarization can

be decomposed into a left-handed and right-handed circularly polarized components, but

because the right-handed polarization does not contribute to the flip angle, linear coils are

less efficient. The same coil is often used both to transmit and receive, in which the oppo-

site circular polarization is used. By the principle of reciprocity, the coil’s transmit field and

receive sensitivity are complex conjugates of one another, to a first-order approximation.

For a circularly-polarized coil, the receive sensitivity will be described by the right-handed

circularly polarized B1 mode. The precessing magnetization of each spin in the sample in-

duces a voltage in the receive coil(s). The magnitude and phase of the voltage reflects the

density of spins, the state of spin relaxation, the phase of the spin precession, the proximity

of the spins to the given receive coil, and the sensitivity of the coil.

To improve signal-to-noise ratio and provide more independent measurements of the

sample, multiple small surface coils are used for reception, forming a phased array phased
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1.1 The physics of spatial encoding in Magnetic Resonance Imaging

array (4). Many combinations of transmit and receiver coils exist, including the trans-

verse electromagnetic mode (TEM) coil (5), the Bollinger coil (6), the microstrip array (7).

Sometimes, multiple coil elements are used during transmission to provide more degrees of

freedom in shaping the transmitB1 profile, particularly at ultra high field strengths (such as

7 Tesla), at which the RF wavelength in the tissue approaches the size of the human head.

The resulting dielectric resonances cause inhomogeneous B1 fields and spatially-varying

intensity in the resulting image. Adjusting the amplitude and phase of the elements to pro-

vide a desired B1 distribution (usually a uniform mode) is known as RF shimming (8). As

will be discussed later in this chapter, multiple RF elements can also be used during signal

reception, providing improved sensitivity as well as spatial information about the location

of each signal source in the FOV.

Spatial encoding in MRI is achieved primarily through the use of spatially-varying

magnetic fields that are pulsed on and off during an acquisition. The great variety of spatial

encoding approaches used in MRI, from the original projection-type sequence (9) onward,

stems from the tremendous flexibility for the user to apply multiple fields in different or-

derings, with freedom to vary the pulse shape of each field (i.e., trapezoidal, ramped, si-

nusoidal, etc.). Pulsed, spatially-varying magnetic fields are applied using separate coils

nested within the scanner bore. Because this thesis treats spatial encoding by both linear

and nonlinear fields, I will follow (10) in using the term spatial encoding magnetic field, or

SEM, instead of the conventional phrase gradient field, which some investigators feel should

be reserved for fields with linear spatial variation1.

In a pulse sequence, one of the SEMs is typically played during the RF pulse for slice

selection. Based on the center frequency and bandwidth of the RF pulse, spins residing

1Merriam-Webster’s dictionary defines gradient as: (1) (a) the rate of regular or graded ascent or descent :
inclination (b) a part sloping upward or downward (2) change in the value of a quantity (as temperature, pressure,
or concentration) with change in a given variable and especially per unit distance in a specified direction. Given these
definitions, there is a case to be made for using gradient field only in reference to fields having linear spatial
variation.
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within the range of frequencies in the BW will be excited. The strength of the SEM (or

the BW of the RF pulse) are used to control slice thickness. For spatial encoding in-plane,

the other two linear SEMs are used. At least one of the SEMs is typically played before the

readout the dephase spins. The readout pulse is then played with opposite polarity to re-

focus the spins, forming an echo at TE when all the spins are contributing signals with the

same phase. Another SEM is then sometimes used as for phase encoding along a different

cardinal direction. The phase encoding pulses vary in amplitude between SEMs, providing

the same spatial information as a readout, except spaced over multiple TRs.

In the most general case, the temporal signal in an MRI acquisition can be expressed

as

sl(t) =

∫
m(x)eiϕl(x,t)dx (1.1.1)

for the lth phase function, which corresponds to the applied SEM field shape. The lth ac-

quired readout signal is represented by s. The phase evolves over time according to the

amplitude of the applied SEM, which may be constant, ramped, sinusoidal, or an arbitrary

waveform. The vector x represents a point in 3-D space. With the addition of surface coil

encoding, described by Cq(x), this expression becomes

sl,q(t) =

∫
Cq(x)m(x)eiϕl(t)dx (1.1.2)

where q denotes the coil index out of a set of nc receive coils. The accumulated phase ϕl(t)

depends primarily on the history of the applied SEM pulse, G(t),

ϕl(x, t) = γ

∫ t

0

x ·G(t′)dt′ (1.1.3)

where γ is the gyromagnetic ratio. A useful and entirely apt analogy is to imagine the

spins being “driven” through the frequency domain, or “k-space”, by the encoding mag-
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netic fields. The k-space location is analogous to spatial displacement, while the slope of

the encoding field is analogous to velocity.

The two classic methods for spatial localization, radial projection imaging (9) and

phase encoding (11), both employ linear SEMs oriented along X, Y , and Z, creating

a Fourier basis for spatial encoding. In radial trajectories, each acquired readout corre-

sponds to a “spoke” in k-space, while for Cartesian trajectories, each readout is a line. Ra-

dial datasets may be reconstructed using the radon transform (12), also known as filtered

backprojection, while Cartesian data can usually be reconstructed using the 2-D Discrete

Fourier transform (13).

The purpose of this thesis is to investigate what happens when the Fourier basis for

spatial encoding is replaced with fields generated using arbitrary combination of spherical

harmonics. Specifically, I would like to know what stands to be gained by:

• Complementing RF coil profiles

• Tailor spatially-varying resolution to region of interest within the FOV

Phase encoding was the first nonlinear encoding scheme to be explored, using pairs

second-order multipolar magnetic fields (10). The present author’s work was the first to

explore projection imaging with nonlinear fields (14). But before delving into the promise

and pitfalls of using nonlinear encoding fields, a review of parallel imaging and its potential

benefits is in order. Ignoring spin relaxation, the lth readout acquired with the qth receive

coil in a Cartesian phase encoded sequence takes the form of a Fourier Transform,

sq,l(t) =

∫
Cq(x)m(x)ei2πf(x)tdf (1.1.4)

Considering the case of 2-D phase encoding in the X-Y (axial) plane explicitly,
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sq(kx,∆ky) =

∫
Cq(x, y)m(x, y)ei(kxx+∆kyy)dx (1.1.5)

This expression shows that in the presence of linear SEMs scanned across a Cartesian tra-

jectory, the MRI signal reduces to a 2-D Fourier transform weighted by the receive coil

profiles. When a single, uniform receive coil is used, the signal reduces to a pure Fourier

transform, permitting image reconstruction via inverse Fourier transformation.

Since discrete time samples are measured during readout, the acquired data actually

corresponds to the discrete Fourier transform of the object (DFT)1. In this case, the shape

of the acquisition window causes the object to be convolved with a blurring kernel, most

commonly a 2-D sinc function corresponding to the Fourier transform of the 2-D rectan-

gular function that bounds the acquisition window. Truncation of k-space is responsible

for the Gibbs ringing that commonly occurs in MR images, corresponding to missing high

frequency components necessary to exactly reproduce the edge. Ringing is most often sup-

pressed by windowing k-space, trading ringing artifacts for a small amount of blurring.

More generally, the signal is a function of the multi-dimensional k-space vectors k

and G, where G describes the amplitude of the components of the local SEM in units of

Hz/cm, (15)

sq(k(t)) =

∫
m(x)Cq(x)e

ik(t)TG(x)dx (1.1.6)

1.2 Speed is of the essence

As compared with modalities such as CT or ultrasound, MRI acquisition times are compar-

atively slow, with clinical protocols typically running between 30 and 60 minutes. While

1When the number of data points is a power of 2, the DFT is usually evaluated using the computationally-
efficient fast Fourier transform (FFT) (13)
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this raises concerns over patient comfort and economic cost, the bottleneck becomes an even

more acute concern for certain imaging applications. Consider just a partial list:

• Imaging of the beating heart (16), its perfusion (17), strain tracking (18) in the

myocardium;

• Abdominal imaging (19) requiring repeated breath-holds of 20 seconds or longer,

stressing subjects, particularly the elderly;

• Vascular bolus tracking (20);

• Whole-brain rapid functional MRI of the blood oxygenation level dependent (BOLD)

response (21);

• Imaging of children without use of anesthesia (22).

An additional concern when long signal readouts are used is B0 inhomogeneity, which

causes voxel displacements along the phase encode direction (23).

1.2.1 Fundamental limits on acquisition speed

The cause of the bottleneck in MRI is the need to acquire k-space points serially in successive

TRs. A whole menagerie of hat tricks have been used to speed up this process. They may

roughly be divided into two categories, each with distinct benefits and drawbacks:

• Acquiring multiple lines of Cartesian k-space in a single TR;

– Echo planar imaging (EPI) (24).

– Fast spin echo (FSE) (25) and Turbo spin echo.

– Interleaved slice selection.

• Quickly acquiring much or all of k-space in one TR using a non-Cartesian trajectory;

– radial projection trajectories that frequently sample the center of k-space (9),

improving robustness to subject motion .
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– spiral trajectories that quickly cover k-space with lower slew rates than Cartesian

trapezoidal pulses.

– Rosette (26) and other trajectory shapes.

Non-Cartesian trajectories also enjoy other benefits in addition to their speed. For instance,

radial trajectories permit imaging with very short TE times and reduced sensitivity to mo-

tion. As compared with Cartesian trajectories, spiral trajectories can in principle cover k-

space in equivalent time with reduced SEM field slew rates.

This list, while not intended to be exhaustive, highlights the two practical limits to

conventional MRI. The methods that collect multiple lines per TR have been intensively

developed and are reaching their performance limits due to bounds on (a) SEM switching

limits and (b.) specific absorption ratio, or SAR. Each of these is regulated by the Food

and Drug Administration (27). SEM field switching must not induce any peripheral nerve

stimulation or otherwise cause the subject discomfort. This imposes practical limits on the

slew rate of imaging pulses (28). Additionally, all SEM coils have finite inductances, lim-

iting the rate at which fields can be switched. SAR imposes limits on the performance of

sequences such as fast spin echo, which require multiple 180◦ RF pulses in rapid succes-

sion. Furthermore, SAR becomes much more severe at ultra-high field strengths at or above

7T that are now being investigated for clinical application.

Non-Cartesian trajectories have been the subject of extensive research over the past

20 years, but have found only very limited adoption on clinical scanners. The primary rea-

son for this is the difficulty of accurately measuring the k-space trajectory, which depends

on the exact pulse timing, eddy currents, coupling to other SEM coils, and subtle effects

such as concomitant fields (29, 30). Image reconstruction of multi-coil datasets is also

more time consuming than Cartesian reconstruction via the FFT since it requires use of (a)

regridding (31) with k-space density compensation (32), (b) the non-uniform FFT (33),

or (c) iterative algorithms such as Conjugate Gradients (34, 35), or some combination of
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these approaches. Non-Cartesian trajectories also typically require more data points to be

acquired in order to satisfy the Nyquist criterion. For instance, in radial acquisitions, in or-

der to inscribe the usual Cartesian rectangle within the circle spanned by the spokes and still

satisfy the Nyquist criterion, an additional π/2 spokes must be acquired, each with
√
2Ns

readout samples, where Ns samples would be required for the Cartesian trajectory.

One solution to the serial readout bottleneck is to acquire data simultaneously using

multiple sensors - in this case, RF receive coils. Signals received in parallel by an array of

independent RF receivers can then be combined to compensate for missing spatial encod-

ing in undersample k-space datasets. This approach, known as parallel imaging, will be

discussed in detail later in this chapter.

1.3 Image reconstruction fundamentals

Before discussing parallel imaging methods, a brief review of MR image reconstruction is in

order. I do not offer an exhaustive survey, but rather a selective presentation of the material

most relevant to “conventional” parallel imaging techniques. I have modeled my notation

after that used in (1).

The signal equation, Eq. (1.1.6), can be represented as the integral of the product of

the underlying magnetization function with an encoding function,

sq,κ =

∫
m(x)Cq(x)e

ikTG(x)dx (1.3.1)

Because the signal integral is a linear operator, it may be recast as a matrix operating on

a vectorized, discretized version of the source object. Let the forward model be denoted

s = Em+n, wheren is zero-mean additive Gaussian noise that may be correlated across the

receive channels. The scanner’s analog-to-digital converter, or ADC, acquires Ns discrete
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samples during a rectangular acquisition window of duration Ts.

1.3.1 Weighted least squares estimator of image

Consider a general encoding matrix, E, evaluated on a discrete grid of voxels in the FOV.

E has size nKnc × N2, where nK is total number of acquired k-space points, nc is the

number of coils, and N is the number of voxels being represented along each dimension

of the source object (and also the reconstructed image). Square image grids are assumed

for simplicity. A receiver noise covariance matrix, Ψ, may be obtained by placing the re-

ceive coils in proximity to the sample, opening up the ADC to take samples of the noise

in each receive channel, and then computing all the cross-correlations between these noise

vectors: Ψ = E
(
nnH

)
, for a matrix n, each row of which holds a series noise measure-

ments from a given coil channel. To use Ψ in combination with the full encoding matrix,

E, Ψ must be tiled along the diagonal using the outer product, forming a block-diagonal

matrix: Ψ̃ = Ψ⊗ InK
where InK

is the identity matrix of size nK . Define a reconstruction

matrix that is optimal in a least-squares sense, F , which operates on the acquired MRI data

to generate an image. Using F , E, and Ψ̃, the noise properties of the experiment can be

derived by calculating the covariance matrix.

The image covariance matrix, known in the MR literature simply as the noise matrix,

describes both the expected variance σρ within each voxel ρ (diagonal elements) and the

noise correlations between voxels (off-diagonal elements). The covariance matrix can be

derived by taking the expected value of the reconstructed image estimator, m̂LS ,(36)
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m̂LS = F (Em+ n)

cov(m̂LS) =
[
(m̂LS −m) (m̂LS −m)H

]
=

[
(m+ Fn−m) (m+ Fn−m)H

]
= F Ψ̃FH .

(1.3.2)

One way to compute a reconstruction matrix F is obtained using a Lagrange multi-

plier. Following the treatment in (1), one seeks to minimize the total image noise variance,

defined as the sum of the diagonal elements in the noise matrix, Tr
(
F Ψ̃FH

)
. This min-

imization is also subject to the so-called “weak” constraint of MR image reconstruction;

namely, that the spatial response (SRF) function of each voxel must equal unity at the cen-

ter of the voxel and zero at the center of all other voxels. Since the SRF of a given voxel with

index ρ is specified in the ρth column of the matrix product FE, the weak voxel function

constraint is enforced by minimizing FE − I . The problem of finding F thus becomes

one of constrained optimization, and its form is treatable using a Lagrange multiplier. The

two conditions are written as a cost function, L, with one term weighted by the Lagrange

multiplier, Λ,

L = Tr
(
F Ψ̃FH

)
+ Λ (FE − I)

The derivative is taken with respect to both Λ and the variable for which an optimum ex-

pression is sought, F , and the system of equations is solved for Λ and then F :
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1.4 Phase array image reconstruction

∂L

∂Λ
= (FE)H − I = EHFH − I = 0

∂L

∂F
=

∂

∂F
Tr

(
F Ψ̃FH

)
+

∂

∂F
Λ (FE − I) = 0

= 2Ψ̃FH + EΛH = 0

EΛH = −2Ψ̃FH

EHΨ̃−1EΛH = −2EHFH = −2

ΛH = −2
(
EHΨ̃−1E

)−1

2Ψ̃FH = 2E
(
EHΨ̃−1E

)−1

F =

(
Ψ̃−1E

(
EHΨ̃−1E

)−1
)H

=
(
EHΨ̃−1E

)−1

EHΨ̃−1.

(1.3.3)

For Cartesian encoding with no surface coil encoding and completely uncorrelated noise,

F is simply the discrete Fourier transform (DFT). In this case, the unitarity of the DFT

implies that F = EH .

1.4 Phase array image reconstruction

It has been well documented that arrays of multiple, localized receive coils can improve

SNR, with the gains greatest at the periphery of the object (4, 37, 38, 39, 40). Commer-

cial MRI scanners have moved to using ever-greater numbers of receive coils placed close

to the tissue being imaged in order to exploit the high sensitivity of the coils to signals orig-

inating in their vicinity. However, when multiple coils are used, it is no longer obvious

that the FFT provides the optimal image quality. Single coil Fourier reconstructions have

the advantage of zero noise correlation between voxels, i.e., all off-diagonal elements in the

noise matrix are zero. When multiple coils are used, their sensitivities overlap such that
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1.4 Phase array image reconstruction

thermal fluctuations in the object at a given location induce noise signals in two or more

coils. The noise covariance matrix between coil channels can be readily computed from

noise samples. As was shown in the previous section, this matrix can then be incorporated

into image reconstruction to weight noisy coils less and to account for correlations between

signals.

Let matrix C hold the nc complex-valued coil sensitivities represented on an N ×

N grid, where N is the desired number of voxels (image resolution) in each dimension.

Further let ŝ hold the FFTs of the Cartesian-sampled k-space data acquired by all k-space

points, i.e., the intermediate images provided by each receive coil. Both of these matrices

are of size and vectorized into a matrix of size N2 × nc. The optimal reconstruction and its

corresponding SNR have been shown to be given by (4)

m̂opt =
√
ŝHΨC

SNRopt = diag
(√

CHΨ−1 C
)

(1.4.1)

where diag extracts the diagonal elements. For coil arrays with modest noise correlations,

Ψ approaches a diagonal matrix and the SNR-optimal reconstruction is approximated by

the sum-of-squares reconstruction m̂opt =
√
ŝHs, which can be evaluated with no knowl-

edge of the coil profiles or their noise covariance1.

If instead of optimal SNR, one instead desires an image with uniform intensity, the

coil profiles can be combined into a single coil with uniform sensitivity using this expres-

sion: (4)

m̂sensitivity =
ŝHΨ−1C

CHΨ−1C
(1.4.2)

1The eigenvalues and eigenvectors of the noise covariance matrix provide linear combinations of coil sen-
sitivities that form orthogonal “virtual” coil modes that have uncorrelated noise. For symmetric, encircling
arrays of coil profiles, these modes resemble the orthogonal modes of a birdcage coil, of which only the uni-
form mode is typically used in practice.
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1.5 Parallel imaging methods

Finally, to obtain an image with a uniform noise level, the above expression 1.4.2 is modi-

fied slightly to keep the noise variance the same in every voxel,

m̂noise =
ŝHΨ−1C√
CHΨ−1C

(1.4.3)

1.4.1 Estimating coil sensitivities

While the sum-of-squares approach described above does not require knowledge of the

coil sensitivities, many reconstructions require accurate coil maps, particularly when recon-

structing from undersampled data. The difficulty with obtaining coil maps is that coil-wise

images include weightings from both the transmit and receive coils, which must be dis-

tinguished from one another. If the same coil elements are used to transmit and receive,

a simple method to obtain the receive profiles is to take the square root of the coil-wise

images. Another method is to divide each coil image by the sum-of-squares image formed

using all available coil data. The approach used in this thesis, due to Walsh (41), provides

estimates of the coil sensitivities as well as a combined image that exploits the signal and

noise statistics of the data, without the need for pre-acquiring the coil profiles or the noise

covariance matrix. Instead, signal (Ψs) and noise (Ψn) correlation matrices are created

using local regions within each coil image’s FOV that are dominated by signal or noise, re-

spectively. The SNR-optimal combined image is then provided using the weights provided

by the eigenvector of the matrix P = Ψ−1
n Ψs that has the largest eigenvalue.

1.5 Parallel imaging methods

Up to this point, discussion has centered on coil datasets that are Nyquist-sampled in k-

space. The question, then, is how to combine multiple, undersampled coil datasets in a

way that exploits coil sensitivity spatial encoding to “fill in” the missing k-space data. A
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1.5 Parallel imaging methods

host of “parallel imaging” methods have been introduced to address this problem. I will

review only a small subset of the most popular parallel methods below. They may broadly

be divided into those that operate in the image domain (SENSE (1)) and those that directly

fill in missing k-space data (SMASH (42), GRAPPA (43), and variations on these). Hybrid

image domain/k-space methods also exist, including SPACE-RIP (44), GSMASH (45),

and others. Methods also exist to address temporal undersampling in time series data (46)

as well as slice-direction undersampling (47), but for the purposes of this thesis I will treat

only time-independent datasets.

1.5.1 SENSE

A simple way to accelerate Cartesian MR scans is to skip the acquisition of R phase encoded

k-space lines for each acquired line, leading to scan acceleration by a factor of R. Regular

undersampling increases the spacing between lines from ∆k to R∆k, in turn reducing the

FOV in the imaging domain from FOV to FOV/R. Object features falling outside this re-

duced FOV “alias” or wrap around into the other end of the FOV, causing voxel overlap

within the object. The most popular image-domain method for unwrapping this aliasing

is known as “Sensitivity Encoding”, or SENSE (1). This approach uses independent coil

sensitivities to disambiguate signals in the reduced FOV, unwrapping them back into their

source voxels in the full FOV. The SENSE unwrapping problem can be expressed using

small aliasing matrices on a voxel-wise basis in the reduced FOV, leading to efficient com-

putation. With coil sensitivities contained in a matrix of size nc × R, the aliased signal

intensities for all coils in the reduced FOV, a, are expressed as

a = Sv (1.5.1)

where v is a R × 1 vector of signal intensities in the source voxels of the full FOV and a is

nc × 1 in the reduced FOV. An unwrapping matrix S† is then used to provide an estimate

of the source voxel intensities in the full FOV,
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1.5 Parallel imaging methods

v̂ = S†a (1.5.2)

The least squares estimate of the unwrapping matrix has been shown (1) to be the

pseudoinverse weighted by the coil noise covariance matrix:

S† =
(
SHΨ−1S

)−1
SHΨ−1 (1.5.3)

where S is the nc × R matrix of coil profiles at each voxel in the full FOV mapping onto a

particular voxel in the reduced FOV. This procedure is repeated at each voxel in the reduced

FOV, producing a composite unaliased image in the full FOV.

SENSE parallel imaging typically removes aliasing artifacts quite well, but brings two

SNR penalties. The condition number of matrix S† depends on the spatial encoding pro-

vided by the magnitude and phase variation of the coil sensitivities at each point in the FOV.

It is possible to compute a spatial map of coil encoding performance by explicitly calculating

the ratio between noise levels in fully-sampled and undersampled SENSE reconstructions.

The noise matrix at each voxel has been shown to be X = 1
nK

(
SHΨ−1S

)−1 where nK is

the number of acquired k-space points. The ratio of noise levels in the ρth voxel is therefore

Xred
ρ,ρ

Xfull
ρ,ρ

=
√
R
√[

(SHΨ−1S)−1]
ρ,ρ

(SHΨ−1S)ρ,ρ (1.5.4)

This expression shows the two sources of SNR loss in SENSE reconstructions. The first

penalty is a reduction of
√
R in SNR simply because only 1/R of the usual k-space points

are being acquired. The second penalty is noise amplification due to the ill-conditioned

matrix pseudoinverse required to compute S†. SENSE noise amplification is described in

the form of a geometry factor map, or g-factor map, over the full FOV:

gρ,ρ =
√[

(SHΨ−1S)−1]
ρ,ρ

(SHΨ−1S)ρ,ρ (1.5.5)
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1.5 Parallel imaging methods

It is straightforward to generalize SENSE to the case of undersampling along multi-

ple phase-encode directions, permitting highly-accelerated 3-D acquisitions provided there

is adequate spatial encoding from the receive coils. Typically, as the number of coil elements

grows, or as the coils become more spatially distinct, the g-factor decreases. Simulations of

SENSE reconstructions and g-factors at various acceleration factors using 8 receive coils1

are shown in 1.1. As expected, the g-factor grows dramatically with the acceleration factor,

overwhelming the image with noise as R approaches the number of coils. The g-factor is

also highest in regions of the reduced FOV with the most overlapping voxels.

The most common way to improve SENSE parallel imaging performance is to move

to ever-greater numbers of receive coils (48). However, this approach requires the use of

additional coil elements and associated pre-amplifiers, adding considerable cost and com-

plexity. An alternative way to control noise amplification is to use Tikhonov regularization

(49). In this approach, the SVD of the unfolding matrix is obtained and singular values

below a certain threshold are truncated, limiting the propagation of noise components that

are co-linear with the corresponding high-frequency singular vectors. This causes a trade-

off between noise levels and artifact levels in the resulting image.

The poor performance of SENSE at high acceleration factors has motivated the search

for alternative ways to accelerate MRI scans, including the nonlinear SEM methods de-

scribed in the next two chapters.

1.5.2 SMASH

An alternative to unwrapping aliasing in the image domain is to directly fill in the skipped

lines of k-space. This was first achieved using a method called “SiMultaneous Acquisition

1The coil profiles belong to an 8-channel commercial knee array (In vivo Corp., Ganesville, Florida) with
elements distributed circumferentially around the sample.
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gmean = 1.1 gmean = 2.5 gmean = 53.5 

R = 1 R = 2 R = 4 R = 8 

Figure 1.1: Simulations of SENSE reconstructions based on 8 RF receive coil profiles and
a numerical phantom with lesion-like features. The top row shows the aliasing that occurs
when undersampled k-space data are directly reconstructed via the FFT. The middle row shows
SENSE multi-coil reconstructions at each acceleration factors. SENSE removes the aliasing
but introduces spatially-varying noise amplification, as described by the g-factor maps (bottom
row). In regions with high degrees of aliasing (multiple overlapping voxels in the reduced
FOV), the g-factor grows quickly with acceleration factor, degrading image quality.
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1.5 Parallel imaging methods

of Spatial Harmonics”, SMASH (42), that uses the frequency shift property of the Fourier

transform. In this approach, spatial harmonics along the undersampled dimension are ap-

proximated in the image domain using linear combinations of the available coil profiles to

form a composite coil,

Ccomp (x, y) =
∑
j

wjCj (x, y) = exp (iM∆kyy) (1.5.6)

where ∆ky = 2π/FOV and M is an integer corresponding to the undersampling factor

in k-space. Missing k-space lines spaced M phase encode steps away from the preceding

acquired line are then filled in by combining all nc coil k-space datasets using the weights

wj used to build the associated complex spatial harmonic.

S (kx, ky) =

∫ ∫
Ccomp (x, y)m (x, y) exp (−ikxx− ikyy) dxdy

=

∫ ∫
m (x, y) exp (−ikxx− i (ky −m∆ky) y)

= m̂ (kx, ky −m∆ky)

(1.5.7)

To form composite k-space data at the R=1 lines that have already been acquired,

weights can be calculated such that the composite coil profile approximates a flat sensitiv-

ity. For the R=2 lines adjacent to each acquired line, the coil profiles must approximate

exp(i2πy/FOV ), corresponding to one cycle of a cosine and quadrature sine function over

the FOV. For R=3 lines, the coil profiles must be able to approximate sinusoids that com-

plete two cycles within the FOV. As the acceleration factor increases, more and more local-

ized coil sensitivities are required to form the high frequency variation of the harmonics.
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1.5 Parallel imaging methods

1.5.3 GRAPPA

In its original formulation, SMASH requires explicit knowledge of the coil sensitivities in

order to approximate spatial harmonics. A method called AUTO-SMASH circumvents this

by including a few autocalibration (ACS) lines in the acquisition that would otherwise be

skipped (45, 50, 51). The weights needed to fill in missing lines elsewhere in k-space can

then be determined by calculating the weights necessary to create an ACS lines using the

nearest acquired lines from all coil datasets. In this way, only R-1 additional lines need

to be acquired with the undersampled k-space data instead of a whole additional reference

scan of the coil profiles.

A refinement of this approach known as “Generalized autocalibrating partially par-

allel acquisitions”, or GRAPPA (43), has found widespread use in the MR community. In

GRAPPA, the SMASH algorithm is generalized to include the use of convolution kernels in

k-space that use multiple acquired lines to fill in each missing line. Also, weights are found

for fitting each coil’s ACS lines using acquired lines from all nc coil datasets, permitting

reconstruction of coil-weighted images, which can then be combined by sum-of-squares or

another approach. GRAPPA is computationally efficient. While a clean analytical expres-

sion for the g-factor does not exist for GRAPPA, as it does for SENSE, significant progress

has recently been made toward estimating GRAPPA voxel-wise noise amplification (52).

1.5.4 Non-Cartesian parallel imaging

Substantial effort has been invested in recent years to achieve reliable parallel reconstruction

of undersample non-Cartesian trajectories. While a complete review of this work is beyond

the scope of this thesis, it is worth noting a few algorithms that are relevant in the present

context. SENSE has been extended (34) to treat non-Cartesian encoding matrices by using

the FFT and k-space re-gridding to achieve a fast implementation of the conjugate gradients

algorithm (53) that does not require explicit calculation of the full encoding matrix. The
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1.6 Ultimate SNR

GRAPPA kernel has also been generalized to fill in k-space points that do lie on a Cartesian

grid (54). Undersampled radial are a particularly relevant comparison for the Kaczmarz re-

constructions of O-Space (and radial) datasets to be shown in future chapters of this thesis.

In one method (35), undersampled radial streaking artifacts are suppressed by combining

fast conjugate gradients algorithm in (34) with an L1-norm penalty to minimize noise and

artifacts while preserving object edges.

1.5.5 Parallel transmission

It should be noted that the same principles used in parallel reception can also be used to re-

duce the length of RF pulses used to achieve a given in-slice excitation profile (55, 56, 57).

When accompanied by time-varying SEMs, RF pulses traverse the excitation k-space of the

desired object profile. When the RF pulse duration is reduced - for instance, to reduce heat

deposition in the subject - the resulting excitation profile will experience aliasing. Using

appropriately-tailored RF pulse shapes and SEM waveforms, a parallel transmit array of

coil elements can supply this missing spatial information and permit reduced RF pulse du-

rations without creating aliased excitation profiles.

Parallel transmission is useful not only for exciting spins in a desired region of inter-

est (ROI), but also for creating a more even excitation at ultra-high field strengths. When

the RF wavelength is comparable in size to the anatomy being imaged, dielectric resonances

can perturb the B1 field and produce an uneven flip angle.

1.6 Ultimate SNR

Regardless of the reconstruction approach used, the performance of parallel imaging is ul-

timately bounded by the spatial information available in the receive coils. For undersam-

pled Cartesian datasets, the ultimate SNR has been derived as a function of the B0 field
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1.7 Coil eigenmodes and SNR

strength and the acceleration factor, assuming that an arbitrarily large number of physically-

realizable coil eigenmodes are available for performing signal detection (58). In this analy-

sis, Wiesinger chooses vector spherical harmonics are taken to form the coil eigenbasis, since

they satisfy Maxwell’s equations and provide mutually independent information about the

object, forming a basis set. But even supposing that an infinite number of such coils were

available, an upper bound exists on parallel imaging performance (and a lower bound on

the achievable g-factor).

1.7 Coil eigenmodes and SNR

In addition to the bounds on parallel imaging performance, there are diminishing returns

to image SNR from using ever-greater numbers of local receive coils. Eigenmode analysis

shows that as surface coils in an array become smaller and more numerous, gains in SNR

are relegated to ever-thinner bands near the periphery of the FOV, close to the coils (39).

Higher-order eigenmodes do not contribute signal at the center of the FOV, where all of

the signal comes from the uniform “birdcage” mode. In theory, then, large arrays can never

perform better at the center of the FOV than a single-channel volume resonator like the

birdcage coil.
This calculated result agrees with experimental measurements of SNR in large arrays,

which show experimental comparisons of transverse (X−Y plane1) images acquired using

12, 32, and 96-channel loop coil head arrays (48). While moving from 12 to 32 channels

produces a roughly 4-fold improvement in SNR at the edge of the brain, moving from 32 to

96 elements provides less than a 2-fold improvement. Furthermore, while the 32 elements

outperform the 12 elements by a substantial margin at points halfway between the center

and edge of the brain, the 96-channel array only offers significant improvements over the

32-channel version at the very outermost 1/6 of the brain’s diameter.
1This thesis adopts the MRI community’s most common definition of the Z-axis as emerging from the

front of the magnet bore. The X-axis is defined to be parallel to the floor, pointing to the right as you face
the front of the scanner bore. The Y -axis points to the ceiling.
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2

Imaging with nonlinear encoding fields

The great strength of parallel reception is that multiple signals are acquired at the same

time, potentially permitting dramatic reductions in imaging time. However, as ever-greater

numbers of receive coils are used, several limitations emerge:

• Coil array cost and complexity grows;

• Inter-element coupling becomes harder to compensate or suppress;

• G-factor reductions with increasing array size are ultimately constrained to a lower

bound imposed by the B0 field strength and by Maxwell’s equations;

• SNR gains are increasingly confined to the periphery as the number of elements

grows.

These bounds on performance motivate a reappraisal of parallel imaging from its funda-

mentals on up. What if the question of how to optimize performance is turned on its head?

Namely, instead of trying to design coil arrays so as to optimize parallel imaging with linear

SEMs, why not take a typical coil array as a point of departure, and instead try to choose

optimal SEM fields from a nonlinear basis set? This question invites us to revisit the fun-

damentals of spatial encoding in MRI and to envision hybrid encoding functions that most

efficiently pairs coil encoding and SEMs.
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2.1 Improved RF coil-SEM complementarity in parallel imaging

2.1 Improved RF coil-SEM complementarity in parallel imag-

ing

For axial, single-slice imaging, the most common parallel imaging approach is to undersam-

ple the phase encode direction, shown in Fig. 2.1. To optimally recover this lost encoding

using an RF array, one would need to lay out the coils along the undersampled direction.

While such geometries could be practical for a small subset of clinical applications, such

as spine imaging, they do not lend themselves to typical MRI scans of the body or head.

For head imaging in particular, the most efficient way to place receiver loop coils is in a

“soccer-ball geometry” (40), providing an encircling ring of coils in any particular slice.

For this geometry, most of the spatial localization provided by the coils is in the azimuthal

direction. If Cartesian imaging is performed a the phase encode direction is undersampled,

only those coils oriented along this particular direction can supplant the missing phase en-

codes with localized coil encoding. By contrast, if projection imaging is performed with a

radially-varying SEM, each encircling coil would be well positioned to disambiguate signals

in the azimuthal direction while the radial SEM provided dense encoding along the radial

direction.

2.1.1 Match encoding fields to the available SNR of RF receive coils

Conventional imaging with Cartesian SEMs provides the same resolution everywhere in

the FOV. For a Cartesian grid, every voxel has the same two-dimensional sinc point spread

function1. Given that surface coils in multi-channel arrays are always the most sensitive

at the periphery (39, 40, 60), it stands to reason that finer features could be resolved in

this region using reconstructions that have spatially-varying resolution. Nonlinear SEM

shapes are a natural way to provide spatially-varying resolution. The final image may be

1When multiple RF coils are used, the exact sinc function may vary slightly over the FOV due to the
spatially-varying impact of the coil profiles, but the PSF shape is still dominated by the SEM encoding
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Encircling	  RF	  coil	  
array	  

Radial	  SEM	  Linear	  SEM	  and	  
complementary	  
linear	  RF	  array	  

y 
Complementary 

Figure 2.1: At left, a linear phase encoding SEM is shown along y, the direction in which
k-space is often undersampled for parallel imaging. The color gradient represents the linear
variation in the amplitude of the SEM (and corresponding spin frequency). When RF coils are
arranged so as to provide optimal spatial encoding for unwrapping aliasing in the undersam-
pled acquisition, the result is a linear array along y, which is not a practical geometry for most
applications. RF coils are mor often arranged in an encircling array (shown at center), with
their localized sensitivity isocontours drawn in black. Such an array disambiguates signals in
the azimuthal direction, suggesting the use of a radially-symmetric SEM such as that shown at
right. In this way, the chosen shape of the SEM complements the layout of the RF coils. Figure
adapted from (59).

reconstructed onto a grid of identically-sized voxels, but the true resolution - the ability to

resolve small adjacent object features - will be higher at the periphery, leading to a “sharper”

image in this region and a “blurrier” image in the center of the FOV. Unfortunately, the

resolution in the center depends almost entirely on the linear SEMs, so it is not clear how to

improve resolution in this region without taking more Cartesian data. But if extra encoding

can be provided at the periphery without compromising resolution at the center, and if

parallel imaging performance benefits from improved complementarity between SEMs and

RF coils, then nonlinear SEMs may be superior to linear SEMs for many applications.

2.2 PatLoc

Arguably the earliest framework for nonlinear spatial encoding was known as “PArallel

imaging Technique with LOCalized gradients”, or PatLoc. The first proposed PatLoc en-

coding scheme used non-bijective, curvilinear SEMs in an otherwise conventional Cartesian

pulse sequence. In this version of PatLoc, one SEM is played as the readout and the other

26



2.2 PatLoc

field is played as the phase encode. The method potentially enjoys the advantages of (a)

faster gradient switching without peripheral nerve stimulation, (b) improved spatial en-

coding in peripheral high-SNR region, and (c) excellent parallel imaging performance for

circular RF coil arrays (10, 61). If two orthogonal multipolar SEMs are used for image

encoding, then spatial encoding can be described using the real and imaginary parts of the

conformal mapping, f : C → C,

f(z) = zL = (x+ iy)L = u(x, y) + iv(x, y) (2.2.1)

Because this mapping preserves the local angle between the isocontours of the inputs

x and y, the vector gradients of fields u and v are everywhere orthogonal (∇u · ∇v = 0),

permitting use of the two fields as frequency and phase-encoding SEMs. This is equivalent

to stating that u and v satisfy LaPlace’s equation

∇2B(x, y) = 0 = ∇2 (u (x, y) + iv (x, y)) (2.2.2)

where B(x, y) is the magnetic encoding field formed by a superposition of u and v. Since

all polynomial functions of the complex variable z = x+iy are analytic and satisfy Laplace’s

equation, the shapes u and v are physically realizable for all values of L(62).

The resulting spherical harmonic fields of order L vary in polarity with angular posi-

tion and grow as rn, where r is the distance from the center. In the most general case, SEMs

of any order can be used to perform PatLoc imaging. For purposes of illustration, I will

describe the second-order case here in more detail, as discussed in (61). For L=2, the non-

bijective fields u and v assume the hyperbolic forms u(x, y) = x2 − y2 and v(x, y) = 2xy,

respectively, as shown in Fig. 2.2.

In this second-order instance of PatLoc imaging, the two curvilinear SEMs are used
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in place of the usual readout and phase encoding fields in a Cartesian pulse sequence1. For

each coil, N/(RpeL) k-space lines are acquired, where Rpe is the k-space undersampling

factor, for a net acceleration factor of R = RpeL as compared with a fully sampled conven-

tional acquisition.

€ 

u = x 2 − y 2

€ 

∇u ⋅ ∇v = 0

€ 

v = 2xy

Figure 2.2: Hyperbolic PatLoc fields generated
by the L=2 conformal mapping described in Eq.
(2.2.1). Note that the local gradient of the two
fields is everywhere orthogonal.

The reduced B-field excursion over

the bore of the scanner may permit faster

SEM switching times for the same dB/dt

as compared with linear SEMs, poten-

tially allowing for faster imaging with-

out violating safety limits for peripheral

nerve stimulation2. Additionally, PatLoc

fields are a natural complement to an en-

circling array of local receiver coil pro-

files. Such coils are well positioned to dis-

ambiguate aliased signals arising from different voxels that are mapped onto the same point

in the non-bijective data domain. Also, the coils naturally provide higher SNR at the periph-

ery, where PatLoc resolution is the greatest. However, the relatively flat frequency isocon-

tours at the center of the FOV cause pronounced blurring and Gibbs ringing in this region.

This principal limitation of the PatLoc encoding strategy described here can be overcome

by combining curvilinear SEMs with linear SEMs in order to resolve features at the center

of the FOV. This is the general approach used in schemes such as O-Space imaging, to be

introduced shortly, and in emerging methods such as 4D-RIO (15).

1Imaging with two multipolar SEMs and a Cartesian trajectory is just one particular instance of PatLoc
imaging, and wide flexibility exists to alter the encoding scheme. For instance, a version of PatLoc has recently
been proposed in which two multipolar fields traverse a radial k-space trajectory (63).

2This argument assumes that linear SEMs, when aligned along the human body, have the ability to create
larger potential differences and induce stronger currents than comparable second-order fields, which would
have a parabolic field shape over the same limb or segment of torso. In this way, while the local dB/dt may
be just as high as for the linear SEMs, the nonlinear SEMs will induce smaller currents due to time-varying
potential differences over extended regions.
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2.2.1 Cartesian-trajectory PatLoc image-space reconstruction

As described in (61), when Cartesian trajectories are traversed by a pair of orthogonal

multipolar PatLoc SEMs, reconstruction is readily achieved in the image domain using a

generalization of SENSE (1). First, the k-space data in each RF coil channel are Fourier

transformed to yield nc distorted and possibly aliased images in the encoding space defined

by curvilinear coordinates. For full-sampled data the images in encoding space are of size

N/L × N , where the desired size of the final image is N × N . Because a given frequency

occurs L times in of the pair of the multipolar SEMs, a non-bijective mapping occurs from

image space to encoding space, causing L-fold voxel overlap in the curvilinear encoding

space. During reconstruction, these L source points must be “unwrapped” using RF coils,

each of which is preferentially sensitive to one of the L source voxel signals. This results in

L separate images in encoding space. The unwrapping problem is analogous to the SENSE

unwrapping described in the previous chapter and may be solved by simple matrix inver-

sion, as for the case of SENSE reconstruction (61). Care must be taken to map the coil

profiles from the Cartesian image domain representation into the encoding domain, inter-

polating when necessary.

At this point, the L intermediate images must be intensity corrected. The conformal

mapping used to generate PatLoc fields, f(z) = zL, maps C into C and has a well-defined

Jacobian determinant. For the particular case of L=2, the determinant is

J = det

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 = 4x2 + 4y2 (2.2.3)

The Jacobian determinant describes the amount by which the mapping f(z) shrinks or di-

lates areas at each point in the FOV. This provides a simple and approximate way to describe

the spatially-varying resolution of a PatLoc image1. The inverse of the Jacobian determinant

1Note that for the identity mapping, L=1, the Jacobian determinant is simply 1, demonstrating that
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2.3 O-Space imaging

provides a simple way to correct for the intensity of unwrapped PatLoc images to prevent

the voxels that are large in the PatLoc domain from appearing bright in the Cartesian do-

main.

The final step in reconstruction is to perform the inverse of the coordinate mapping

f(z) = zL, thereby unwarping the distorted image. This function may be inverted ana-

lytically or, equivalently, the inverse mapping may be performed mathematically. Careful

interpolation must again be performed to obtain image values on the desired Cartesian grid.

PatLoc acquisitions can be accelerated by simply skipping phase encode lines, just as

in conventional parallel imaging. This causes the intermediate images in encoding space to

be aliased. Unwrapping of the aliased signals can be performed on each of these L images

just as in the case of SENSE. Simulations of undersampled L=2 PatLoc imaging are shown

below in Fig. 2.12. The Jacobian determinant vanishes at the origin, giving rise to images

with very sharp resolution at the periphery and minimal ability to resolve features at the

center of the FOV.

2.3 O-Space imaging

In O-Space imaging (14), the explicit goal from the outset is to optimize parallel imag-

ing performance by using combinations of multiple SEMs to form field shapes tailored to

the spatial information contained in the available coil profiles. In principle, different SEM

shapes can be chosen for each successive echo to obtain suitable projections of the object.

In the most general case, an array of surface coil profiles is selected and its spatial encoding

properties are assessed. An encoding scheme is then designed so as to optimally comple-

ment the spatial information provided by the array. For purposes of this thesis, only the

axial plane is considered. In this plane the RF coils typically encircle the object being im-

Cartesian encoding has the same resolution at every voxel
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2.3 O-Space imaging

aged. The coil profiles vary smoothly throughout the FOV, with the area of peak sensitivity

localized to the angular region subtended by each coil. A circumferential array therefore

provides more encoding in the angular direction than in the radial direction, a fact that has

not been exploited by past encoding schemes based on linear SEMs alone. By using both

linear and higher-order SEMs, O-Space imaging attempts to benefit from this properties

of nonlinear SEMs while preserving resolution at the center of the FOV.

Radially-varying fields are a natural choice for providing encoding that complements

an encircling array of RF coils. However, many of the shapes that come to mind, such

as f(r) = |r|, have discontinuous spatial derivatives and do not satisfy Laplace’s equa-

tion, which governs all magnetostatic fields. One promising set of functions that do satisfy

Laplace’s equation are the spherical harmonics. The quadrupolar fields described in sec-

tion 2.2 for one instance of Cartesian-trajectory PatLoc imaging are second-order spherical

harmonics. Combinations of spherical harmonics are also widely employed in MRI and

MRS as a basis set for “shimming” out inhomogeneities in the B0 field. These harmonics,

listed up to fourth order in Table 2.1, form a rich palette for designing nonlinear encoding

schemes. Each Cartesian harmonic is formed using a linear combination of the conven-

tional spherical harmonics, expressed in spherical coordinates (r, ϕ, θ), with a spherical-to-

Cartesian change of coordinates.

For proof of concept in this study, the encoding problem was restricted to axial plane

imaging only. The first 9 spherical harmonics that are non-degenerate in the axial plane are

shown in Fig. 2.3. The subset of fields chosen for O-Space imaging are presented in the

first row. The combination of X, Y , and Z2 SEMs provides a natural point of departure

for an exploration of combined first and second-order projection imaging. This choice of

SEMs is motivated by two factors: (1) the ability of the Z2 SEM to provide excellent spa-

tial encoding along the radial direction, where circumferential coil arrays provide the least

encoding; and (2) the ready availability of coil designs for producing the Z2 spherical har-
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2.3 O-Space imaging

Shim name f(x, y) Shim name f(x, y)
X x XY Z xyz
Y y X3 or C3 x (x2 − 3y2)
Z z Y 3 or S3 y (3x2 − y2)

Z2 z2 1
2
(x2 + y2) Z4 z4 − 3z2 (x2 + y2) + 3

8
(x2 + y2)

2

XZ xz XZ3 xz3 − 3
4
zx (x2 + y2)

Y Z yz Y Z3 yz3 − 3
4
zy (x2 + y2)

X2 − Y 2 or C2 x2 − y2 Z2C2 z2 (x2 − y2) + 1
6
(x2 − y2) (x2 + y2)

2

XY or S2 xy Z2S2 xyz2 − 1
3
xy (x2 + y2)

Z3 z2 − 3
2
z (x2 + y2) ZC3 z (x3 − 3xy2)

XZ2 x (4z2 − (x2 + y2)) ZS3 z (3yx2 − y3)
Y Z2 y (4z2 − (x2 + y2)) C4 x4 + 6x2y2 + y4

Z(X2 − Y 2) z (x2 − y2) S4 4 (yx3 − xy3)

Table 2.1: The spherical harmonics up to fourth order, as expressed in Cartesian coordinates.
Reproduced from (64)

monic (60, 65). Additionally, the quadratic field varies more steeply near the periphery,

where surface RF coil sensitivity is typically the highest (40),(39).

X Y Z2 

X2-Y2 XY XZ2 

YZ2 X3 Y3 

Figure 2.3: Candidate spherical harmonics for nonlinear encoding.

The principal drawback of this combination of fields, it should be noted, is that while

they are orthogonal over three-dimensions, they are not orthogonal over the entire two-

dimensional axial plane (∇Ba · ∇Bb ̸= 0). The central hypothesis of this thesis is that the

loss in encoding efficiency is offset by the fact that O-Space imaging preserves the high pe-
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2.3 O-Space imaging

ripheral resolution and coil-field complementarity of PatLoc imaging while also providing

resolution at the center of the FOV using the linear SEMs. While O-Space can in principle

never do better than conventional encoding methods like spiral, radial, or Cartesian trajec-

tories at the center of the FOV1, it may substantially outperform them elsewhere in the FOV.

O-Space imaging uses the quadratic axial field of the Z2 harmonic in combination

with linear SEMs to provide spatial encoding throughout the FOV. The difference be-

tween O-Space and conventional imaging is illustrated in Fig. 2.4 for a simplified one-

dimensional case along the x-axis. The figure depicts two RF receive coils placed on op-

posite sides of the object to be imaged. Imaging with a linear X SEM is depicted in the

top diagram. Because the image resolution varies with the slope of the SEM, and the X

SEM has constant slope, this field provides the same resolution at every position along the

x-axis. By contrast, the quadratic SEM shown in the middle diagram has a linear slope that

is large at the periphery near the surface coils and passes through zero at x=0. This provides

excellent resolution at the periphery but no spatial encoding at the center.

To remedy this problem, the X SEM is switched on during the second readout, caus-

ing the quadratic shape to shift from x=0 to x=−x0. The position of x0 depends on the

strength of the linear SEM played. Note the regions shown in yellow near Coil 2 in which

the quadratic SEM slope exceeds that of the linear SEM, providing superior resolution.

When the quadratic field is shifted, the yellow region grows considerably, greatly improv-

ing the resolution near Coil 2. In this way, the linear and quadratic SEMs can be combined

in successive readouts to provide the desired resolution throughout the FOV.

Generalizing to 2-D acquisitions, conventional phase encoding is discarded and re-

placed by projection acquisitions with the center of the Z2 function shifted off center using

the X and Y SEMs, as shown in Fig. 2.5. With each acquired echo, the object is pro-

1Because nonlinear SEMs provide no spatial encoding at the center point of the FOV, there is no way to
acquire more spatial information at this location with linear and nonlinear SEMs than that which could be
obtained from linear SEMs alone.
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Figure 2.4: One-dimensional illustration of O-Space encoding. Encoding with a linear SEM
(top diagram) has constant slope, providing equal resolution at all points in the FOV. By con-
trast, a quadratic SEM (middle) has linear slope, providing dense encoding at the periphery
and no encoding at the center. To recover resolution at the center, the linear and quadratic
SEMs are played simultaneously during a successive signal readout (bottom). The regions in
yellow show improvements in resolution provided by the quadratic field near Coil 2. See text
for further discussion.
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2.3 O-Space imaging

jected onto a set of frequency isocontour rings that are concentric about a different center

placement (CP) in the FOV, suggesting the term “O-space imaging”. By shifting the Z2

quadratic shape off center, it is ensured that there are enough overlapping isocontours from

different projections at the center of the FOV to resolve features in this region. At the same

time, the curvilinear isocontours of the quadratic field hold the potential to better comple-

ment an encircling array of RF coils, particularly when the shift away from isocenter is small.

The O-Space pulse sequence 2.5 is essentially a conventional radial sequence to which a Z2

SEM pulse has been added.

€ 

−
GQ

2
x 2 + y 2( )

Multiple center placements take 
the place of phase encodes 

+ + 
€ 

−
GZ 2

2
x − x0( )2 + y − y0( )2[ ]

+ B0 offset = 

Projection  

Echo  

FFT  

r2 

€ 

−
GQ

2
x0
2 + y0

2( )

Z2	  

Field of view 

€ 

Gx =GZ 2x0

€ 

Gy =GZ 2y0 Z2 

Figure 2.5: In O-Space imaging, a quadratic SEM is translated to different center placements
(CPs) between successive readouts using different combinations of linear SEMs. The FFT of
the readout corresponds to projections of the object along (complex-valued) ring isocontours.
The CPs shown here reduce to a radial k-space trajectory in the absence of the Z2 field.

The Fourier transform of an echo obtained in the presence of a radially symmetric

SEM yields a projection of the object onto a set of concentric rings. With radial localization

provided by the SEMs, the surface coils are ideally positioned to provide spatial localization

in the angular direction. Furthermore, as will be shown in section 2.5.4, since the readout
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2.3 O-Space imaging

SEM provides spatial encoding in two dimensions, rather than just one as in Cartesian

trajectories, additional encoding is provided by increasing the SEM strength and sampling

the echo more densely, with essentially no impact on the imaging time. In Cartesian parallel

imaging, densely sampling the echo increases resolution in the readout direction but does

not reduce the amount of aliasing in the phase-encode direction.

2.3.1 Spatially-varying resolution that can be tailored to the ROI

Figure 2.6: The O-Space imaging sequence (left)
consists of a radial trajectory modified by the ad-
dition of the Z2 SEM. For the encoding scheme
shown in Fig. 2.5, the linear SEMs are varied
while the same Z2 amplitude is repeated during
each readout. The angle of the linear k-space
spokes, θ, varies between 0 and 2π. The ampli-
tude of the Z2 is chosen to position the ring of
center placements at rcp in the FOV according to
the relation GZ2 = Gxmax/rcp = Gymax/rcp.
The linear SEMs shift the encoding field to a point
along the chosen ring of center placements based
on the amplitude of the Z2 field, GZ2 . In the ab-
sence of the Z2 SEM the pulse sequence reverts
back to a conventional radial sequence.

When nonlinear SEMs are played during

an MRI readout, spins in each voxel are

advanced along a different k-space trajec-

tory. This fact has motivated the use of

“local k-space” plots to compare the k-

space paths traversed by voxels in differ-

ent parts of the FOV (15, 66). Spins in

each voxel are “driven” through k-space

based on the local “gradient” that they ex-

perience in the magnetic field,

ϕ(x, t) = γ

∫ t

0

x ·G(t′)dt′. (2.3.1)

It is useful to Taylor expand the spatial

component of the phase function around

a given point x0 as follows (15):

ϕ(x) ≈ ϕ(x0) +∇ϕ(x0) (x− x0) + . . . (2.3.2)
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2.3 O-Space imaging

Figure 2.7: Local k-space trajectories for a representative 5 × 5 grid of voxels from different
sections of the FOV. The trajectories correspond to the O-Space readouts for the center place-
ments shown in Fig. 2.5. At left is a conventional radial k-space trajectory corresponding to the
center of the FOV, where the Z2 SEM has zero amplitude, imparting no kshift. Elsewhere in
the FOV, the Z2 applies a kshift vector, altering the shape of k-space (and the resulting reso-
lution) on a voxel-wise basis. The k-space plots do not include the effects of RF coil encoding.

The zeroth-order term describes the conventional k-space trajectory traversed by the linear

SEMs. The first-order term in the expansion approximates the spatially-varying k-space

shift vector applied by the nonlinear SEM,

kshift(x0, t) ≈ ∇ϕ(x0, t) (2.3.3)

The local k-space trajectory is the sum of the zeroth-order term and the spatially-varying

first-order term. For the CP scheme shown in Fig. 2.5, the local k-space trajectory tra-

versed by representative subset of voxels is shown in Fig. 2.7. Local k-space plots clearly

show that different spatial encoding occurs at the center and at the periphery in O-Space

imaging. Note that for the voxel at the center of the FOV, local k-space reduces to a conven-

tional radial trajectory with 256 spokes, showing that only linear SEMs provide significant

encoding in this region. For voxels near the periphery, the quadratic SEM extends k-space

coverage, causing the trajectory assumes a “barbell” shape. It should be noted, though, that

some regions are not covered by the barbell k-space trajectories.

Local k-space could conceivably be used as a guide in crafting new trajectories from
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2.3 O-Space imaging

a given set of SEMs. But at least two issues must first be resolved. First, where the ef-

fects of the O-Space nonlinear SEM are strongest, it is not obvious what information can

be gleaned from the trajectories by themselves. In the barbell local k-space plots, some

parts of k-space are sampled out to higher spatial frequencies, suggesting higher resolution

has been achieved, while other areas of k-space are skipped altogether. Perhaps this allows

higher resolution at the periphery owing to the conjugate symmetry of k-space quadrants

for real-valued objects?

A second limitation of the approach as presented is its inability to model the effects

of RF coils on spatial encoding. When linear SEMs are used, it is straightforward to calcu-

late the effect of a coil profile on a given k-space data set. One simply convolves the k-space

data with the Fourier transform of the coil sensitivity. However, when considering the local

k-space trajectory for a single voxel, which is represented by one voxel in a coil sensitivity

map, it is not clear how to use this coil information (or its spatial derivative) to calculate

local k-space trajectories on a coil-by-coil basis.

When trajectories are designed with coil complementarity and parallel imaging in

mind, the differences between each coil’s k-space data are important to consider. The con-

cept of O-Space imaging arises from image-domain consideration of coil and SEM encoding

in polar coordinates, but additional insights could be gleaned from comparisons of local k-

space trajectories if they could be made to reflect coil sensitivity information. This remains

an open question of research.

2.3.2 O-Space image reconstruction

The Z2 SEM is translated to the desired CP in the FOV using linear SEMs and a amplitude

of static field offset to complete the square (Fig. 2.5). After slice selection, the X, Y , and

Z2 SEMs are used to dephase and rephase the spins, as in conventional projection imaging.
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2.3 O-Space imaging

The signal equation for the lth acquired echo is

sl,q(t) =

∫
m(x)Cq(x)e

i2πγGZ2
1
2
((x−xl)

2+(y−yl)
2)tdx (2.3.4)

where γ = γ
2π

, m(x, y) is the object magnetization (including the effects of T1, T2, and

other contrast mechanism), Cq(x, y) is the qth receive coil sensitivity, (xl, yl) specifies the

lth CP, and γGZ2 is the strength of the Z2 spherical harmonic in Hz/cm2. SEM strengths

GX and GY are chosen such thatGX = GZ2xl and GY = GZ2yl in Hz/cm. Echoes formed

using different CPs during successive TRs comprise a dataset from which the image is re-

constructed. The number of CPs used to form an image is equivalent in terms of acquisition

time to the number of phase encodes used in a conventional Cartesian sampled acquisition.

In the discrete case, the integral kernel is represented as a projection matrix Et,l,q where the

rows describe time point t, CP l, and coil q, while the columns correspond to voxels in the

object. The object is vectorized and the echoes and encoding functions from multiple CPs

and coils are stacked to produce a single matrix equation:

s = Em (2.3.5)

2.3.2.1 Approximate reconstruction based on ring isocontours

If radius rl is defined relative to each CP, the integral may be recast in polar coordinates:

sl,q(t) =

∫ ∫
m(rl, ϕ)Cq(rl, ϕ) exp

(
−i2πγGZ2

1

2
r2l t

)
rldrldϕ (2.3.6)

With the choice of ul =
1
2
r2l , the radial integral in 2.3.6 becomes a Fourier transform:

sl,q(t) =

∫ ∫
m(ul, ϕ)Cq(rl, ϕ) exp (−i2πγGZ2ult) duldϕ (2.3.7)
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The inverse Fourier transform of each echo now yields Pl,q(u), the projection of the object

along the isocontours encircling the lth CP. The projection specifies the amount of energy

in the coil profile-weighted object that is smeared around ringlike regions that decrease in

width with increasing rl (as in Fig. 2.5).

Because the encoding function is not in the form of a Fourier integral kernel, the

data do not reside in k-space. Consequently, image reconstruction cannot be achieved us-

ing k-space density compensation and re-gridding approaches similar to those employed

in non-Cartesian imaging with linear SEMs. Due to this fact, image reconstruction is per-

formed by directly solving the matrix equation s = Em using one of two methods to be

discussed below: a spatial domain algorithm based on the projections and a frequency do-

main algorithm based on the echoes.

When projections are obtained using the discrete Fourier transform, each point in the

projection Pl,q[u] corresponds to the sum of the object intensity at all voxels lying within

a band that can be approximated as the uth isofrequency ring. If Ns samples are acquired

during readout, then there exist Ns isofrequency rings. The radius of the outermost ring is

specified by

rmax =
√
BW/GZ2 (2.3.8)

where BW is the readout sampling bandwidth. The sum over all voxels lying within a

given ring is weighted by qth receive coil profile at each point within the ring,

Pl,q[u] =
∑

x,y∈ring u

Cq[x, y]m[x, y]. (2.3.9)

When the object and coil profiles are represented in vector form, the set of all ring-domain

equations may be vertically concatenated to form a single matrix equation accounting for
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2.4 Center placement optimization

all Ns rings, L CPs, and nc coils in the element-wise product of C and W :

P [u] = [C ◦W ]m = Em (2.3.10)

where C contains the coil profiles and W is a sparse matrix whose uth row weights each

voxel according to its contribution to the uth ring of a given CP. The simplest version of W

contains ones for each voxel lying within the uth ring and zeroes elsewhere. For an N ×N

reconstruction, the encoding matrix E is of size [Ns × L× nc, N ×N ]. Direct inversion

of this matrix is challenging for practical imaging applications, but the sparsity of the ma-

trix can be exploited by a conjugate gradient-type algorithm known as LSQR (67) that is

available as a function call in MatLab (MathWorks, Natick, MA). LSQR was selected for

its ability to quickly solve sparse, non-square, complex-valued matrix equations.

2.4 Center placement optimization

For simplicity, it was decided that the Z2 SEM would play at the same amplitude dur-

ing each O-Space readout. The question remained, then, how to set the X and Y SEM

amplitudes at successive readouts; in other words, a sequence of center placements was

sought. In the LSQR simulations, 128×128 reconstructions from 128-point echoes were

used to determine a highly efficient CP scheme within the FOV for datasets composed of 32

and 16 echoes (59). By analogy to Cartesian parallel imaging, this corresponds to 4-fold

and 8-fold undersampling, respectively. A variety of coil geometries were also considered,

ranging from 8 to 32 circumferentially distributed loop coils, for which B-fields can be ap-

proximated in the magnetostatic limit using the exact analytical field expression for circular

loops (68). For simplicity and computational efficiency, a ring approximation to the true

PSF was used in which each voxel lying between two frequency isocontours was blurred
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2.5 Reconstruction using the full encoding matrix

Figure 2.8: Some of the center place-
ment schemes simulated for parallel
imaging performance using the LSQR
algorithm. The CP scheme circled in red
was found to provide low mean squared
error for a variety of coil array sizes and
undersampling factors. This scheme
corresponds to two interleaved sets of
undersampled radial k-space trajecto-
ries traversed by the X and Y SEMs.
Figure reprinted from (59).

evenly over all voxels enclosed between the two contours.

The CP scheme yielding the minimum mean squared error reconstruction in LSQR

simulations is shown in Fig. 2.8. In the absence of the Z2 SEM, this scheme reduces to two

interleaved, undersampled radial k-space trajectories played on the linear SEMs. This is a

natural result, since radial trajectories have long been valued for the graceful degradation

of their noise and resolution performance when they are undersampled. In the context of

O-Space imaging, the linear SEMs provide all the resolution at the center of the FOV, with

the quadratic field enhancing resolution near the periphery.

2.5 Reconstruction using the full encoding matrix

The spatial-domain LSQR reconstruction amounts to backprojecting points in each pro-

jection onto the corresponding rings in the image. For a fast search across many potential

encoding schemes, the approximation of real-valued ring frequency isocontours was con-
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sidered adequate. However, for more precise image reconstruction, this approximation

poses several difficulties. First, it does not fully describe the spatially varying, complex-

valued point spread function of each applied SEM shape. Second, care must be taken in

defining the boundary between rings. Third, radial Gibbs ringing of the PSF due to convo-

lution with the Fourier transform of the acquisition window (typically rectangular) must

also be considered. Although a sparse encoding matrix comprised of distinct rings is com-

putationally more tractable, it ignores the fact that each PSF has sidelobes that overlap with

other ring isocontours.

These obstacles can be surmounted by directly solving Eq. (2.3.4) in the frequency

(echo) domain using the Kaczmarz method, also known as the algebraic reconstruction

technique, an iterative row-action backprojection algorithm that has been applied to com-

puted tomography and cryo-electron microscopy (69),(70). This algorithm compares each

echo time point with the inner product of the appropriate row of the projection matrix, de-

noted Et,l,q and the nth iterate of the image estimator. The difference between these scalars

weights the amount of basis functionEt,l,q that is added to the estimator going into the next

iteration:

m̂(n+1) = m̂(n) + λ
sin −

⟨
Ein , m̂

(n)
⟩

∥ Ein ∥2
E∗

in , 1 < in < nKnc (2.5.1)

where ∗ denotes complex conjugation and λ is a relaxation parameter1 used to control the

rate of convergence (0 < λ < 2). The nth row backprojection that is performed is referred

to as the nth step, as indicated in the superscript of m. Once the algorithm has stepped

through all chosen rows of the encoding matrix, one iteration has been completed. The in-

dex in, known as the cyclic control, typically increments from 1 to nKnc during each iteration

through the rows of the encoding matrix and the corresponding points of acquired signal

data, s. But the rows of E may be backprojected in any order and in the most general case

1Choice of values for λ will be discussed further in section 3.7
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2.5 Reconstruction using the full encoding matrix

some rows may even be omitted to speed reconstruction1. For the simulations and empiri-

cal images shown in this thesis, a straightforward cyclic control is chosen in which all rows

of E are backprojected and in steps directly from 1 to nKnc.

For each cycle through the encoding matrix, the row corresponding to each time point

(for each CP) for a particular receive coil is backprojected once. The row is treated as a ba-

sis function that could be “missing” from the current image estimate. If the dot product

between the given row and the current image estimate m̂n differs from the corresponding

data point sn, this difference is used to weight the row as it is added to the (n+ 1)th image

estimate. In theory, convergence is achieved when this difference becomes arbitrarily close

to zero. In practice, a stopping criterion must be defined based on image statistics.

The entire projection matrix is usually too large to fit in memory, precluding the use

of LSQR as a Matlab call. But with the Kaczmarz approach, only one data point is treated at

a time, permitting individual basis functions (rows) to be recomputed on the fly or loaded

from the hard drive. For sufficiently small values of λ, under-relaxed Kaczmarz reconstruc-

tions have been shown to converge to the minimum-norm least-squares estimate for m̂

(72), equivalent to that obtained using the pseudoinverse of E.

The structure of the encoding matrix is shown in Fig. 2.9. At top is a pictorial repre-

sentation of how each line of the encoding matrix, E, is calculated using an example RF coil

profile and O-Space SEM (ignoring the shim map). Below this a simplified encoding ma-

trix is drawn corresponding to a hypothetical O-Space acquisition having only 2 RF coils,

2 center placements (CPs), 4 readout time points, and 12 voxels in the FOV. The encoding

matrix is populated by advancing t to calculate the spin phase evolution for all voxels in the

FOV at each readout time point of a particular CP. This phasor is weighted by the RF coil

1Some investigators (71) have achieved faster convergence using randomly-selected rows of the encoding
matrix for each step, but this has only been conclusively shown for the case of consistent systems of equations.
In the presence of noise and systematic error, O-Space equations are inconsistent, so it is not clear that random
sampling speeds convergence.

44



2.5 Reconstruction using the full encoding matrix

magnitude and phase and then vectorized to become a row of the encoding matrix. Once

the rows for the first CP are populated, the O-Space SEM is shifted to a second CP, and

the process repeats for the time points in this second readout. The SEMs for both CPs are

then weighted by the other RF coil profile and the second half of the encoding matrix is

populated. The encoding matrix is then used in combination with the acquired data, s, to

reconstruct the object, m, using the Kaczmarz method.

There is no single unique way to populate the encoding matrix. It is also possible to

interleave data from coil channels, such that the algorithm steps through all coils at a given

time point before advancing to the next time point for a given center placement. In this

case, care must be taken to rearrange the entries in the data vector s accordingly.

2.5.1 Comparison by simulation

Simulations were used to investigate O-space imaging in more detail. First, LSQR image-

domain reconstructions at low resolution were used to quickly explore a variety of CP schemes

to identify one that provides efficient O-Space encoding. Second, once a CP scheme had

been chosen, Kaczmarz frequency-domain reconstructions at high resolution were used to

compare O-Space with SENSE, PatLoc, and radial reconstructions over a wide range of

acceleration factors. Third, Kaczmarz reconstructions were used to investigate the degra-

dation of O-Space and SENSE reconstructions in the presence of increasing amounts of

noise. Fourth, Kaczmarz simulations were used to explore the effect of increased ring den-

sity on the resolution of O-space images.

Two phantoms were used for each Kaczmarz simulation: an axial brain image (Fig.

2.10) (a) obtained using a conventional acquisition and a numerical phantom (b) designed

to illustrate the spatially varying resolution and contrast properties of O-space encoding

SEMs. The numerical phantom incorporates small lesion-like features at four contrast lev-
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Figure 2.9: Anatomy of the encoding matrix. At top is a diagram of the calculation performed
to populate each row of the encoding matrix. The encoding function is calculated over all voxels
in the FOV for a given readout time point and then vectorized for insertion into the encoding
matrix, E. The matrix is organized in blocks corresponding to different RF coil profiles and
center placements. Once the matrix is populated, the equation s = Em may be solved to
obtain an image estimate, m̂, via the Kaczmarz method. See text for more detail.
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els, as well as sharp edges in the X and Y directions.

Figure 2.10: Coil profiles and phantoms used
for O-Space simulations with the Kaczmarz algo-
rithm.

Once a highly efficient CP scheme

was chosen, the Kaczmarz algorithm was

used to perform reconstructions by di-

rectly solving the frequency-domain ma-

trix representation of the signal equation

for simulated 512-point echoes. O-space

256×256 reconstructions were compared

to time-equivalent SENSE, quadrupolar

PatLoc (Cartesian trajectory), and radial

reconstructions for R={4, 8, 16}. Since

the scope of this study is limited to two-

dimensional imaging, SENSE acceleration was only performed along one phase encode di-

rection. PatLoc reconstructions (61) were performed using L = 2 multipolar fields with

undersampling of the phase-encode k-space by factors of 2, 4, and 8, yielding net acceler-

ation factors of R=4, 8, 16.

Previous studies have displayed high-quality parallel reconstructions from under-

sampled multi-coil radial k-space data (35). If the Z2 SEM is turned off during an O-space

acquisition, what remains in the case of a circular arrangement of CPs closely resembles

a radial acquisition. In this vein, a comparison between O-space and undersampled ra-

dial reconstructions is useful for isolating the effect of the extra encoding provided by the

addition of the Z2 SEM. For radial reconstructions, the Nyquist criterion requires Nπ/2

spokes for an image of size N. However, for ease of comparison against the SENSE, Pat-

Loc, and O-space images, radial reconstructions using N/R spokes were considered to be

“R undersampled,” neglecting the extra factor of π/2 in the undersampling factor. Radial

reconstructions were performed using N
√
2 readout points per spoke, consistent with the
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2.5 Reconstruction using the full encoding matrix

Nyquist criterion for a fully sampled radial dataset. For further ease of comparison, the

Kaczmarz algorithm was used to reconstruct the radial images based on the full encoding

matrix.

Gaussian noise was added to each point of the simulated echoes. The noise standard

deviation was scaled relative to the mean intensity in the phantom and then further scaled

by the phantom dimension N to account for two-dimensional Fourier transformation into

the frequency domain. Noise correlations between the coil channels were neglected for the

purposes of this study and will be treated in future work. It is expected that these corre-

lations will similarly impact both conventional Cartesian SENSE reconstruction and the

proposed O-Space approach.

To explore the effects of ring density on resolution, the readout window was held

constant while SEM strength and the number of readout points (Ns) were incrementally

increased. Extra channel noise was injected into the echoes to model the increased sampling

bandwidth. Care was taken not to exceed practical SEM strengths for a Z2 coil design.

The phantoms and coil profiles (12 cm FOV) used in the high-resolution Kaczmarz

simulations are shown in Fig. 2.10. For reference, the geometry factor, or g-factor, was

computed (1) for SENSE for several acceleration factors (Fig. 2.11).

Figure 2.11: The geometry factor, or g-factor, which maps spatially-varying noise amplifica-
tion, for the coil array used in O-Space Kaczmarz simulations, shown for R=2 (a), R=4 (b),
and R=8 (c). The g-factor assumes regular k-space undersampling along the vertical (Y) di-
mension.
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2.5 Reconstruction using the full encoding matrix

2.5.1.1 Regularized SENSE reconstructions

For the R=4 case, O-space and SENSE reconstructions were compared in the presence of

varying amounts of noise. Noise amplification in the SENSE reconstructions is mitigated

using Tikhonov regularization (73). This approach minimizes a functional that includes

the data consistency term as well as a weighted L2-norm on the unaliased voxels v:

∥ Sv − a ∥2 + ∥ Γv ∥2 (2.5.2)

where v are the source voxels, S is the aliasing matrix from Eq. (1.5.1), a holds the aliased

voxel for each coil’s aliased image. For Tikhonov regularization,Γ = βI , fornc×nc identity

matrix I and regularization parameter β. The solution that minimizes this functional is

given by

v̂ =
(
SHS + ΓHΓ

)−1
SHa (2.5.3)

For β = 0, minimizing this functional yields the least squares estimator. As β grows, the

reconstruction increasingly favors images with minimum norms, limiting the propagation

of noise. A more intuitive way to implement Tikhonov regularization is by truncating the

SVD of the aliasing matrix (73). Decomposing the aliasing matrix into its singular value

decomposition (SVD), we obtain

S = UΣV H

a = Sv = UΣV Hv

(2.5.4)

where Σ hold the singular values and U and V hold the orthonormal singular vectors in

the range and domain spaces, respective. The unwrapping matrix, S†, can be represented

using the SVD matrices as V Σ−1UH , permitting the R source voxels to be calculated as
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2.5 Reconstruction using the full encoding matrix

v̂ = V Σ−1UHa (2.5.5)

The condition number is the ratio of the largest to smallest singular values in Σ. For high

acceleration factors, the problem becomes “ill-condition” and the condition number grows.

The larger the condition number, the more susceptible the image will be to small per-

turbations, i.e. noise, in the data. To limit the propagation of noise in an ill-condition,

highly-accelerated SENSE reconstruction, the smallest singular values in Σ may be trun-

cated, preventing the corresponding entries in Σ−1 from growing too large. Regularization

is performed by replacing Σ−1 with a matrix D,

Dii =
σi

σ2
i + β2

, Di̸=j = 0, (2.5.6)

with a suitably-chosen regularization parameter β. The effect of this block components of

the data lying along the singular vectors corresponding to the truncated singular values. In

ill-conditioned problems it may be beneficial to block these components, since the unwrap-

ping matrix would other only pass noise while “missing” object features.

The strength of the regularization is a trade-off between overwhelming noise ampli-

fication in the unregularized case and excessive aliasing in the heavily regularized case. As

β tends toward infinity, the unwrapping matrix ceases to resolve aliased voxels and the re-

sulting image converges toward the image one would get by direct Fourier transformation

of undersampled sampled k-space data. This is a classic trade-off between noise and bias

(aliasing); the optimum amount of regularization depends upon the imaging task. In the

context of SENSE, the “optimal” β is a function of the acceleration factor and the coil array;

the parameter is chosen ad hoc by gradually increasing β to suppress noise propagation until

the point where aliasing artifacts began to reemerge in the image. In iterative methods such
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2.5 Reconstruction using the full encoding matrix

as the Kaczmarz algorithm, the trade-off between noise and bias can be effected either via

a regularization parameters or by varying the number of iterations through the encoding

matrix, with each successive iteration tending to reduce bias and increase noise.

The preceding analysis can be adapted to include the effects of the noise covariance

matrix, Ψ, by pre-whitening the data and the aliasing matrix (73). This is achieved using

the eigen-decomposition of the noise covariance matrix,

Ψ = MΛMH

S̃ = Γ−1/2MHS

ã = Γ−1/2MHa

(2.5.7)

where the eigenvalues of Ψ are contained in Λ and the eigenvectors form the columns of

M . But for purposes of the present simulations, the coil noise covariance information is

ignored.

2.5.2 Acceleration comparison

In the high-resolution R=4 reconstructions with 5% noise, O-space images appear qualita-

tively similar to the SENSE images (Fig. 2.12). At R=8, however, the SENSE reconstruc-

tion with eight coils becomes ill-conditioned and either entirely overwhelmed by noise or

plagued by severe residual artifacts, depending on the Tikhonov regularization parameter

selected. By contrast, the O-space reconstruction at R=8 shows a mild increase in noise and

blurring. At R=16, an acceleration factor for which SENSE reconstructions are impossi-

ble with only eight coils, O-space images suffer some blurring of small features but retain

impressive image quality for images based on only 16 projections. Notably, the features

near the center of the brain phantom appear less distorted in the O-Space image than in the

radial image. This is surprising because most gains from the addition of the quadratic SEM

51



2.5 Reconstruction using the full encoding matrix

were expected to occur closer to the periphery.

PatLoc reconstructions at R=4 show low levels of noise amplification, indicating that

the encircling surface coils are complementary to multipolar PatLoc encoding fields; that is

to say, the coils are well positioned to localize signal from each acquired point in encoding

space back onto the source voxels in the two bijective regions of image space. As the net

acceleration factor approaches the number of coils, however, noise amplification grows se-

vere in parts of each bijective region. As expected, resolution degrades near the center of

the FOV as the spatial derivative of the encoding fields approaches zero. In this region, the

coil profiles do not provide adequate localization to make up for the lost SEM encoding.

O-space and radial reconstructions performed comparably at low acceleration factors,

each displaying excellent resolution at R=4. At R=8, the streaking artifacts in radial images

become more pronounced, while the O-Space artifacts remain incoherent enough to avoid

clear manifestation in the image. The O-Space images do exhibit slightly higher noise lev-

els, in part because of the higher readout bandwidth of the simulated 512-point O-Space

echoes. At R=16, the O-Space brain image preserves more detail at the center of the FOV.

The projections were ordered in the encoding matrix according to Fig. 2.9. The time

points for a given center placement formed a block of rows. The set of all center place-

ments in turn formed larger blocks corresponding to one RF coil dataset. However, when

projections were reordered such that the RF coil data were interleaved on adjacent rows of

the matrix, no difference in either the O-Space and radial images was observed in the final

converged image.

2.5.3 O-Space noise performance

When the acceleration factor is held constant at R=4 and the noise level is varied (Fig.

2.13), the noise in O-Space reconstructions appears to be more spatially uniform than the
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2.5 Reconstruction using the full encoding matrix

Figure 2.12: Comparison of O-space, radial, Cartesian SENSE, and PatLoc 256× 256 recon-
structions as a function of acceleration factor for an 8-coil array with moderate noise (5% of
mean phantom intensity). As R increases beyond 4, the SENSE and PatLoc reconstructions
rapidly deteriorate. By contrast, O-Space performance degrades gradually, displaying only
moderate noise amplification and blurring of small features. O-Space reconstructions show
promise even when R exceeds the number of coils, a scenario not possible with SENSE. Ra-
dial reconstructions perform comparably to O-space reconstructions, but at R=16, the radial
images show the expected streaking artifacts (see numerical phantom) and loss of clarity in fea-
tures (see brain phantom area of detail at bottom). SENSE images are not shown for R=16
because the undersampling factor exceeds the number of RF coils, so a well-conditioned matrix
inversion is not possible at each voxel.
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noise in SENSE reconstructions, which concentrates in regions of high g-factor. In O-space

imaging, each voxel is smeared out along rings according to the spatially varying PSF of each

CP, preventing noise (and coherent artifacts) from concentrating in any one region of the

image.
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Figure 2.13: Noise levels for eight-coil O-Space and Cartesian SENSE reconstructions at R=4.
While SENSE is highly sensitive to noise and requires regularization to prevent noise ampli-
fication from dominating the image, O-Space reconstructions degrade gracefully even when
the data are highly noisy (a property shared with undersampled radial images). In addition,
O-Space noise is distributed more evenly throughout the FOV, while SENSE noise is visibly
concentrated in areas of high g-factor.

2.5.4 Increased readout density

As expected, increased ring density within the phantom contributes to significant improve-

ments in resolution. O-Space reconstructions with only 256 rings show substantial blur-

ring and background non-uniformity at R = 16 (Fig. 2.14), suggesting that setting Ns
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equal to N does not provide enough rings for highly accelerated acquisitions. But as the

number of rings is increased to 512 and 1024, resolution improves noticeably in the R=8

case and substantially in the R=16 case. This stands in contrast to Cartesian acquisitions,

where increasing the readout SEM strength provides no reduction in aliasing artifacts along

the undersampled direction(s).

In principle, the achievable O-space ring density in the sample is limited only by (a)

the diminishing SNR provided by very thin rings and (b) safety regulations on SEM switch-

ing rates. It should be emphasized that increasing the number of samples in the readout and

sampling faster (higher bandwidth) does not change the overall imaging time, and thus the

imaging time along a row in Fig. 2.14 is constant. In summary, increasing the readout SEM

strength (within the bounds of the noise floor) benefits O-Space imaging resolution in two

dimensions while benefiting Cartesian imaging resolution in only one dimension. This is

a significant advantage that is only possible when SEMs vary in more than one dimension.

Figure 2.14: Time-equivalent R=8 and R=16 O-space 256 × 256 phantom reconstructions
based on 256 rings, 512 rings, and 1024 rings per echo, along with corresponding brain sim-
ulations, demonstrate the resolution improvements created by dense ring spacing within the
object. Uncorrelated noise with standard deviation equal to 5% of the mean phantom intensity
was added during echo simulation. The noise is then scaled by

√
2 and

√
4 in the 256- and

512-point reconstructions, respectively, to reflect the increased sampling bandwidth.
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2.5.5 Applicability of O-Space simulations

The simulations do not include the effects of calibration errors in SEM field strength, tim-

ing, eddy currents, or concomitant fields, so in a sense they may be considered to represent

the best-case performance that is achievable. Also, the noise scaling was a best estimate of

real signal behavior, and in respect it may have been scaled too low.

2.5.6 Properties of the encoding matrix

Approximations to the O-Space PSF were obtained from the matrix product EHE, where

EH denotes the conjugate transpose of the encoding matrix1. Each row of EHE is the vec-

torized PSF for a particular voxel in the FOV. To isolate the effects of the SEM encoding

alone, a single coil with uniform sensitivity was used. Representative PSFs for the 16-CP

encoding scheme are shown in Fig. 2.14; for each CP, the source voxel blurs along a ring

that has the CP at its origin. The source is localized to the point where all 16 rings overlap,

with additional localization provided when a surface coil array is used.

To illustrate the radial encoding provided by the Z2 SEM alone, the encoding matrix

for the Z2 SEM shape was Fourier transformed along the temporal dimension (row-wise),

yielding the ringlike shapes that correspond to each point in a Z2 projection. Magnitude

plots of a horizontal profile through the center of the FOV are shown in Fig. 2.15 (c,d)

illustrate the radial variation in resolution and the effects of echo truncation. Since the spa-

tial derivative of the Z2 field shape is zero at the center of the FOV, nearly all SEM encoding

in this region comes from the application of the X and Y SEMs to shift the rings off cen-

ter. Truncation of an echo with a window of duration results in convolution of the rings

by sinc(2u/t) in u-space, corresponding to sinc(2r2/t) in the image domain. This leads

1More accurate PSFs can be obtained from FE, but it is intractable in practice to explicitly calculate F for
O-Space imaging
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r1 r2 r3 r4 r5 

Figure 2.15: Spatially-varying O-Space PSF
of the 16-CP scheme used in simulations for a
point source of unit intensity located at voxel
index (x, y) = (0, 0) (a) and (x, y) = (75, 0)
(b) within a 256×256 FOV. The scale is com-
pressed 10-fold to bring out low-level ring
features. For projections formed using the Z2

SEM alone (c,d), horizontal profiles through
the ring projections illustrate the poor radial
resolution of the two centermost rings at r1
and r2 (c) in contrast to the fine resolution of
rings at the larger radii r3, r4, and r5 (d).

to widening of the side lobes as r approaches zero.

The LSQR reconstructions described above (for CP optimization) have the advantage

of being fast and non-memory intensive, but they do not work on actual data. The simpli-

fied encoding matrix assumed that each voxel has a real-valued PSF consisting of discrete

rings with no sidelobes. True O-Space PSFs are complex-valued and include Gibbs ringing

due to the rectangular window on the readout data. As such, the real-valued approximate

encoding matrix is not able to account for the full phase evolution of spins during an O-

Space acquisition, leading to phase cancelation during reconstruction.

Fortunately, there are ways to combine the integrity of the full encoding matrix with

the speed of using a sparse matrix for reconstruction. The shape of each complex-valued

“ring” can be approximated by Fourier transforming each Ns×N block of the full encoding

matrix along the time (row) dimension. These image-domain matrices can be assembled

into an equation for the unknown image using the projection data (i.e., FFT of the echoes).

This version of the encoding matrix can be sparsified by truncating all values falling below

a certain threshold, leaving only the PSF in the vicinity of each ring. This approach was

explored in (74) to quicken reconstruction of data encoded using nonlinear SEMs. Using

a sparse matrix that fits in memory, LSQR would present an attractive alternative to Kacz-
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marz for reconstructing the image, but we reserve this comparison for future work.

Transforming the encoding matrix into a sparse basis could also speed convergence

of the Kaczmarz algorithm. When the matrix elements are populated directly in the fre-

quency domain, each element has a magnitude of unity. This means all rows of the en-

coding matrix have the same L2-norm. Weighting the rows by RF coil profiles changes

the L2-norm for the rows corresponding to each coil profile, but this only increases the

number of distinct L2-norm values from 1 to nc. However, if the encoding matrix is then

transformed into a sparse basis, row L2-norms will likely have a wide spread of values. This

would permit rows to be selected randomly for each step of the Kaczmarz algorithm, with

the probability of selection proportional to the L2-norm. This approach has been shown to

significantly speed convergence (71) as compared with standard Kaczmarz (in which rows

are chosen sequentially from first to last), simple randomized Kaczmarz (in which rows are

chosen completely at random), and the conjugate gradients algorithm. However, in order

to achieve faster convergence with randomized Kaczmarz, there must be a wide spread in

the value of the L2-norm among the rows, as occurs in a sparse matrix1.

2.6 Off-resonance effects on O-Space imaging

Regions of B0 inhomogeneity have long been a concern in MR imaging. Perturbations of

the background B0 field arise at the interfaces of tissues having different magnetic suscep-

tibilities, such as bone, fluid, and cortex. Interfaces of the sort are typically accompanied

by substantial B0 inhomogeneity in the human head, particularly near the sinuses and ear

canals. This field inhomogeneity can cause distortions in conventional imaging sequences,

particularly those with long readouts such as echo planar imaging, which suffers spatial

1As noted earlier, improved convergence with random row selection has only been shown for the case
of consistent systems of equations and for equations in which the data are contaminated by random noise
(75). The convergence properties have not been investigated for equations, such as those involved in O-
Space imaging, in which the matrix holding the coefficients is contaminated by systematic error.
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translation of voxels along the phase-encode direction. This distortion can either be ad-

dressed during image reconstruction for Cartesian trajectories (23), provided that accu-

rate field maps are available. Inhomogeneity can be preempted through highly-accurate

B0 shimming (76). To date, however, no combination of active and passive shimming has

succeeded in eliminating all residual inhomogeneity. In theory, higher readout bandwidths

can be used to limit the effect of off-resonance spin phase evolution, preserving image qual-

ity. But in practice, the readout BW is limited by signal-to-noise considerations, gradient

switching limits, and other sequence-dependent factors.

Off-resonance is of additional concern because it is common for a Z2 SEM coil to

produce a Z0 uniform field cross-term. This global term arises due to the similarity of the

conductor windings used to generate the Z2 and Z0 fields. It is hard for SEM coil design-

ers to achieve fields that are both strong and pure. If known, this Z0 component can be

incorporated into the encoding matrix during image reconstruction. But it is important to

explore the effects of this applied off-resonance field on image quality, in the event that the

user has imperfect knowledge of the Z0 amplitude.

Figure 2.16: Illustration of overlapping fre-
quency isocontours from different center place-
ments. Misalignment of isocontours causes phase
cancellation.

Regional and global off-resonance

both pose a significant obstacles to O-

Space imaging. Because of the way

that frequency isocontours from differ-

ent CPs overlap to provide signal local-

ization (Fig. 2.16), the method is poten-

tially sensitive to errors in effective field

strength. Therefore it is important to in-

vestigate via simulation whether O-Space

imaging could plausibly be performed in areas like the human head, where sinus and ear

cavities introduce substantial local inhomogeneities. The complex, spatially-varying point
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spread functions that occur in O-Space imaging invite inquiry into the sensitivity of the

method - and non-linear projection imaging more broadly - to local field offsets. In the

presence of spatially-varying B0 inhomogeneity, the signal equation 2.3.4 becomes

sl,q =

∫ ∫
m (x, y)Cq (x, y) e

−i2π[γGZ2
1
2((x−xl)

2+(y−yl)
2)]te∆B0(x,y)(t+TE−Ts/2)dxdy

= Et,l,qm.

(2.6.1)

where γ = γ
2π

and Ts is the readout duration. Field errors cause the matrix equation to

become inconsistent. When inconsistency arises from random errors in s due to noise,

regularization is an effective way to constrain noise propagation in the reconstruction. For

systematic errors in E such as those caused by field errors, regularization has less utility,

but can still be used to find a constrained estimate of m when no unique solution to the

system of equations exists. To test the ability of regularization to minimize the adverse

effects of systematic error from ∆B0, we use a modified Kaczmarz implementation that

incorporates Tikhonov regularization (77). To perform regularization, the reconstruction

seeks to minimize the new functional

r ∥ Em− s ∥2 + ∥ m̂ ∥2 . (2.6.2)

The first term enforces data consistency. The second term favors those estimators for m̂

that have the smallest norms from among all possible solutions that satisfy data consistency.

This second term therefore regularizes the reconstruction and favors the minimum norm least

squares estimator, with the strength of the regularization controlled by the parameter r. To

find a regularized least-squares solution,

 ẑ

m̂

, consider the following augmented system

of equations, which is always consistent:
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(
I r1/2E

)z

x

 = r1/2s (2.6.3)

where E is the nKnc × N2 encoding matrix, I is the nKnc × nKnc identity matrix, and z

is a vector of length nKnc. A regularized image estimate can then be obtained by setting

x0 = r1/2EHz0, with z0 arbitrary, and using the following modified Kaczmarz algorithm:

z(n+1) = z(n) + c(n)ein , m̂(n+1) = m̂(n) + r1/2c(n)Ein

c(n) = λn

r1/2sin − z
(n)
in

− r1/2
⟨
Ein , m̂

(n)
⟩

1 + r ∥ Ein ∥2

(2.6.4)

where ein is defined as a vector of length nKnc comprised of all zeroes except for the nth

entry. At each step in the algorithm, only a single entry of the vector z is updated. For the

most straightforward top-to-bottom cycling through the encoding matrix, in simply equals

n, though in general they may be different (i.e., rows of the encoding matrix can be selected

randomly for each step). The scalar parameter r controls the strength of the regularization.

2.6.1 Simulations of off-resonance effects

A 128 × 128 numerical phantom is used to model potential feature distortion and noise

amplification caused by B0 inhomogeneity. The field inhomogeneity ∆B0 of the sinus and

ear cavities is modeled as a Gaussian shape1 rolling off radially from the point of peak field

offset (Fig. 2.17),

∆B0(r̄) ≈ ∆Bpeak exp

(
− r̄ − r̄0
FOV/20

)2

. (2.6.5)

for several positions of r0 in the FOV. The peak offset ∆Bpeak is varied between 0 and

500 Hz in simulations. To assess artifact levels and distortion, the mean squared error is

1Gaussian/quadratic shapes have been used previously to roughly model B0 inhomogeneities (78).
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Figure 2.17: A simple model of cavity-
induced B0 inhomogeneity superimposed on
a numerical phantom for purposes of simula-
tion. The peak level of inhomogeneity, ∆B0,
is varied in simulations to observe its effect on
image quality.

computed between the reconstructed images and a reference image with no B0 inhomo-

geneity (Fig. 2.19). Acceleration factors of R = 4, 8, 16 are simulated with and without

regularization for an array of 8 surface coils (R factors correspond to 32, 16, and 8 echoes,

respectively). To speed up simulations, an image grid of 128 × 128 is used instead of the

256× 256 grid used elsewhere in this thesis. A noise floor with standard deviation equal to

5% of the mean phantom intensity is added.

For the images shown in Fig. 2.18 and Fig. 2.19, the acquisition is simulated with

a short TE (3 ms) and the readout BW is set to 150 KHz, a typical value in clinical pro-

tocols. In Fig. 2.18, artifacts manifest themselves as noise-like graininess, with rippling

artifacts in the region of the greatest field deviation (Fig. 2.18). But geometric distortion

or warping are not observed near the simulated cavities, as they are in echo planar imaging.

Unregularized images show noticeable artifact levels for ∆Bpeak > 100Hz.

Simluation results in Fig. 2.19 show that the MSE grows with ∆Bpeak for all accel-

eration factors (Fig. 2.19). Visual inspection reveals that artifacts grow more severe with

increasing R. Regularized reconstructions, by contrast, degrade gracefully with ∆Bpeak for

all acceleration factors, showing only modest MSE and artifact increases up to ∆Bpeak =

300Hz. Regularization also suppresses noise, as expected, operating as a low-pass filter.

As expected, however, regularization comes at the cost of image resolution, particularly at

the center of the FOV where the intrinsic O-Space resolution is lowest. In this respect, the

MSE is not an adequate metric for assessing the combined effects of noise amplification,
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2.6 Off-resonance effects on O-Space imaging

Figure 2.18: Image quality degrades steeply with increasing local B0 inhomogeneity. While
regularization limits the propagation of artifacts, it does so at the expense of blurring the image,
obscuring small features. Readout BW is 150 KHz.
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2.6 Off-resonance effects on O-Space imaging

artifact propagation, and blurring. Although regularization reduces the MSE, it does not

necessarily improve the image quality. The regularization parameter r controls the trade-

off between artifact suppression and blurring. For the images shown here, r = 0.6, cor-

responding to regularization that strongly minimizes the norm of the image estimate, as

described in Eq. (2.6.2).

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0 100 200 300 400 500 

R=16 

R=16 Reg. 

R=8 

R=8 Reg. 

R=4 

R=4 Reg. 

ΔB0peak	  (Hz)	  

M
ea

n 
sq

ua
re

d 
er

ro
r 

Figure 2.19: Mean squared error for reconstructed images relative to a reference phantom
with peak amplitude of unity. While regularization slows the growth in MSE with increas-
ing ∆Bpeak, it comes at the cost of severe blurring, as shown in Fig. 2.18. Readout BW is 150
KHz.

These simulations suggest that local inhomogeneity could be deleterious to practi-

cal O-Space imaging in the human head. However, if accurate field maps are available,

the off-resonance effects can be incorporated into image reconstruction. Compensation for

off-resonance effects has been shown to reduce voxel-displacement along the phase encode

direction in echo planar imaging with Cartesian SEMs (23). Extending this approach into

the domain of nonlinear SEMs, field maps can be incorporated directly into the O-Space

encoding matrix. As shown in Fig. 2.20, images reconstructed with accurate knowledge

64



2.6 Off-resonance effects on O-Space imaging

of ∆B0(x, y) are almost identical to those simulated in the absence of off-resonance fields.

Even if only crude field maps are available, it is beneficial to include the maps in the recon-

struction. Even when there is a 20% error in the field map estimate of Bpeak as compared

with the true Bpeak of the off-resonance field, the images still show a large improvement

over those reconstructed without the field map correction. Methods such as FASTMAP can

be used to quickly acquire field maps during the pre-scan in a clinical protocol. With this

knowledge of the off-resonance fields, it does not appear that local inhomogeneity poses an

insurmountable obstacle to the use of O-Space imaging in clinical settings.

Figure 2.20: Regional inhomogeneities have effects across the reconstructed image (readout
BW is 150 KHz). However, if field maps are available, they may be incorporated into the
encoding matrix, recovering virtually the same image quality as for a perfectly-shimmed ob-
ject. Even when there is error in estimating ∆Bpeak, large improvements are observed over
uncorrected images.
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3

Experimental proof of concept

3.1 Overview

This chapter begins by describing the hardware and methods used to implement O-Space

imaging with a Z2 insert coil on a Siemens 3T human scanner. Special attention is paid

to methods for accurately measuring the magnetic field of the insert coil, which proved to

be the principal obstacle for our investigations. Experimental images are then presented.

The convergence properties of the Kaczmarz method are explored using experimental data.

Finally, some common artifacts and ways to eliminate them are discussed. It is my hope that

the chapter can serve as a “recipe” for other investigators interested in performing nonlinear

projection imaging in their own laboratories.

3.2 Z2 SEM insert coil

An actively-shielded, liquid-cooled Z2 insert coil with a 12-cm bore was designed and fabri-

cated by Resonance Research, Inc. (Billerica, MA). Its specifications are displayed in Table

3.1 and a cross-section of the geometry is shown in Fig. 3.2. The insert consists of a cylin-

drical coil that holds the current-carrying windings along with a support structure (not

shown in the schematic). The support structure conforms mechanically with the patient
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3.2 Z2 SEM insert coil

table of a Siemens Trio 3T scanner (Erlangen, Germany). The zero frequency isocontour

of the insert is aligned with the origin of the scanner coordinate system. Teeth cut into

the side support struts of the coil fit snugly into grooves cut in the patient table, fixing the

position of the insert and minimizing mechanical translation. Because the insert must be

removed at the end of each imaging session, repeatable positioning from day to day is ex-

tremely important. The insert is further secured in place using a screw-actuated arm with

a padded hand that braces against the top of the scanner bore.

The insert is driven by a Techron Model 8606 amplifier (Elkhart, IN) capable of sup-

plying up to 120 amps of current, corresponding to a field strength of 13.6 KHz/cm2.

The amplifier is controlled by a Dynamic Shim Updating system that was originally de-

signed to update shims in between TRs on a slice-by-slice basis (79, 80). The DSU con-

troller updates previously stored field strengths using TTL pulse triggers called during an

otherwise conventional radial pulse sequence, producing O-Space center placements along

a circle of the desired radius. Temperature probes are placed throughout the insert coil to

permit fast shutdown of the amplifiers in the event of overheating from exceeding the insert

coil’s duty cycle, a short circuit, or other malfunction.

Figure 3.1: The actively-shielded, liquid-cool Z2 insert coil being tested on the lab bench (left)
and mounted on the patient table with accompanying RF hardware.
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3.2 Z2 SEM insert coil

Specification Unit Value
Inner Diameter mm 120.7
Outer Diameter mm 199 ±1

Temperature ◦ C 30.0
Current Amps 151.1

Resistance mΩ 69
Power W 1580

Peak Z2 Strength Gauss/cm2 4.26
Peak Z2 Strength Hz/cm2 18,135

Inductance mH 80
Rise Time ms 100

Inductive Voltage V 121

Table 3.1: Design specifications for the Z2 insert coil (courtesy of Resonance Research, Inc.).
Note that the peak Z2 design strength is only half as strong in the axial plane, where the images
shown in this thesis are acquired.

Figure 3.2: Cross section of the Z2 insert coil geometry. Coolant is supplied through hoses
entering on the foot-side of the housing. Note the bolt circles used to mount the collar of the
RF coil array to the Z2 housing (schematic courtesy of Resonance Research, Inc.).
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3.2 Z2 SEM insert coil

3.2.1 Dynamic shim updating and amplifier

The Z2 imaging system takes advantage of hardware previously developed at Yale (76) to

implement dynamic shimming for applications such as improved multi-voxel spectroscopy

(81), spectroscopic imaging, and echo-planar imaging. The hardware was repurposed to

drive the Z2 and Z0 windings of the Resonance Research Z2 insert coil. A rack of electron-

ics was assembled for this purpose (Fig. 3.3), including the following elements:

• Temperature monitoring circuit to monitor the temperature of the SEM coil and dis-

able the amplifiers in the event of overheating;

• A coolant pump to keep water circulating in the SEM coil during use;

• A box holding digital circuit boards that interface between the the monitoring equip-

ment, the DSI Loader, and the amplifiers;

• A set of three pre-emphasis circuits for both theZ2 and theZ0 eddy currents produced

by the Z2 coil;

• An amplifier to drive the Z0 coil;

• A 120 amp Techron amplifier to drive the Z2 coil;

• A switch box to turn the cooling and DSU systems on and off.

Additionally, a laptop is set up in the scanner control room to run the DSI Loader, a custom-

written program that allows users to update dynamic shim settings (Terry Nixon, Yale

Univ. MRRC). DSU settings are entered as a percentage of the amplifier’s peak output.

The DSI Loader can hold up to 126 independent values for both the Z2 and the Z0 term.

Because a pair of pulses requires four entries - negative lobe, zero, positive lobe, zero - the

system permits O-Space imaging with up to 31 independent echoes1. The Siemens scan-

ner provides two 10 microsecond TTL pulses for triggering user-supplied hardware. One

1For the experimental images shown in this thesis, the same Z2 amplitude is played for each readout,
requiring use of only 4 DSI registers. However, in future versions of the DSU, the number of independent
shim settings will be greatly increased, allowing greater flexibility for imaging experiments.
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3.3 Custom RF electronics

of these pulses is used to advance to the next DSU setting in the DSI register. The second

TTL pulse is played at the end of a TR (or sequence of TRs) to reset the DSI Loader to the

initial value.

Figure 3.3: DSU rack with inset image of custom-engineered dynamic shimming controller
boards. The rack includes, from bottom to top, a switch box, Techron amplifier for the Z2

field, a smaller amplifier for the Z0 field, pre-emphasis controls for eddy current compensation,
dynamic-shimming control circuits (also inset), and display/gauge box. The water coolant
pump is at lower right.

The pre-emphasis controls for each field component include six knobs for shaping the

exponential waveform corrections: three for the amplitude and three for the time constant.

Using a superposition of three exponential terms, most eddy current-induced distortions in

an SEM pulse waveform can be compensated, restoring the desired trapezoidal waveform.

3.3 Custom RF electronics

To perform accelerated parallel imaging, localized RF coil sensitivities are needed (42).

The more coil channels used, the more independent measurements are available for image

reconstruction from undersampled data, minimizing noise amplification and/or resolution
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3.3 Custom RF electronics

loss. For O-Space imaging, we hypothesize that the ideal coil array uses localized coils encir-

cling the object. Arrays of small, localized coils provide SNR gains over uniform coils (48),

with the improvements increasingly confined to the FOV periphery as the elements grow

more numerous (39). In choosing the number of elements, one must consider the available

space as well as the mutual inductive coupling (4, 82) that will occur between coils laid out

in a given pattern. The challenge for the present work was to fit as many encircling elements

as possible into a 12 cm diameter while maximize the remaining volume for imaging. Since

the Siemens scanner’s built-in RF body coil can not penetrate the shielding and windings of

the Z2 insert coil, the chosen RF coil(s) must be capable of both transmit and receive mode.

Two RF coil designs were considered for this application. The first approach was

to use a conventional birdcage coil to transmit a homogeneous field along with a sepa-

rate multi-channel receive array of loop elements (40). The alternative is to use a single

set of elements for transmission and reception (8, 83). After careful consideration of the

physical and electrical requirements, the latter configuration was chosen. Using the same

elements for transmission and reception obviates the need for decoupling circuits in the

separate transmit and receive coils to disable them during RF reception and transmission,

respectively. Also, a single coil array could be easily fit within a 1 cm wall thickness, while

arranging two independent coils in such a limited annulus would have been challenging.

While the transmit-receive design requires extra electronics (TR modules and a power split-

ter) outside the bore of the Z2 coil, it conserves precious space within the bore, maximizing

the remaining diameter available for imaging.

For the coil elements, microstrip transmission lines were selected for their (a) uni-

formB1 distribution along the z-direction and (b) relatively good decoupling properties on

resonance. While circular arrays do not enjoy the full intrinsic decoupling of planar arrays

(7), they still exhibit adequate decoupling when elements are connected by capacitors to

cancel mutual inductance (8). For microstrip arrays, there is a trade-off between penetra-
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tion depth on the one hand and decoupling performance on the other. The parameters in-

volved in this trade-off are the substrate thickness, element width, and inter-element spac-

ing (84). As a general rule, to prevent excessive coupling, inter-element spacing (between

the midpoints of each line) should be greater than twice the substrate thickness (85)1. For

the teflon low-loss dielectric substrate used in this study (permittivity ≈ 2.1), the substrate

thickness and element width were both chosen to be 5 mm. For the available circumference,

eight elements were chosen as the optimal array size.

Capacitive shortening is required due to the fact that a half-wave resonator over teflon

at 123.2 MHz is over 90 cm while useful region of the Z2 insert coil is only 12 cm. Shunt

capacitors are used at either end of the microstrip lines for capacitive shortening, achieving

a half-wave resonance with a line only 12 cm in length2. The resonant frequency is tuned

using a non-magnetic trimmer capacitor (Voltronics, Denville, NJ),Ct in Fig. 3.4, actuated

via an acrylic rod with a thin copper tooth that mates with the capacitor screw head. The

impedance match between the 50 ohm coaxial cable feeding an element and the microstrip

transmission line is similarly tuned with a series non-magnetic trimmer capacitor, Cm. For

optimal performance, the coil needs to be tuned every time the sample is changed, due to

an unequal ratio of capacitive to inductive coupling between coil elements and the sample3.

A single decoupling capacitor is used between the inputs of each element to cancel mutual

inductance. Eddy currents are measured on a network analyzer and verified to be less than

-15 dB for adjacent elements, and less than -19 dB for next-nearest neighbors. Due to the

presence of TR modules in the design, pre-amplifier decoupling (4) was not used, but coil

coupling levels were acceptable even without use of this technique.

1Equations exist for modeling coupling between microstrip lines on a shared planar surface (7), but not
for the more complicated case of microstrip lines distributed around a cylinder. In this case, the most accurate
way to model coil element coupling is to use 3-D electromagnetic modeling software.

2Care must be take to choose the capacitance on each end properly so that the current flowing in the
microstrip is at or near the peak of the half-sine wave distribution for the resonant half-wave mode. If the
currents flowing in the microstrip are not at the peak of the sine curve, then B1 will be reduced and the coil
SNR will suffer.

3In practice, coil performance was found to be adequate using a single tuning/matching setting for a
variety of imaging phantoms, saving users considerable time and effort during experiments.
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3.3 Custom RF electronics

Figure 3.4: Circuit diagram for two of the eight capacitively-shortened microstrip coil ele-
ments. Capacitor Ct is used for tuning the resonant frequency while . A single capacitor is used
to cancel the mutual inductance between neighboring elements.

Eddy currents are suppressed in the shield through the use of a thin, segmented cop-

per layer (5 micron) comparable to the skin depth at 123.2 MHz. Neighboring elements

are decoupled using single capacitors bridging their inputs. A circularly-polarized birdcage

mode is approximated by introducing a 2π progressive phase using lumped element phase

shifters in each transmit path at multiples of 45 ◦. The design is optimized for compactness

at the expense of B1 homogeneity near the periphery, but as the experiment is a proof of

concept for quadratic field encoding and not for RF coil design, this is considered an ac-

ceptable compromise.

“Bazooka” baluns are used to suppress common-mode currents on the coaxial shield.

The desired transverse electromagnetic mode in coaxial cable consists of currents flowing in

one direction on the center wire and the opposite direction on the inner surface of the coaxial

shield. However, common-mode currents can also be excited in which current flows in the

same direction on the center wire and on the outer surface of the shield. Common-mode
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currents are often excited at transitions between a “balanced” circuit (such as the coaxial

cable) to an “unbalanced” circuit like a receive coil element. The common-mode currents

produce fields around the coaxial cable, leading to losses and reductions in SNR. The fields

also interact with nearby objects, disrupting the impedance match of the coil circuit. 1

3.3.1 Transmit-receive modules

Figure 3.5: Eight-channel microstrip array for
use inside the 12 cm Z2 insert coil. Copper mi-
crostrip elements are plated onto 5 mm teflon lay-
ers shielded on the outside by a 5 micron copper
layer. The thinness of the shield, comparable to
the skin depth at 123.2 MHz, helped suppress
eddy currents. Hole in the black nylon collar al-
low the array to the bolted into place using bolt
circle “B” shown in Fig. 3.2

In the transmit path, an 8-to-1 power di-

vider (Taylor Microwave, Clifton, NJ) is

used to provide transmit power to each

element. A circuit known as a transmit-

receive module, or TR module, is re-

quired to isolate the transmit and receive

paths in each channel. TR modules were

built in-house according to the schematic

in Fig. 3.6, achieving transmit-to-receive

path isolation of better than -54 dB in all

eight channels. The circuit takes advan-

tage of positive bias provided by the Siemens scanner that is intended to bias PIN diodes

in detuning circuits. Each Siemens RF channel is equipped with a 100 mA current source

during forward bias and a -30 V reverse bias for switching diodes off. The available 100

mA are divided among a high-power, transmit-path PIN diode (D1) and two receive-path

PIN diodes (D2 and D3 [not shown]). RF is cut off from the DC supply and ground wires

using large inductors, which function as open circuits at very high frequencies.

The two arms of the receive path consist of λl/4 phase delays followed immediately

1When the scanner body coil is used for RF transmission, large common-mode currents can be induced
in RF receive cables, threatening to burn the patient.
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3.3 Custom RF electronics

Figure 3.6: RF front end design used in combination with the 8-channel array. Transmit-
receive modules consisted of a transmit path and a receive path with two λl/4 segments end-
ing in shunt PIN diodes (only one segment shown here). Isolation of better than -54 dB was
achieved between the transmit and receive paths.
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by a PIN diode, where λl is the RF wavelength in the microstrip transmission line. The

first phase delay is realized using a quarter-wave segment of coaxial cable. The second de-

lay takes the form of an LCL pi-network made using discrete components. The pi-network

is designed for a 50 ohm impedance match and 90◦ phase delay. During forward bias (re-

ceive mode), each of the two diodes forms a short circuit which is impedance transformed

through the quarter-wave delay to an open circuit. The open circuit prevents currents flow-

ing down the transmit path from leaking into the receive path and burning out the sensitive

pre-amplifiers at the other end of the line. Conversely, during RF reception, the diodes are

reversed bias, permitting the receive signal to reach the pre-amp but blocking it from trav-

eling up the transmit path to the transmitter.

3.3.2 Pre-amplifiers

Low-noise amplifiers (pre-amps) are a critical part of the RF receiver front-end. The pre-

amp scales both signal and noise by an amount specified by the gain of the amplifier, 27 dB

for Siemens MRI pre-amps. The pre-amp also injects additional noise, degrading the SNR.

The change in the ratio of signal-to-noise is described by the “noise figure”. Pre-amplifiers

are designed to achieve the desired gain with minimum noise figure (typically 0.5 dB for

Siemens pre-amps).

After the pre-amp in the receive chain, additional sources of noise have little impact on

the final system SNR, since new noise sources are typically very small compared to the am-

plified signal. For this reason, pre-amps should be placed as close to the receive coil/antenna

as possible. Long cable runs invariably introduce some noise due to dissipative losses in the

cable, hurting the SNR. For the configuration used in this study, the pre-amp/TR-module

assembly was placed 1.5 meters from RF coil, as shown in 3.1. While this placement is not

optimized for SNR, it was motivated by (a.) the lack of space for pre-amp modules in the
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small confines of the Z2 insert bore and (b.) the desire to minimize eddy currents induces

in the pre-amp/TR-module housing by the switching Z2 and linear SEM fields.

Figure 3.7: A bank of eight pre-amp modules mounted on a dedicated pre-amp board. Parallel
LC circuit RF traps are visible near the top of the board. Input impedance tuning capacitors are
visible between the RF traps and pre-amp modules.

Siemens pre-amplifiers and matching boards (Fig. 3.7) were provided to us by Larry

Wald of the Martinos Center, Massachusetts General Hospital. The boards include RF

traps at the inputs to suppress common mode currents. In the traps, the RF is routed

through semi-rigid coaxial cable that is wound through several turns to form an inductor. A

capacitor is soldered in parallel with the inductor windings to form a parallel LC circuit. The

L and C values are chosen to form an open circuit on resonance, blocking RF energy from

propagating on the outer surface of the cable shield. The pre-amplifier gain was measured

using a network analyzer and verified to be at least 25 dB. Pre-amplifier noise performance

was then measured using a noise figure meter along with a calibrated noise source on the

input. The input impedance was adjusted to minimize the noise figure, as measured on a

noise figure meter. Coil elements were tuned using an Agilent network analyzer (Palo Alto,

CA).

Capacitive or inductive decoupling is generally used to cancel mutual inductance be-

tween neighboring coil elements, but is insufficient to decouple other pairs of elements. For

this purpose, a method known as pre-amp decoupling is used (4). The input impedance of

the pre-amp is deliberately tuned to a small value (usually only a few ohms), approximating
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a short circuit and creating an impedance mismatch. A half-wave segment of cable between

the pre-amp and the coil element then transforms this impedance to a short circuit at the

input terminals of the coil element, where there is typically a parallel LC circuit along with a

shunt diode that serves to detune the receive element during RF transmission. For the case

of pre-amp decoupling, the diode is not forward biased, but the inductor in the LC circuit

is shunted to ground by the low transformed impedance from the pre-amp input. This has

the effect of forming a high-impedance LC resonator, blocking current form being induced

in the coil element by other elements. However, voltages induces in the coil by the magne-

tization signal source are still able to couple through the LC circuit and into the pre-amp.

The entire assembly consisting of the TR module and pre-amp housings, the 8-way

power divider, and the cable breakout box is shown in Fig. 3.8.

3.3.3 Coil array performance

Coil profiles are estimated from gradient echo reference images using the adaptive algo-

rithm described in (41). Coil sensitivities for the RF transmit-receive array are shown in

Fig. 3.9. Significant flip angle variation occurs near the periphery due to the close prox-

imity of the sample to the microstrip elements, whose combined fields only approximate

a birdcage mode within the centermost 6.5 cm diameter of the coil. The drawback to the

coil design is that for samples approaching the available diameter of 10 cm, bright spots

occur adjacent to the microstrip lines and signal voids are observed in the region between

elements where the B1 fields of neighboring elements are oriented in opposite directions,

causing cancelation.

The performance of the coil for conventional parallel imaging is shown in Fig. 3.10.

The g-factor is calculated using the coil maps shown in 3.9 for the case of regular under-

sampling in k-space along the phase encode (vertical) direction. The g-factor is essentially a

voxel-wise map of the condition number for the small matrix inversions performed during
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Figure 3.9: Coil profiles as measured on a uniform water phantom using a gradient echo se-
quence and the adaptive methods described in (41). The plots are normalized so as to lie on
the scale 0-to-1. The maps are proportional to the coils’ B1 fields (as measured in gauss), but
without specialized measurements, it is difficult to separate the multiple contributions to the
image intensity (proton spin density, T1, T2, etc.) from the effect of the B1 sensitivity on the
image intensity.

SENSE unwrapping. As expected, the array performs satisfactorily forR=2 SENSE parallel

reconstructions, introducing little noise amplification, because the 8 coils are able to easily

unwrap the 2 signals aliased onto each voxel in the reduced FOV. For any pair of voxels in

the reduced and full FOV, there are always a pair of coil profiles whose sensitivities are high

in one voxel and low in the other.

Figure 3.10: G-factor describing acceleration performance for experimental 8-channel array
performing SENSE parallel imaging with undersampling along the phase encode (vertical) di-
rection. The g-factor maps the factor of noise amplification introduced at each voxel by SENSE
parallel image reconstruction. From left to right, the acceleration factors are R=2, R=4, and
R=8. At R=8 the problem is badly ill-conditioned and noise grows uncontrollably in the ab-
sence of regularization.

At R=4, it is difficult to unwrap four aliased signals from each voxel, since the coils

form an encircling array rather than a linearly array along the phase encode direction. This
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limitation is reflect in the growth of the g-factor. Also, at R=4, the g-factor is higher in

the central regions, where the coil profiles are less distinct along the phase encode direction

and therefore less able to unwrap the aliased signals. At R=8 the matrix problem for un-

wrapping each aliased voxel is highly ill-conditioned throughout the FOV, and the g-factor

grows by orders of magnitude. SENSE parallel imaging at R=8 with 8 coils is therefore

impossible.

Figure 3.8: RF front end including, from top
to bottom, breakout box for interfacing with
Siemens RF and DC cables; 8-way power divider
for distributing transmit pulse among all 8 coil el-
ements; pre-amp board embedded in aluminum
housing; transmit-receive modules positioned be-
low pre-amp board within the housing. Lumped
element phase shifters in each transmit path are
visible at the far left. Modular design allows for
easy troubleshooting and for using the electronics
with different RF coils.

By contrast, undersampled projec-

tions methods such as radial and O-Space

degrade more gracefully in the presence

of undersampling, as will be shown be-

low. The three primary reasons for

this are (a) the improved complemen-

tarity between the SEMs and the coil

sensitivities, (b) the intrinsic regulariza-

tion of the Kaczmarz iterative reconstruc-

tion algorithm, and (c) the fact that un-

dersampling these trajectories introduces

both noise amplification as well as blur-

ring, while in Cartesian SENSE the un-

dersampling causes only noise amplifica-

tion.
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3.4 SEM calibration: A

minute to learn, a lifetime to master

The most important experimental task is to calibrate the DSU strength setting, which ranges

from 0% to 100%, so that it corresponds to a field strength inHz/cm2. To accomplish this,

calibration maps are acquired on a uniform cylindrical water phantom doped with man-

ganese to reduce T1. Field mapping of SEMs is typically performed by acquiring multiple

Cartesian images, each with a different amount of phase preparation applied by an SEM

pulse prior to readout. Frequency maps are calculated using the voxel-wise derivative of

the phase through this image series. However, in nonlinear projection imaging approaches,

while field maps provide a useful estimate of field strengths and higher-order impurities,

they have not provided sufficient accuracy to ensure high quality image reconstruction with

nonlinear SEMs, as will be shown below.

A nonlinear encoding strategy known as 4D-RIO has been proposed (15) in which

pairs of linear and second-order SEMs play out reciprocating, interleaved radial k-space

trajectories. 4D-RIO images were initially degraded due to errors in the field maps for the

second-order (PatLoc) fields. The poor image quality is thought to result from the effects

of eddy currents and other defects in the field mapping sequence. This obstacle is overcome

by decomposing 4D-RIO into its two component radial trajectories. Separate images are

then acquired using only the linear SEMs and only the second-order SEMs. The xy and

x2 − y2 fields are then scaled and rotated as necessary to align the nonlinear image with

the linear image, providing improved field calibration for reconstructing the full 4D-RIO

dataset.

Another confounding factor for O-Space imaging with the Z2 field is through-plane

dephasing from the three-dimensional variation of the nonlinear SEM (86). In multi-slice

axial field mapping, in-plane frequency map bias has been reported due to the through-
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plane evolution imparted by the z2 field variation during readout. The observed bias grows

with increasing slice thickness and with distance from isocenter.

The aforementioned problems motivate our use of a phase mapping, an extension of

chemical shift imaging that uses phase encoding to map all spin dynamics in each voxel of

the FOV. Phase maps can be used to directly populate the encoding matrix, greatly improv-

ing the fidelity of O-Space image reconstruction.

3.4.1 Limits of conventional field mapping

Conventional field maps are acquired using a Cartesian pulse sequence modified to include

a test SEM pulse whose moment (amplitude × duration) is varied between TRs (3). For

O-Space calibration, the test Z2 strength is fixed and the duration is varied along with a re-

ciprocal delay between the Z2 pulse and the readout, such that TE remains constant. Phase

images are computed for each SEM moment and the frequency is calculated as the slope

of the phase through each voxel as a function of the pulse moment. Typically field maps

are acquired over multiple slices in the imageable FOV and then approximated with best-

fit 3-D spherical harmonics. This approach provides sufficient accuracy for measuring B0

inhomogeneities, assessing the success of shimming, and even measuring nonlinearities in

SEM fields (3).

Unfortunately, when voxel phase evolution is calculated using conventional frequency

maps, very poor image quality results (Fig. 3.11). The principal cause of the artifacts was

discovered to be a severe bias in the frequency maps due to the z2 field variation of the

z2 − 1
2
(x2 + y2) field. When slices evolve under a linear through-plane SEM, the slice

phase dispersion is symmetric about the mid-point, preserving a net measured phase equal

to that at the slice center. Thus, while through-plane SEM pulses can cause signal loss, they

will not change the net phase of the slice, thereby leaving in-plane frequency maps unaf-
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Figure 3.12: Frequency map bias due to through-plane phase evolution from a nonlinear SEM
as a function of slice thickness and offset from isocenter. Slice phases evolving under a linear
SEM do not show this bias. Reproduced from (87).

fected. By contrast, detailed investigation (87) has revealed that when a slice evolves under

a quadratic field, the phase evolves asymmetrically about the midpoint, with a nonlinear

component that can be described as precession about an ellipse. The resulting frequency

map bias (Fig. 3.12) grows both with slice thickness and with offset from isocenter, since

the z2 grows rapidly.

3.4.2 Phase mapping

Phase mapping is an approach used in (88) to measure the k-space trajectories traversed

by time-varying SEMs played during parallel RF excitation. The approach is a simple ex-

tension of chemical shift imaging (89) and point spread function mapping (90, 91). The

sequence under test is modified through the addition of in-plane phase encoding. For the

case of O-Space imaging, phase encoding steps are introduced alongX and Y prior to read-

out. The O-Space sequence is then repeated NPExNPEy times, where NPEx and NPEy are

equal to the number of phase encoding steps along X and Y , respectively. The number of

phase encoding steps sets the resolution of the resulting phase map in each direction. As

in conventional Cartesian pulse sequences, the size of each X phase encoding increment is

chosen to be 1/FOVx (likewise for the Y phase encodes). Acquired phase maps have four
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dimensions: time, coil index, X phase encode, and Y phase encode. The data are Fourier

transformed along both phase encoding directions, producing images of the spin phase evo-

lution for each time point in the O-Space sequence (for all CPs and coils).

Figure 3.11: Cartesian and O-Space images re-
constructed from experimental data acquired on
tomato (top row) and orange phantoms. When
conventional field maps are used to populate the
encoding matrix for O-Space reconstruction, se-
vere image artifacts occur. (FOV=10 cm, 256
readouts, Z2 strength is 680Hz/cm2). In these
images, artifacts result because the encoding ma-
trix, E, is populated with the wrong amplitude of
each field component generated by the Z2 insert
coil. One of the key reasons for this systematic er-
ror is the bias introduced into Z2 field maps by
through-plane dephasing. O-Space reconstruc-
tion depends upon accurate knowledge of the am-
plitude of the desired Z2 SEM as well as other im-
purity SEMs (uniform, linear, and higher-order).

Care must be taken to sample the

phase maps more finely than the final

reconstructed image. Otherwise, in-

travoxel dephasing causes a loss of signal

at points in the trajectory where a high

degree of phase modulation is applied.

Intravoxel dephasing occurs when a voxel

is large enough so that the spread of spin

phase within a voxel approaches π radi-

ans. This causes the vector sum of signal

contributions from different spins in the

voxel to cancel each other out, creating re-

gions of signal loss in the image. In phase

mapping during O-Space sequence, de-

phasing is of greatest concern for voxels

furthest from the center placement, so the

map voxel size should be chosen small

enough to prevent substantial dephasing

from occuring in voxels experiencing the

strongest SEM field. Initial phase map-

ping of the O-Space SEM was performed

at 64×64, but near the beginning and end of each acquired echo, many spins in the FOV

were dephased, leaving only noise in these regions. Reacquiring the maps at 256×256

produced much clearer maps.
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Phase mapping, while tedious, enables proof-of-concept imaging on a dedicated high-

power Z2 field insert coil. Estimation of the spin dynamics from field probes (92, 93, 94)

is more time-efficient but requires specialized apparatus. Accurate mechanical positioning

of the field probes in the FOV is also crucial. Furthermore, field probes must be carefully

designed to avoid inhomogeneous broadening. By contrast, phase mapping requires no

special hardware or preparation other than a uniform water phantom and a simple modi-

fication of the existing O-Space imaging sequence. If the phase mapping acquisition time

grows too long or the data load becomes too large, phase encodes may be skipped along

both X and Y , accelerating the phase map by a factor of R = RxRy. After Fourier trans-

formation along each phase encode direction, the resulting phase maps will be aliased. Un-

wrapping of the aliased maps can be performed using the multi-coil data and the SENSE

algorithm, just as for conventional undersampled images.

3.4.2.1 Phase mapping experiments

First, a conventional field mapping sequence is run to measure any residual inhomogeneity

in the object after it had been shimmed. The shim map is acquired by running ten gradient

echo scans of size 128×128, with TE displaced by 400 µs between successive acquisition

(3). The relatively short delay of 400 µs is chosen to minimize the possibility of phase

wrap. The frequency is calculated from the slope of the phase in each voxel across all ten

phase images.

Phase maps are then acquired at 256×256 resolution for each point in a Z2 readout

with 256 samples, producing roughly 1 GB of data across all 8 RF channels. For a TR of

40 ms, phase mapping for one center placement (or for the Z2 SEM alone) lasts 45 min-

utes. Maps are acquired for several Z2 strengths ranging up to 20%. The phase mapping

sequence, shown in Fig. 3.13, is identical to the O-Space imaging sequence, except for two
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Figure 3.13: The phase mapping sequence (right) is identical to the O-Space sequence (left)
except for the removal of the linear SEMs radial trajectory pulses (dotted lines), the addition
of phase encoding pulses (shown in orange) along both X and Y , and the use of a shorter TR.
The phase mapping sequence is repeated NPExNPEy=2562 times to provide transverse-plane
phase maps with a resolution of 256×256. The grid must be chosen densely enough to prevent
intravoxel dephasing at the periphery of the FOV. If desired, center placement encoding fields
may be mapped by reintroducing the linear SEM pulses of the radial trajectory. See text for full
description.
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differences: (a.) the addition of phase encoding pulses in X and Y prior to readout and

(b.) disabling of the X and Y dephasing and readout pulses in order to isolate the Z2 field.

In this way, it is assured that the phase maps accurately reflect the actual spin phase evolu-

tion produced during the O-Space imaging sequence. Because all images presented in this

paper are taken at z = 0, only this single axial slice is used for phase mapping. Because of

this, through-plane field evolution due to the z2 variation of the SEM were kept to a mini-

mum (86). But in the general case, phase mapping provides an accurate calibration of the

Z2 SEM for any slice, including oblique slices.

Along with the phase maps, coil profiles are acquired on the same uniform phantom

using a standard Cartesian pulse sequence (41). This permits the phase maps from all 8

coil channels to be combined using a SENSE reconstruction with R=1 (1), removing the

amplitude and phase information imparted by the coil profiles. The resulting phase maps

that display only the phase evolution of the spins in the object. Combining the 8 coil chan-

nels also improves the SNR of the resulting phase maps, since each coil is only sensitive

to one localized ROI. In the combined phase image, the slope through time in each voxel

is used to calculate the local frequency, as shown in Fig. 3.14. A weighted least squares

fit is used to determine the slope, with each point weighted according to the signal in the

associated magnitude image for each readout point. Frequency maps are then decomposed

into polynomials up to 6th order using a least squares fit weighted by the magnitude image

for each voxel at each time point.

Phase maps taken at differentZ2 strengths yielded extremely similar normalized field

maps and polynomial decompositions (Fig. 3.15), showing that the SEM scales linearly

with the applied current. Linearity was further verified with oscilloscope measurements of

the current supplied by the Techron amplifier.

Image reconstruction must account for all field components generated by the Z2 in-
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Figure 3.14: Phase maps of the evolving quadratic field are taken at each point in the readout,
corresponding to different parts of the echo ranging from the flat phase at the echo peak to the
tightly-wound phase at the edges. The unwrapped phase for a representative voxel is plotted
over time in yellow. The slope of the plot gives the angular frequency at that voxel, while the
intercept of the line provides timing information. Eddy currents would manifest as deviations
from linearity.
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Figure 3.15: Top left: raw phase im-
age at the beginning of a readout plotted
in radians at the edge of a readout win-
dow, with maximum phase winding. Z2

strength=680Hz/cm2. Top right: cor-
responding polynomial fit up to 2nd or-
der plotted in Hz. Bottom left: Fit com-
ponents up to 6th order in Hz. Bottom
right: Residual field after fitting. The
field components are normalized to de-
scribe the fields produced when the Z2

is driven at 1% of its peak current level.
Accurate knowledge of all field compo-
nents is crucial for calculating the rows
of the encoding matrix.

sert coil, shown in Table 3.2. As expected, the field is dominated by the quadratic x2 + y2

component. Linear components along X and Y also exist, shifting the quiescent center of

the Z2 by roughly +1 cm in the X and Y direction relative to the scanner isocenter. The

slight difference between the x2 and y2 terms reflects the existence of a small “PatLoc” mul-

tipolar x2 − y2 field, counterpart to the small xy field also produced by the coil. A static

field offset is also generated and must be carefully incorporated into image reconstruction

to avoid a radial offset of each ring-like frequency isocontour form its true value. Minor

higher-order components up to 6th order were also detected. After the polynomial fit, the

remaining residual was less than +/-1 Hz.

Best fit field components from phase maps acquired on different days agreed with

each other to well within ±1%. This result indicates that any mechanical displacement of

the insert coil between experiments is small, and its effect on the magnetic fields is on the

order of the noise floor of the phase mapping calibration. If the coil were to move in the

z-direction between experiments, the resulting axial-slice phase map would experience a

static offset of approximately 138 Hz/cm2/% due to the translation of the z2 hyperboloid

pair relative to the scanner coordinate system.
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To perform image reconstruction, the field components in the table are combined

and scaled according to the strength of the applied Z2 SEM. The resulting composite field

is used, along with the coil profiles, to populate the encoding matrix, as shown in Fig. 2.9.

To compute different rows of the encoding matrix, the phase winding at different time

points is explicitly calculated by scaling the time variable in the exponent of phasor con-

taining the composite SEM field.

P C P C P C P C
00 -35.32 21 0.06 04 -0.05 60 0.04
10 20.73 12 -0.01 50 -0.05 51 0.00
01 23.67 03 0.10 41 -0.06 42 0.14
20 -68.50 40 -0.04 32 -0.10 33 0.00
11 -0.53 31 0.04 23 -0.11 24 0.14
02 -68.10 22 -0.12 14 -0.04 15 0.00
30 0.16 13 0.01 05 -0.05 06 0.05

Table 3.2: Best-fit components (C) of each polynomial (P) up to 6th order for the field pro-
duced by the Z2 insert coil, as estimated from the phase maps. “20” denotes x2, “11” denotes
“xy”, and so on. Coefficients are expressed in Hz/cmn/%, where n is the sum of the two sub-
script indices. The normalized field decomposed in this table corresponds to the Z2 insert coil
running at “1%” of peak current. To populate the encoding matrix, the field components in the
table must be combined, scaled appropriately, and used to calculate the encoding function for
each time point and coil channel (see Fig. 2.9).

3.4.3 Eddy currents

To test for the presence of eddy currents, the method presented in (30) is generalized to

the case of nonlinear slices. The Z2 SEM is used to select a hyperboloidal slice at a known

frequency offset. Two readouts are acquired: a free induction decay and a readout during

which the Z2 SEM is switched on. The frequency of the Z2 SEM is calculated as the deriva-

tive of the phase difference between the two readouts, removing any effects from coil phase

and residual B0 inhomogeneity. A variety of Z2 strengths between -6% and +6% are inves-

tigated. These strengths are lower than the 10-20% range more typically used in imaging

experiments, but stronger field strengths can not be used for the slice-phase readout mea-
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surements, or else the test field causes too much through-plane dephasing, resulting in poor

SNR.

Measurements of Z2 field evolution based on a single slice show no evidence of sig-

nificant eddy currents. TheZ2 field has a small overshoot caused by the Techron amplifier1,

so a settling time was added between the Z2 pulse and the onset of analog-to-digital con-

version. The plot also shows a roughly 65 microsecond delay between the rising edge of the

linear SEMs and the Z2 SEM; this delay is introduced by the DSU electronics and the filter

plate between the amplifier and the scanner room. All timing changes in the Z2 readout

pulse were compensated by corresponding changes in the dephasing lobe to preserve the

echo peak at t = TE.

Figure 3.16: At left, the shape of the isocontour excited by playing a Z2 field instead of a Z field
during the RF pulse. At right, the field strength measured using for the Z2 (blue), X (red), and
Y (green) pulses.

In addition, the experiments described in (95) were reproduced to test for eddy cur-

rents. The Z2 field was switched on, left on long enough for eddy currents to die down

(1000 ms) and then switched off just prior to RF excitation in a Cartesian gradient echo

1The overshoot is likely due to the fact that the amplifier is typically operating at only 10-30% of its
peak output in O-Space imaging during signal readout. The amplifier provides cleaner waveforms when it is
operating closer to its maximum capacity of 120 amps.
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sequence with a short readout (less than 1 ms) and short TE (less than 5 ms). The de-

lay between the falling edge of the Z2 pulse and the RF pulse was varied to sample eddy

currents at different points in their time evolution. The phase of the resulting images was

used to compute the local frequency evolution in each voxel. Eddy currents in the Z2 and

Z0 components of the field were found to be extremely small, essentially insignificant for

the imaging applications discussed in this paper.

Further evidence that eddy currents were minimal was provide by the slope of phase

over time in each voxel of the phase maps, as shown in 3.14. Phase evolution was found

to be highly linear in voxels from all locations in the FOV, betraying little influence of eddy

currents, which would be expected to damp the phase evolution following the rising edge

of the Z2 pulse at the beginning of the readout. In summary, although the DSU system is

equipped with pre-emphasis eddy current compensation for the Z2 field at three separate

time constants, it was deemed unnecessary for the present work.

3.4.4 Timing errors in the linear SEM pulses

For the radial sequence, two sets of projections are acquired such that they traverse k-space

in opposing directions. Overlays of the spokes are compared using the method in (96) to

remove any effects from coil sensitivities and B0 inhomogeneity, permitting timing errors

for the linear SEMs to be quantified and corrected.

Timing errors in the radial sequence were found to be quite modest for the readout

bandwidth chosen, producing at most a 1/4-point offset from the true center of k-space.

Based on the small size of this offset, and the quality of the radial images, it was assumed

that the linear field trajectories were known with sufficient accuracy and required no further

calibration.
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3.5 Experimental results

Radial and O-Space imaging are performed using the same pulse sequence, but with the Z2

coil enabled during O-Space acquisitions. For all acquisitions, the TE is 9 ms, TR is 1.5 s,

and the readout bandwidth per pixel is 260 Hz (corresponding to 67 KHz for a 256-point

readout). In order to avoid aliasing in the radial direction, the sampling bandwidth and Z2

SEM strength G2
Z2 were chosen so that the outermost frequency ring did not fall within the

object for a particular CP. The linear SEMs are set to the same strengths used for a conven-

tional radial sequence, with a factor of
√
2 additional coverage along the readout direction

as compared to a Cartesian trajectory. The Z2 strength is chosen to position the ring of cen-

ter placements near the edge of the FOV, following the simulations in (59). Subsequently,

acquisitions are performed with all SEM strengths doubled to explore the effect of dense

SEM encoding on image resolution.

Institutional Review Board (IRB) approval was obtained from the Yale University

School of Medicine Human Investigations Committee. Board approval permitted the O-

Space experiments to include human anatomy, including axial-plane images of the hands

of healthy volunteers.

Image reconstruction is performed using the Kaczmarz iterative algorithm (69), Eq.

(2.5.1), with single-precision arithmetic to ease the computational demands. Although

the conjugate gradients and Kaczmarz algorithms have similar convergence properties, the

latter is useful for tuning reconstruction parameters because the image estimate can be ob-

served on a time scale as fine as one data point backprojection at a time. By contrast, con-

jugate gradients requires a large matrix-vector product to be completed before an updated

estimator is available.

Phase mapping information is incorporated into the Kaczmarz reconstruction in two
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different ways. In the first case, the phase maps are weighted by the coil profiles and then

used directly to populate the encoding matrix, E, for Kaczmarz iterations. In the latter case,

the rows of the encoding matrix are calculated on the fly using normalized X, Y , and cali-

brated Z2 field shapes along with a “k-space trajectory” describing the timing and strength

of each SEM readout pulse1. Because close agreement is observed between the two sets

of images, the best-fit approach is chosen for the reconstructions performed in this chap-

ter for several reasons. First, the best-fit coefficients grant the investigator much greater

flexibility, permitting the synthesis of fields with any amplitude. This is useful if, for ex-

ample, the Z2 pulse amplitude changes between acquisitions. This flexibility also allows

the fields to be recalculated directly on any desired image grid, while the phase maps need

to be interpolated if the grid size does not match their dimensions. A second advantage of

the synthetic fields is that they are free from the noise present in the phase maps (though

this noise still impacts the best-fit coefficients that are used to calculate the synthetic fields).

Image quality is compared across Cartesian gradient echo, O-Space, and radial im-

ages for different acceleration factors. Radial images of size 256x256 with 256 spokes are

actually undersampled by a factor of π/2 according to the Nyquist criterion, but for pur-

poses of comparison with O-Space and gradient echo images, they are referred to here as

“R=1” datasets. For fairness of comparison, the radial images are reconstructed with the

Kaczmarz algorithm rather than one of the conventional multi-coil re-gridding approaches

(34, 35).

Cartesian gradient echo, radial, and O-Space images are compared in Fig. 3.17 for

the case of double-strength SEMs, with the center placement unmoved. The center place-

ment lies at r=4 cm and the FOV is 10 cm. The reference gradient echo is a fully-sampled

384×384 image. The radial and O-Space data are reconstructed to 512×512 to permit

small object features to be visualized. The radial and O-Space images approach the level

1For the rectangular pulses used here, with minimal eddy current distortion, the k-space trajectory for
each field component is simply a line.
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of detail showed in the gradient echo image, which uses 1.5 times more data. In under-

sampled reconstructions, noise quickly overwhelms the Cartesian SENSE image, while the

radial and O-Space images qualitatively seem to exhibit combination of noise amplification

and loss of resolution. The O-Space images are comparable to the radial images, a sign of

progress given the maturity of radial projection imaging and the novelty of the O-Space

approach. While this illustrates the success of the careful O-Space calibration, it is expected

that as O-Space methodology matures and any remaining sources of error are eliminated,

the images will improve relative to radial images, and will more clearly display the spatially-

variable resolution inherent to nonlinear SEMs.

3.5.1 In-vivo O-Space images

An in-vivo image comparison using a clenched human hand is shown in Fig. 3.18. The

center placement remains at r=4 cm in a 10 cm FOV, as in the previous figure, but with

the gradient strengths halved and the reconstruction grid set to 256×256. As in the phan-

tom images, undersampling results in elevated noise levels and blurring, but most of the

fine anatomical features remain visible at R=4, especially near the periphery, where the

quadratic SEM variation is greatest. The periphery is where receive coil arrays have the

best intrinsic ability to resolve, since receiver B1 sensitivities are higher near the elements.

This complementarity between quadratic SEMs and the SNR of coil arrays is an advantage

that O-Space imaging shares with schemes such as PatLoc.

95



3.5 Experimental results

Figure 3.17: Comparison of axial-plane (z=0) gradient echo, radial, and O-Space images of
an orange phantom. The top row compares a fully-sampled Cartesian image (384×384) with
256-spoke radial and O-Space images each reconstructed to 512×512. In subsequent rows,
the data are undersampled by 4-fold and 8-fold and reconstructed to the same image grid. FOV
is 10 cm.
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Figure 3.18: Comparison of axial-plane (z=0) Cartesian, radial, and O-Space 256×256 re-
constructions of the hand of a healthy volunteer acquired using the 8-channel RF array inside
the bore of the Z2 insert coil. Subjects were instructed to lean in from the rear of the scanner
bore and hold their hand inside the 12 cm Z2 insert assembly (shown in Fig. 3.1). The pa-
tient table was positioned so as to be within arm’s reach of the rear opening of the scanner bore.
For each acceleration factor, R, equivalent amounts of data are used in each of the three images
shown. A small B1 artifact is visible at the bottom of the imaged anatomy. FOV is 10 cm.
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3.6 Artifacts

3.6.1 Density of the encoding matrix

Fig. 3.19 shows the importance of choosing an appropriate reconstruction grid for O-Space

encoding schemes. In the lower-resolution O-Space image, a banding artifact arises from

intravoxel dephasing because the voxels described by the encoding matrix are too large.

Figure 3.19: From left to right, 6-cm FOV gradient echo reference image at 128×128, 256-
spoke O-Space dataset reconstructed to 128×128, and the same O-Space data reconstructed
to 256×256. The strengths of the Z2 and linear SEMs are 1360Hz/cm2 and 13, 196Hz/cm,
respectively, causing over 2π radians of phase evolution between neighboring voxels on the
128×128 grid.

The problem is solved by reconstructing the same data onto a higher-resolution im-

age grid. The disadvantage of this approach is that it requires longer reconstruction times

due to the enlarged encoding matrix needed to describe the encoding fields on a finer grid

of voxels1. The voxels in the reconstruction grid must be small enough to prevent the phase

spread within a voxel from approaching π radians. After reconstruction, the high resolution

image may be downsampled if a coarser resolution is desired for the final image.

1The time required to complete a Kaczmarz iteration grows linearly with the size of the encoding matrix
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3.6.2 Effect of field strength and timing errors

To explore the effect of timing errors between the actual and assumed Z2 pulse timing, im-

ages were deliberately reconstructed with a shift in the Z2 field’s “k-space” trajectory. This

was achieved by setting the time variable, t, to the wrong value in computing the encoding

matrix used for image reconstruction (see Fig. 2.9). Fig. 3.20 shows the effect of intro-

ducing a 10-point time shift, corresponding to 150 µs for the readout BW used (67 KHz).

This models an unusually high degree of imbalance between the dephasing and rephasing

pulses of the Z2 SEM, larger than one would typically encounter in practice, so it can be

considered a worst-case scenario.

The initial expectation was that timing errors would cause serious image degrada-

tion, as they do in conventional radial k-space trajectories. On the contrary, Z2 timing

errors were found only to introduce a quadratic phase on the reconstructed object. Be-

cause the timing and strength of the Z2 pulse is the same for each TR, errors in the Z2

pulse timing introduce a “k-space” shift vector (in the quadratic analogue of k-space). The

reconstruction algorithm treats this additional quadratic phase as belonging to the object

since it is not described by the encoding matrix. The situation would be more complicated

if O-Space imaging did not play the same Z2 pulse during every readout. If the amplitude

were to change between TRs, the image quality would be much more sensitive to pulse

timing errors. But for the present O-Space experiments, timing errors in the Z2 pulse were

ruled out as a source of harmful artifacts.

When the Z2 SEM field components are deliberately scaled by the incorrect amount,

such that mismatch exists between the applied field and the field modeled in the encoding

matrix, severe “double-ghost” artifacts result (also encountered in section 4.5.2). This sim-

ulation models the effects of an inaccurate calibration, underscoring the need for accurate

calibrations such as the phase mapping approach described in section 3.4.2.1. The ghost

appears to be a new species of MRI artifact not previously described in the literature. It is
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Figure 3.20: “Ghosting” and distortion occur when the wrong Z2 amplitude is deliberately
used during O-Space reconstruction. No ghosting occurs when the correct Z2 field amplitude
is used (10%), but even a 1% systematic error in the amplitude causes pronounced ghosting and
signal loss. By contrast, the effects of pulse timing errors are benign. Since theZ2 readout pulse
is the same for every TR, timing errors manifest only as a quadratic phase in the image, leaving
the magnitude image unaffected. The time shift modeled here is equivalent to 10 readout points
(150 µs).

characterized by two distorted copies of the object, one of them slightly contracted and the

other greatly enlarged (this can be seen more clearly in the images shown in Fig. 4.13). The

ghosts seem to arise from improper assignment of signals to frequency isocontours in the

reconstructed FOV. The sharper the Z2 variation in a given region of the FOV, the larger

the spatial displacement of the signals and the more expanded the ghost. This explains

why the inner ghost is only moderately smaller than the true object while the outer ghost is

substantially enlarged. Fortunately, the phase mapping calibration used in this study was

sufficiently accurate to avoid visible ghosting.

3.6.3 Problems at high Z2 strengths

In O-Space imaging, the center of the quadratic bowl moves through a sequence of radii,

rl =
|GZ2 |√
G2

Xl
+G2

Yl

, for center placements enumerated by l = 1...L. When the Z2 SEM pulse

is paired with a radial trajectory playing on the linear SEMs, as it is for all O-Space images

shown in this thesis, the center placements simple lie on a ring of constant radius. When the
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Z2 SEM is strong relative to the linear SEMs, the center placements are brought well within

the boundaries of the object. Although this induces no discernible artifacts in simulations,

it causes a pronounced radially-oriented banding artifact in experimental images. For the

images shown in Fig. 3.21, O-Space images with center placements just outside the object

show no artifacts, while those with center placements inside the object show severe banding.

Figure 3.21: O-Space reconstructions in a 10 cm
FOV with 10% (left) and 20% Z2 strengths us-
ing identical linear SEM trajectories. This corre-
sponds to center placement radii of 4.5 cm and
2.25 cm, respectively. The latter CP produces
banding artifacts in experimental images that do
not appear in simulations of the same encoding
fields.

Because this artifact does not ap-

pear in simulations, it seems unlikely that

it is attributable to a lack of encoding

at the center of the quadratic bowl. Al-

though it is true that no encoding oc-

curs at the center of a given individ-

ual center placement, all other center

placements will provide encoding at this

voxel.

Efforts to eliminate the banding ar-

tifact by tweaking the SEM calibration

have so far been unsuccessful. Attempts

have been made to reduce the banding

by tweaking the Z0 as well as Z2 compo-

nents of the phase map calibration for the quadratic field, to no avail. The artifact also

persists when the resolution is increased (as in Fig. 3.19), ruling out intravoxel dephasing

as a possible source. The cause of this artifact therefore remains an open problem. Until

a solution is found, center placement location will remain a constraint on practical imple-

mentation of O-Space imaging, with the best performance provided by CPs located outside

the object.
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3.7 Convergence properties of the Kaczmarz algorithm

One of the central questions in any iterative reconstruction problem is when to stop the it-

erations and accept the image as having “converged”. For the Kaczmarz method, one must

also choose a value between 0 and 2 for the relaxation parameter, λ1. Iterative regulariza-

tion such as the Kaczmarz method have some “intrinsic” regularization due to the fact that

with increasing numbers of iterations, the estimator tends to become less biased and more

noisy. It is not easy to define the iteration for which the image has “converged”, since extra

iterations can always be computed, producing some minute change in the image. Most it-

erative algorithms are characterized by a classic trade-off between bias and noise, described

by Fig. 3.22 below. In medical imaging, the question of convergence arises in multiple

different modalities for a broad class of algorithms including conjugate gradients (97) and

iterative expectation maximization (98) in addition to the Kaczmarz method used here.

To study the convergence properties of experimental in vivo O-Space images, the

data shown in Fig. 3.18 was reconstructed using a variety of λ values for between 1 and 15

iterations. The plot in Fig. 3.22 shows the percentage change in mean voxel energy from

one iteration to the next, with the first iteration omitted because the change is relative to an

initial image of zeros. Convergence is quantified using the fractional change in mean voxel

energy,

δn,λ = Ex

∥ m̂2
n ∥ − ∥ m̂2

n−1 ∥
∥ m̂2

n−1 ∥
(3.7.1)

where n indexes the iteration and Ex is the expectation operator, calculated as a simple av-

erage over all voxels. The initial estimator, m0, is taken to be an image of all zeros. Not

surprisingly, for large values of λ, the algorithm approaches steady state more quickly than

1The conjugate gradients algorithm does not typically require a relaxation parameter, but one must still
choose how many iterations through the encoding matrix to compute.
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3.7 Convergence properties of the Kaczmarz algorithm

for small values. Inset against the plot are representative images for a few points on the

plot. For the case of a small λ value of 0.01, m̂ is qualitatively quite blurry on the 2nd it-

eration and becomes gradually sharper and noisier as the iterations progress. By contrast,

after only 2 iterations, the λ=.5 reconstructions are already quite noisy.
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Figure 3.22: Convergence of the Kaczmarz algorithm based on the metric in Eq. (3.7.1) as a
function of relaxation parameter λ. Representative images show a clear tendency for noise and
bias to increase and decrease, respectively, as more iterations are used. Images appear blurry
in the first few iterations when small values of λ are used. But for larger λ values, iterations
beyond a certain point contribute primarily noise to the estimator.

To further quantify the performance of the Kaczmarz algorithm, regions are defined

used for computing the signal (yellow) and noise (red) levels as shown in Fig. 3.23. Be-

cause coil profiles are only available within the circular ROI defined by a radius of 4 cm, the

reconstruction problem outside of this circle is ill-defined and characterized by high noise

levels. This outlying region is therefore ignored for purposes of the analysis and in practice
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3.7 Convergence properties of the Kaczmarz algorithm

should be excluded from images with a mask.

Figure 3.23: The ROIs defined for computing
signal (yellow) and noise (red) statistics. Note
that signal and noise are both computed in the cir-
cular region for which coil profiles are available.
Outside this region, coil profiles can not be ac-
quired, so the reconstructed voxels are meaning-
less.

The following metrics are used to

assess the properties of O-Space image

estimators:

• The average intensity, µ, within

the signal ROI (yellow), normal-

ized relative to the mean intensity

over the entire circular FOV;

• The average standard deviation,

σ, of the noise in the background

noise ROI (red), also normalized

relative to the mean intensity in cir-

cular FOV;

• The signal-to-noise ratio, com-

puted as SNR = µ
σ

.

• L2-norm, the total intensity of the

image, defined using the complex

modulus, ∥ m̂ ∥2=
√∑N2

ρ=1 |mρ|2.

These metrics are shown in Fig. 3.24. The signal intensity of the yellow ROI, µ, is

normalized relative to the mean intensity in the circular FOV for ease of display. The noise

standard deviation is also normalized relative to the mean signal level so that its plotted val-

ues can be referenced against a mean signal intensity of unity. For all values of λ, the signal

levels off1 after a few iterations while the noise continues to grow steadily. This causes the

1While some variation exists between steady-state signal levels as a function of λ, the differences are small
compared to the variation among the corresponding noise levels at each iteration.
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3.7 Convergence properties of the Kaczmarz algorithm

SNR plot to fall off consistently as the algorithm iterates. Comparing the convergence and

SNR plots, it is clear that a trade-off is required between using too few iterations, which

may be inadequate to resolve all image features, and too many iterations, which reduce the

SNR by introducing unnecessary noise.
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Figure 3.24: Variation in image statistics as a function of relaxation parameter λ and number
of Kaczmarz iterations. Use of a small relaxation parameters provides the minimum-norm least
squares estimator, providing superior SNR according to the metric used here. See text for more
details.

Initially, the chosen stopping rule was to iterate until the mean change in intensity

was less than 5%. However, a better approach is to use the signal vs. noise curve in Fig.

3.25. For small values of λ, there is a knee in the curve beyond which further iterations

contribute mostly noise without increasing signal levels (at least for the chosen signal and

noise regions used in this study). These curves also help compare the convergence achieved
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3.7 Convergence properties of the Kaczmarz algorithm

by different values of λ. For the knee points indicated in the red circle, nearly the same sig-

nal/noise point is reached in 5 iterations whenλ=0.01 but only 2 iterations whenλ=0.025.

The limitation of this plot is that it only considers one signal ROI and one noise ROI in the

FOV. A more detailed study of the (possibly spatially-varying) convergence properties of

O-Space images is reserved for future work.
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Figure 3.25: Mean signal level in the object ROI
is plotted versus mean noise standard deviation
in the background ROI from Fig. 3.23. Consis-
tent with the SNR plot in Fig. 3.24, the images
reconstructed with smaller values of λ achieve
equivalent (or greater) signal levels with less
noise. The knee of the curves is used to provide a
stopping point for the reconstruction, since fur-
ther iterations introduce significant amounts of
noise without appreciable enhancement of the
signal. For the stopping points shown in the red
circle, a slightly larger λ value (0.025) achieves
the same noise statistics in 2 iterations that re-
quire 5 iterations when λ=0.01.

In addition to defining a stopping

criterion, it is necessary to choose a value

to use in practice for the relaxation pa-

rameter. For very small λ – a condition

known as strong underrelaxation – the al-

gorithm requires a few more iterations for

the signal to approach a steady state value,

as compared with larger values of λ. For

λ=0.01, the small change in mean sig-

nal and the qualitative high image qual-

ity above ~6 iterations shows that conver-

gence has been achieved without elevated

noise levels. This regime corresponds to

the minimum norm least squares estima-

tor, consistent with the plot of the L2-

norm in the figure. The Kaczmarz method

has previously been shown to converge

to the minimum-norm estimator in the

strongly underrelaxed limit, with a proof provided in (72). In conclusion, while the Kacz-

marz method is in principle stable for 0 < λ < 2, in practice when using noisy data and

an inconsistent matrix problem, the strongly underrelaxed reconstructions provide the best

trade-off between noise and bias, at the expense of longer computation time. Use of a small
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3.7 Convergence properties of the Kaczmarz algorithm

λ also allows the user to fine tune the trade-off between noise and bias, reducing the likeli-

hood that the image will overshoot the desired stopping point in the iterations.

3.7.1 Computational burden

Strongly underrelaxed Kaczmarz reconstructions take longer to converge, requiring addi-

tional processor time. Such reconstructions can not be performed in real-time on a clinical

MRI scanner using a conventional processor. Fortunately, the Kaczmarz method can be

easily implemented on parallel processors using a method called “string averaging” (99).

In this approach, the encoding matrix is broken up into P equal sized segments, each of

which is used by a separate processor to perform backprojection of the corresponding data.

After each processor has cycled through all rows residing in its segment, all P resulting es-

timators for m̂ are averaged. The resulting estimator is used for the next iteration through

the encoding matrix. The process repeats on each processor, providing a convergent es-

timator in as little as 1/P the time required for computation on a single processor. This

approach is particularly powerful when paired with Graphics Processing Units, or GPUs,

which have recently attracted interest for computationally demanding MRI reconstructions

(100, 101). GPUs typically have dozens or even hundreds of independent cores that are

designed to perform fast floating point operations. By partitioning the encoding matrix

into a large number of strings, Kaczmarz reconstruction times could be reduced by two or-

ders of magnitude. However, GPU implementation of the Kaczmarz method lies beyond

the scope of the current study.

3.7.2 Moving beyond the L2-norm in O-Space imaging

Regularization in this work can be performed in two ways. The first is to use the “intrinsic

regularization” of the iterative Kaczmarz method by choosing the number of iterations and

the relaxation parameter so as to reach a desired point in the bias-noise convergence curve.
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The second is to modify the Kaczmarz method to incorporate an explicit penalty on the

norm of the image estimator m̂. This latter approach was used unsuccessfully in a previous

section to suppress artifacts caused byB0 inhomogeneity. The regularization prior was able

to limit artifact propagation, but only at the expense of introducing an unacceptable blur.

Both of these methods, which can be used in combination, both have the effect of trading

off between noise and bias, in the second case by explicitly imposing a penalty on the L2-

norm of the image estimate.

Many other priors have been widely used in the image reconstruction community.

The most immediately relevant to O-Space image reconstruction, and MRI more gener-

ally, is the L1-norm, which penalizes the sum of the absolute value of the coefficients in the

image estimate: ∥m̂∥1=
∑

ρ |mρ|. In contrast to the L2-norm, which tends to work as a

smoothing operator, the L1 norm has the potential to reduce noise while preserving edges.

A simple illustration of this is to consider two neighboring voxels with intensities [ 2 0 ]. Let

Gaussian noise be added to each voxel’s representation in encoding space. Both the L1 and

L2 norms will tend to suppress the noise. But minimizing the L2-norm during reconstruc-

tion will also have the effect of smoothing the discontinuity between the two voxels in an

attempt to reduce theL2-norm from 4 toward 2. TheL1 norm, however, has no “incentive”

to smooth the discontinuity from [ 2 0 ] toward [ 1 1 ] because both have the same L1 norm.

The L1 norm has been successfully used in reconstructing undersampled radial data

(35), which benefits from having artifacts that are less coherent that those produced in un-

dersampled Cartesian images. Radial images were found to benefit both from denoising

and from streak artifact suppression. The artifacts in O-Space imaging are arguably even

less coherent than those in radial imaging, so O-Space benefits stand to reap even greater

benefit from use of theL1 norm. Another application of this norm is in compressed sensing,

where it is used to enforce sparsity in a domain where the object is naturally sparse, such as

the wavelet domain. The reconstruction then favors large coefficients in this sparse domain
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while truncating small coefficients that primarily represent image noise, permitting high-

SNR, highly-accelerated image reconstruction (102, 103). To explore these interesting

possibilities, future work in O-Space image reconstruction will include use the L1-norm

as a way to reduce image noise while preserving object edges. A version of the Kaczmarz

method that incorporates the L1-norm is presently being sought.
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4

Phase Scrambling and the Fractional

Fourier Transform

4.1 Generalizing the Fourier transform

Chapters 2 and 3 have introduced the concept and experimental realization of O-Space

imaging with quadratic fields. The present chapter changes gears to explore other uses of

the Z2 insert coil for localized and/or accelerated spatial encoding, as well as an alternative

framework for reconstructing O-Space data:

• Quadratic field “lensing” for scalable FOVs with no aliasing;

• Gradient localization (GradLoc) for imaging a desired region of interest within the

FOV;

• Reconstruction of O-Space data using the variable-order Fractional Fourier trans-

form (FrFT).

Two of these applications take advantage of a generalization of the Fourier transform known

as the Linear Canonical Transform, or LCT (104). The first order of business is to intro-
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4.1 Generalizing the Fourier transform

duce this operator and explain its connection to MRI acquisitions that use nonlinear SEMs.

4.1.1 The Linear Canonical Transform

The Linear Canonical Transform is a unitary integral operator based on a quadratic expo-

nential kernel:

Ka,b,c,d(u, ρ) =

√
1

ib
exp

(
iπ

(
d

b
ρ2 − 2

b
ρu+

a

b
u2

))
(4.1.1)

where u is a unitless normalized spatial coordinate, u = x
√
N

FOV
(given N voxels in the

FOV), and ρ is a normalized frequency-domain coordinate. For a normalized object f(u),

the explicit form of the LCT integral is

LCTa,b,c,d(ρ) =

√
1

ib

∫
exp

(
iπ

(
d

b
ρ2 − 2

b
ρu+

a

b
u2

))
f(u)du (4.1.2)

The LCT operator is more succinctly described by a 2× 2 ABCD matrix,

MLCT =

a b

c d

 (4.1.3)

The ABCD matrix causes affine transformations of a function’s time-frequency represen-

tation, or Wigner distribution (104). This representation is a spectrogram of the object

in which the horizontal axis represents time or space (typically) and the vertical axis rep-

resents frequency. The magnitude or phase of an object can then be plotted in the third

dimension or using a color scale. The following three instances of the LCT are important

to the present discussion:
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Rotation ⇒ The Fractional Fourier transform (FrFT) is defined as a rotation angleα on

[−π, π]. At α = 0, the FrFT reduces to the identity operator, while at α = π/2 it becomes

the Fourier transform. At α = 2π, the FrFT reproduces the object inverted through the

origin, as shown in Fig. 4.1.

FrFTα {f} (ρ) =
√
1− i cot(α)eiπ cot(α)ρ2

∫
e−i2π csc(α)ρueiπ cot(α)u2

f(u)du

MFrFTα =

 cos(α) sin(α)

− sin(α) cos(α)


(4.1.4)

Shear along spatial axis⇒The Fresnel transform, which describes optical free-space diffrac-

tion. The Fresnel transform can also be described as a convolution of the source with a

quadratic “chirp” kernel.

Fresnelr {f} (ρ) =

√
1

ir

∫
eiπ(ρ−u)2/rf(u)du = f(ρ) ∗

√
1

ir
eiπρ

2/r

MFresnelr =

1 r

0 1


(4.1.5)

Shear along frequency axis ⇒ Corresponds to multiplication by a chirp function. This op-

eration describes passage through a thin lens in an optical system.

Chirpq {f} (ρ) = f(ρ)e−iπqρ2

Mchirpq =

 1 0

−q 1


(4.1.6)

For the FrFT, the rotation angle varies between −π and π, with values outside this

range repeating the behavior in this interval modulo 2π. For α = 0, the FrFT reduces to
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the identity operator. The Fourier transform corresponds to the special case of complete

rotation into the frequency plane, with α = +/− π/2,

FT {f} (ρ) = e−iπ/4

∫
f(u)e−i2πuρdu

MFT =

 0 1

−1 0


(4.1.7)

Optical wavefronts propagating in free space can be described using quadratic phase

functions (105). Using the Fresnel transform, the complex-valued wave at a given distance

from the source is calculated by convolving the source with a quadratic kernel describing

the diffracting spherical wavefront. To a first-order approximation, the effect of a thin lens

is to impart a quadratic phase to a wavefront that causes it to either diverge away from

or converge toward a focal point. This is equivalent to a chirp multiplication such as that

shown above. Together, lenses and free space propagation are illustrated by the optical

system in Fig. 4.1, which can be modeled using LCT operators.

Figure 4.1: Optical system consisting of a light source, free space propagation, thin lenses, and
an image plane. The effect of each part of the system on the wavefront can be modeled using
the linear canonical transform and its daughter functions. Reproduced from (106).

Using multiple LCT matrices to model the effects of free space propagation and pas-

sage through a thin lens, the optical wavefront can be calculated at any plane in the system

(104).
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Like the Fourier transform, the LCT is a unitary operator. The unitarity of the LCT

can be proved by showing that inner products are preserved by the transform. Consider

two arbitrary functions f and g:

∫
f(u)g∗(u)du =

∫ [∫
Fa,b,c,d(ρ)Kd,−b,−c,a(ρ, u)dρ

]
g∗(u)du

=

∫ ∫
Fa,b,c,d(ρ)g

∗(u)Kd,−b,−c,a(ρ, a)dudρ

=

∫ ∫
Fa,b,c,d(ρ)g

∗(u)Ka,−b,−c,d(u, ρ)dudρ

=

∫ ∫
Fa,b,c,d(ρ)g

∗(u)K∗
a,b,c,d(u, ρ)dudρ

=

∫ ∫
F (ρ)G∗(ρ).

(4.1.8)

This result is a generalization of Parseval’s relation, familiar from Fourier theory, to the

LCT operator. Unitarity implies that the inverse of an LCT operator is simply its complex

conjugate transpose, a property which holds both for the LCT’s integral operator as well as

for its matrix representation.

4.2 Lensing with quadratic encoding fields

Just as the LCT and its daughter transforms can be used to model optical system, so too can

they describe the effect of quadratic phase modulations in MRI. Scalable reconstructions

have been achieved through the addition of a “phase scrambling” quadratic SEM pulse to

a conventional Cartesian pulse sequence. Phase scrambling has previously been used for

dynamic range compression (107) since it changes the echo time on a voxel-by-voxel ba-

sis, spreading signal away from the peak of the echo. But the applied quadratic phase also

mimics the effect of an optical system consisting of thin lenses and free space propagation,

such as that shown in Fig. 4.1. The quadratic phase enables reconstruction of alias-free
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images from undersampled data using the Fresnel transform (108, 109) or the chirp-Z

transform (110). The resolution of the final image is still determined by the coverage of

the acquired k-space lines in the frequency domain, but the technique enables flexible re-

construction using a single dataset, potentially benefitting localizer scans in MRI protocols.

Figure 4.2: Pulse sequence used for scalable-FOV
lensing using phase scrambling quadratic pulse.

Phase scrambled MRI data can be

cast as a Fresnel transform (free-space

propagation) in combination with multi-

plication by chirp functions (thin lens).

This permits fast reconstruction either

via convolution with a chirp kernel (109)

or via inverse filtering in the Fourier do-

main (108). The image is then multi-

plied by the same chirp function, evalu-

ated in spatial coordinates, to remove any

residual quadratic phase.

In the present work (111), we show that phase-scrambled MRI data can be described

as the Fractional Fourier transform of the object. The relationship between the FrFT and

Fresnel transforms is demonstrated using ABCD matrices. We then present scalable MR

images acquired using the Z2 insert coil and reconstructed via the FrFT. In previous work

on phase scrambled reconstruction, the quadratic SEM moment was applied using low-

power shim coils, necessitating the use of impractically long TE times (108, 109).

4.2.1 Phase scrambled MRI signal

Assume that an object f(u) is imaged using a Cartesian sequence (Fig. 4.2) with a quadratic

trapezoidal pulse of strength −γH applied for τ seconds prior to readout, giving a pulse
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moment − γHτ . Let u be a unitless spatial coordinate as defined in Eq. (4.1.1) and k be

the conventional k-space coordinate. In the discrete case used for practical computation, u

and k are both normalized, such that k = u = [−N/2, N/2 − 1]/N , for a FOV with N

voxels.

For the 1-D case, the MR signal in the presence of a quadratic SEM moment is

s (k(t)) =

∫
exp

(
−i2π

(
k(t)u+ γHτu2

))
f(u)du (4.2.1)

where γHτ is quadratic SEM moment. The signal equation can be recast in the form of the

FrFT by setting

ku = ρ csc (α)

α = cot−1 (−2γHτ) .

(4.2.2)

The following chirp multiplier is also required to complete the square,

fα(ρ) =
√

1− i cot(α) exp
(
iπ cot(α)ρ2

)
s (k(t)) (4.2.3)

With these substitutions and post-multipliers, the signal takes the form of the FrFT,

fα(ρ) =
√

1− i cot(α) exp
(
iπ cot(α)ρ2

) ∫
exp

(
−iπ

(
2ρu csc(α) + u2 cot(α)

))
f(u)du

(4.2.4)

where ρ varies over time during data acquisition while linear SEMs are being applied. Care

must be taken to evaluate the chirp function at the values of k where data is taken. The

modified signal now represents theαth order FrFT. As such, the object can be reconstructed
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without quadratic phase via the inverse operation: the FrFT of order −α.

Figure 4.3: The Fresnel transform and FrFT can both be used for scalable reconstruction. The
Fresnel transform is equivalent to the FrFT when combined with chirp multiplication of suitable
strength.

The equivalent steps for FrFT and Fresnel image scaling are shown in Fig. 4.3. If the

acquired signal is multiplied by the appropriate chirp function, the signal equation is recast

in the form of a FrFT or a convolution with a Fresnel chirp kernel. In the Fresnel approach,

image reconstruction proceeds via a deconvolution with the Fresnel kernel, realized either

as convolution with the complex conjugate of the kernel (109) or via the inverse filtering

method in the Fourier domain (108).

In the present work, we perform the same operations using the FrFT, exploiting the

fact that LCT matrices can be decomposed into multiple elementary LCT operations. The

FrFT of order α can be decomposed into three LCT matrices (104): a chirp multiplication,

a Fresnel transform, and a second chirp multiplication,

 cosα sinα

− sinα cosα

 =

 1 0

cotα− cscα 1


1 sinα

0 1


 1 0

cotα− cscα 1

 (4.2.5)
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In the optical analogy, the phase scrambling of MRI data is equivalent to passage

through a thin lens followed by free space propagation followed by passage through a sec-

ond thin lens. This combination of is described more succinctly in a single operation using

the FrFT. To summarize, the phase-scrambled signal in Eq. (4.2.1) can be put into the

form of the FrFT through chirp multiplication, shown in Eq. (4.2.3), where α and ρ are

set (Eq. (4.2.2)) to match the definition of the FrFT in Eq. (4.1.4).

Care must be taken to evaluate the chirp function at values of ρ which correspond to

the values of k in the signal s (k (t)), i.e., the chirp must be evaluated at k = csc(α)ρ. The

image is then reconstructed using the FrFT of angle α. To scale the image by factor ζ, the

chirp multiplier in Eq. (4.2.3) is changed to exp (iπζ cot(α)ρ2). To reconstruct a properly

“focused” image, the FrFT with the new angle

αs = cot−1(ζ cot(α)) (4.2.6)

must be performed. Setting ζ > 1 results in less quadratic phase across f(ρ), essentially

“tricking” the FrFT into reconstructing the object within a larger FOV. This model is read-

ily generalized to two dimensions.

4.2.2 Experiments

Data were acquired on a Siemens Trio 3T scanner equipped with a high-power 12 cm SEM

insert coil capable of generating the Z2 spherical harmonic, G (x, y, z) = z2 1
2
(x2 + y2),

providing the desired quadratic variation in the transverse plane. Images of size 64 × 64

were acquired with a uniform-sensitivity “birdcage” coil (112) using a gradient echo se-

quence (TE = 6 ms; aliased FOV = 3 cm). For the scaled images shown below, a quadratic

field of 3.5 KHz/cm2 was pulsed for 550 µs prior to readout, corresponding to the FrFT
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order of α = 0.34π. The FrFT was performed using a fast Matlab code made available by

(113).

Figure 4.4: Illustration of FrFT reconstruction from phase scrambled data. Without lensing,
two of the water tubes extend beyond the FOV and alias back into view on the other side of
the image. When quadratic phase modulation is applied during the experiment, the image may
be scaled using the FrFT to bring all objects within the FOV. The amount of scaling depends
on the order of the FrFT used. The scaling range is limited by the amount of applied phase
scrambling.

This work demonstrates the equivalence of Fresnel deconvolution and FrFT process-

ing for obtaining scalable unaliased images from phase-scrambled data. The concept is

proved with scalable reconstructions of short-TE data obtained using a dedicated high-

power quadratic gradient insert.

Interestingly, if the phase scrambled data are reconstructed with the FT instead of

the FrFT, a localized image results. This effect was first demonstrated by (114) and repre-

sents and alternative but potentially more useful application of quadratic phase scrambling

SEMs. Gradient localization, known as “GradLoc”, is discussed further in the next section.
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4.3 Phase scrambled FOV localization (GradLoc)

Spatial encoding magnetic fields (SEMs) with quadratic or hyperbolic shapes have been

proposed for imaging using multipolar pairs of fields (10), localizing NMR spectra (115),

and exciting curvilinear regions using RF pulses (116, 117). Nonlinear SEMs have also

been used to traverse k-space in a voxel-specific way (88) for parallel RF transmission

schemes (55), which are useful for shape selection excitation and for improving B1 ho-

mogeneity. Quadratic phase RF pulses have also been used to selectively refocus thin layers

of a slice (118). More recently, phase scrambling has been shown to enable gradient local-

ization (GradLoc) of signals from a target ROI within the larger FOV (114). Localization

is achieved by applying quadratic modulation prior to readout in a conventional Cartesian

pulse sequence. This is the same approach used in the preceding section on scalable-FOV

imaging, except in this case the aim is to spoil signals residing outside the target ROI. The

SEM pulse moments are correspondingly stronger in this case. The quadratic SEM pulse

is governed by the relation γHτ = kmax/∆ROI , where ∆ROI is the size of the target ROI,

τ is the pulse length, and γH is the SEM field strength.

The SEM pulse in GradLoc has the effect of convolving the object’s spectrum with a

Gaussian kernel, spreading out the spectral energy and causing the spectrum to resemble

the object in a 1-to-1 mapping (114). As pointed out in (114), quadratic fields are well

suited to GradLoc because the k-space shifts are linear and proportional to the applied SEM

pulse moment. As shown in Eq. (2.3.3), nonlinear SEMs apply a spatially-variable k-space

shift vector to each voxel’s k-space trajectory. If the applied nonlinear pulse moment is large

enough, a given voxel’s k-space trajectory may be translated outside the acquired k-space

region. This shifts the voxel’s echo so that it occurs outside the readout window so that

refocusing does not occur, spoiling most of the voxel’s contribution to the acquired signal

(114). Seen another way, the phase scrambling SEM shape is scanned across the desired

ROI by the linear SEMs as the pulse sequence plays, dephasing spins that reside outside this
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region. One drawback of the method is that at least part of a spoiled voxel’s echo still resides

in the readout window, contributing high spatial frequency information for the voxel that

can cause artifacts.

Figure 4.5: As the phase-scrambling SEM moment grows, signal from progressively smaller
regions can be acquired without aliasing. With phase-scrambling, the k-space data take on a
coarse resemblance to the object.

GradLoc permits reduced FOV imaging, thus enabling (a) faster acquisition of the

desired ROI at equivalent resolution or (b) higher resolution acquisition of the ROI in

equivalent time. The approach has been demonstrated experimentally (114) using second-

order PatLoc fields that vary only in two dimensions, i.e., hyperbolic fields that vary as 2xy

and x2−y2. The primary aim of the present work is to extend the utility of GradLoc to 3-D

SEMs such as the Z2 spherical harmonic, which varies as GZ2(x, y, z) = z2 − 1
2
(x2 + y2).

The Z2 has advantageous properties from a coil designer’s perspective and has already

found promising applications for spatial encoding, including those presented previously in

this thesis as well as emerging methods from other research groups (119). The quadratic

axial-plane variation of this SEM is ideally suited to performing GradLoc. This is clearly

illustrated by the images in Fig. 4.5, which are based on the same data used to reconstruct

the scaled images in the previous section. The only difference is that the images in this case

are reconstructed via FFT instead of FrFT1.
1For the GradLoc images in Fig. 4.5 the data are also multiplied in k-space by a Gaussian window to limit

Gibbs ringing arising due to the k-space truncation cased by the quadratic SEM.
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The drawback to using the Z2 field for GradLoc is that the SEM varies twice as

strongly in the z-direction as it does within the axial-plane. Because the phase scrambling

pulse is not refocused, this through-slice field causes extensive dephasing, similar to that

shown in Fig. 3.12 in relation to field mapping of the Z2 SEM. This dephasing seriously

degrades the acquired signal even for thin slices at small z-offsets or typical slice thicknesses

with no offset (Fig. 4.6).

Figure 4.6: Signal level as a function of slice offset and thickness. The Z2 causes dephasing
in the through-slice direction, severely reducing the signal level at offset of only z=2 mm. The
calculation shown assumes a phase scrambling SEM sufficient to acquire signal from an ROI
measuring 1

2 of a 10 cm FOV in each dimension.

The primary goal of the present study is to investigate the use of a quadratic-phase RF pulse

in combination with a conventional slice select SEM to precompensate for the through-slice

phase applied by the Z2 SEM. As a secondary goal, we investigate the use of SENSE parallel

imaging in combination with GradLoc to image target ROIs at high acceleration factors.

A quadratic phase RF pulse is designed using the low flip angle approximation. The

target slice profile is assumed to be a rectangular slab with quadratic phase equivalent to

that applied by the phase-scrambling SEM, but with opposite sign (Fig. 4.7). The Fourier
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transform is used to calculate an RF pulse that will produce approximately this desired slice

profile. GradLoc images of target ROIs are acquired in the axial-plane using the Z2 SEM

coil. The 8-channel transmit-receive array (Fig. 3.5) is nested within the bore of the SEM

insert coil and used for RF excitation and reception. Coil profiles in the target ROI are

obtained from fully-sampled GradLoc images based on the adaptive method in (41) (Fig.

4.8).

Figure 4.7: Comparison of measured slice profiles acquired using a conventional RF pulse
(left) and quadratic-phase RF pulse (center). The quadratic-phase pulse applies a through-
slice phase (simulated at right) to precompensate the phase that will be applied by the Z2 SEM
prior to readout. The edges of the slice are indicated by the red dotted line. Example shown is
a 3 mm slice at z=0.

The conventional GradLoc pulse sequence from Fig. 4.2 is modified to include the

quadratic phase RF pulse (Fig. 4.9). For offset slices, the amplitude of the slice select SEM

is increased in order to shift the center of the quadratic phase profile produced by the RF

pulse. Similarly, linear SEMs pulsed prior to readout may be used to shift the GradLoc ROI

within the FOV. To test the efficacy of SENSE reconstruction, GradLoc data are undersam-

pled in k-space and the resulting images are unaliased using SENSE (1).
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Figure 4.8: Coil profiles are obtained from fully-sampled GradLoc images in the 5 cm ROI for
an orange phantom. Some residual aliasing is present due to the highly variable flip angle of
the transmit-receive RF array used.

GradLoc images with 4 mm slice thickness are successfully acquired (Fig. 4.10) us-

ing the Z2 SEM along with the quadratic-phase RF pulse for slice-phase precompensation.

SENSE reconstructions are performed in a GradLoc ROI (Fig. 4.11) in one quarter of the

original FOV, yielding a net acceleration factor of 2R, where R is the k-space undersam-

pling factor. SENSE image quality degrades more quickly than would be expected based

on the number of available receive RF coils. This is likely due to the fact that only 4 out of

the 8 RF coils have significant spatial variation and B1 sensitivity within the GradLoc ROI.

As already demonstrated previous to this work, GradLoc is a promising alternative

to Transmit SENSE for achieving localized acquisitions, circumventing the complexity of

Transmit SENSE and the safety limits on RF power deposition that arise when using shape-

selective RF pulses. The present work shows that parallel imaging may be combined with

GradLoc to image local ROIs with high net acceleration factors as compared with imaging

the full FOV. We also show that GradLoc may be performed using 3-D SEMs if care is

taken to compensate for through-plane dephasing using a tailored RF pulse. Future efforts

will seek to refine the RF pulse to more closely match the phase imparted by the Z2 SEM.

Auto-calibrated reconstructions such as GRAPPA (43) will also be explored as alternatives

to the use of fully-sampled GradLoc images for obtaining SENSE coil profiles. The Z2
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4.3 Phase scrambled FOV localization (GradLoc)

Figure 4.9: GradLoc pulse sequence based on a Cartesian gradient echo sequence. A quadratic
phase RF pulse is used to precompensate the through-slice phase applied by theZ2 phase scram-
bling SEM. The GradLoc window size is determine by the quadratic SEM pulse moment, while
the offset depends on the orange lobes of the linear SEMs, which serve to shift the center of
the quadratic bowl. The additional green lobe of the slice select SEM shifts the quadratic phase
along Z if a slice offset is used (similar to the illustration in Fig. 2.4).
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4.4 Compressed sensing with quadratic modulation

Figure 4.10: GradLoc images of a kiwi with a 7 cm FOV (left), a 3.5 cm FOV with the same
voxel size (center), and an ROI offset using extra linear SEM pulses prior to readout.

SEM will also be tested for GradLoc imaging in the sagittal and coronal planes, albeit with

rectangular instead of square ROIs.

4.4 Compressed sensing with quadratic modulation

Because quadratic phase modulation in the image domain becomes a convolution of the ob-

ject’s spectrum with a Gaussian kernel, phase scrambling has the effect of making the spec-

trum less sparse. This has been shown to improve image reconstruction from randomly-

undersampled k-space data using a sparsity constraint (120). By spreading out the object’s

energy in k-space, phase scrambling reduces the mutual coherence between the sensing ba-

sis (k-space basis) and a given sparse basis (often a wavelet basis). In principle, this re-

duces the number of k-space coefficients required for accurate recovery of the image. The

Yale MRRC Z2 insert coil provides an excellent platform for exploring this approach to

compressed sensing. Previously, only single-coil experiments have been shown. In future

work, we hope to explore this topic using multi-coil data acquired using the Z2 insert coil.

4.5 Variable-order FrFT
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Figure 4.11: (a) Reference image of an orange
(256×256, 10 cm FOV) and (b) fully sampled
GradLoc image (128×128, 5 cm FOV). SENSE
parallel reconstructions of undersampled Grad-
Loc images are shown with R=2 (c) and R=4 im-
ages (d), effecting net acceleration factors of 4 and
8, respectively.

Previous sections in this chapter have dis-

cussed the utility of adding a quadratic

phase scrambling pulse to a Cartesian

sequence prior to readout. This phase

modulation was found to enable either

scalable-FOV imaging or selective acqui-

sition of a target ROI, depending on the

amount of applied quadratic phase and

the chosen reconstruction method. In

this section, the Fractional Fourier trans-

form (FrFT) is discussed in relation to

quadratic pulses played during readout -

in other words, O-Space imaging. Iter-

ative O-Space reconstructions based on

the full encoding matrix have been shown to be sensitive to systematic errors in the encod-

ing matrix arising from B0 drift, local B0 inhomogeneity, and field calibration errors. An

alternative reconstruction based on the variable-order FrFT VO-FrFT) holds the potential

to be less sensitive to these systematic errors, translating the errors into geometric distor-

tions instead of phase cancelations. This robustness arises from the fact that the VO-FrFT

operates as a transform instead of a matrix solver. The promise as well as the limitations of

the VO-FrFT will be demonstrated on empirical data.

4.5.1 Analytical model for O-Space signal equation

The FrFT has recently been used as an analytical approach to correcting B0 inhomogeneity

during image reconstruction (121). Often local inhomogeneities can be approximated as

quadratic functions in two dimensions. The quadratic inhomogeneity causes spin phase
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evolution that can be modeled as an FrFT whose order changes at each time point follow-

ing RF excitation of the spins. The SEM used for spatial encoding in O-Space imaging

can be modeled as a very strong inhomogeneity that is switched on and off during a pulse

sequence. This invites exploration of the VO-FrFT as a way to perform O-Space image re-

construction (122).

In previous chapters, “brute force” iterative matrix solvers were used for O-Space re-

construction. Because they require explicit calculation of an encoding matrix of size nKnc×

N2, iterative approaches such as conjugate gradients and the Kaczmarz method are compu-

tationally demanding. They are also highly sensitive to inconsistency in the matrix equa-

tions arising from off-resonance effects or systematic errors in calibration. The FrFT offers

the prospect of a faster reconstruction with greater robustness to calibration errors.

Recall that the FrFT integral operator, FrFTα, is defined in one dimension as:

FrFTα {f} (ρ) =
√
1− i cot(α)eiπ cot(α)ρ2

∫
e−i2π csc(α)ρueiπ cot(α)u2

f(u)du (4.5.1)

To cast the acquired O-Space signal in the form of the FrFT expressed in 4.5.1, let k(t)

and l(t) denote the accumulated SEM pulse moments of the linear, γG(t), and quadratic,

γH(t), fields, respectively:

k(t) = −γ

∫ t′

0

G(t′)dt′

l(t) = −γ

∫ t′

0

H(t′)dt′

(4.5.2)

If we then use the following mapping between gradient trajectories and FrFT parameters

(78),

128



4.5 Variable-order FrFT

α(t) = cot−1 (−2l(t))

ρ(t) =
k(t)

csc(α)
=

k(t)√
1 + 4l2(t)

(4.5.3)

then the O-Space signal equation at time point tn begins to resemble the FrFT integral:

s(tn) =

∫
exp

(
iπ

(
−2k(tn)u− 2l(tn)u

2
))

f(u)du

=

∫
exp

(
iπ

(
u2 cot(αn)− 2uρ csc(αn)

))
f(u)du

(4.5.4)

Off-resonance effects can be described by an additional factor of exp(−i2π∆B0t) inside

the integral. Multiplying s(t) by a chirp function and constant then “completes the square”

of the FrFT integral kernel1:

fα(ρn) =
√

1− i cot(αn) exp
(
iπρ2n cot(αn)

)
s(tn) (4.5.5)

Because the quadratic SEM plays during readout, α varies on a point-by-point basis, pre-

venting reconstruction from being performed by a single FrFT of fα (ρn). Instead, recon-

struction is attempted using the “variable-order FrFT” (VO-FrFT), an approach used in

(78) to reconstruct Cartesian images in the presence of a quadratically-shaped field inho-

mogeneity. This approach exploits the fact that the FrFT is a unitary operator by applying

the conjugate of the forward integral kernel at each point in s(tn). We modify this formal-

ism by adding a k-space density compensation function (DCF) to make it compatible with

the radial trajectory traversed by the linear SEMs in O-Space imaging,

f̂(u) =
Ns∑
n=1

DCF (ρn)s(tn)| csc(αn)| exp
(
iπ

(
u2 cot(αn)− 2uρn cot(αn)

))
. (4.5.6)

1The extra phase factor
√
1− i cot(αn) does not appear explicitly in the LCT precursor transform, but

it is commonly used in the optics literature, so we adopt it here out of convention.

129



4.5 Variable-order FrFT

The DCF varies inversely with the density of the k-space traversed by the linear SEMs,

weighting data less in the center of k-space and more at the edges, where there are larger

gaps between points: DCF (ρn) = k2
n. In this point-by-point variable-order implemen-

tation, the FrFT is essentially a discrete Fourier transform modified to include a quadratic

integral kernel. The above formalism is easily generalized to two dimensions. Moreover,

using the non-separable linear canonical transform as described in (123, 124), we expect

that FrFT reconstruction can be applied to the case of PatLoc fields with hyperbolic rather

than quadratic exponentials in the encoding integral kernel.

As observed in (78), this approach is related to the method of conjugate phase (125,

126), which has been used to correct for the effects of higher-order off-resonant fields

in conventional MRI. When field maps of inhomogeneous regions are available, the off-

resonant components can be compensated during reconstruction by modifying the usual

discrete Fourier transform to also include a factor with the conjugate of the phase evolution

caused by the off-resonant fields. The primary differences between this approach and the

approaches are (a) the inclusion of the DCF in the FrFT formalism and (b) the amplitude

of the higher-order components being “corrected”. In off-resonance correction, the per-

turbing higher-order fields are much smaller than the SEMs, while in O-Space imaging the

“perturbing” quadratic field is comparable in amplitude to the linear SEMs.

4.5.2 VO-FrFT O-Space Simulations

To investigate the utility of the VO-FrFT for O-Space reconstruction, simulations of O-

Space encoded acquisitions are performed using a single uniform RF coil and a numerical

reference phantom designed to highlight geometric distortions. Additive white noise is

omitted in order to focus on the effects of calibration errors on the images. Reconstructions

of size 256×256 are shown based on simulated radial and O-Space echo signals for the

case of a single, uniform RF coil, 512 readout samples, and 256 readout “spokes”. Off-
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resonance effects and errors in the calibrated SEM field, γH(u), are compared for ART and

FrFT reconstructions.

Figure 4.12: VO-FrFT reconstructions degrade much more gracefully than Kaczmarz recon-
structions in the presence of global off-resonance ∆B0 and quadratic field strength error ∆H .
These systematic errors cause geometric distortion in the FrFT reconstructions, in contrast to
the destructive phase cancelation of the Kaczmarz images.

In Fig. 4.12, FrFT reconstructions show markedly reduced sensitivity to off-resonance

effects and errors in SEM calibration, each of which cause deleterious phase cancelation in

the Kaczmarz reconstructions1. FrFT reconstructions degrade gracefully, showing geomet-

ric distortions at the periphery where the quadratic field is strongest. Preliminary compar-

isons show a roughly 2-fold improvement in reconstruction times using the FrFT as com-

pared with the Kaczmarz algorithm, an advantage that is expected to grow as more efficient

implementations of the variable-order FrFT are developed.

Images reconstructed from acquired data do not perform as well as the simulations

(Fig. 4.13). Although the images exhibit geometric distortion instead of phase cancelation,

the distortion could not be eliminated by tweaking the reconstruction parameters to account

for a possible calibration error. The reconstructions show a distinct “double-ghost” pattern

1When there are errors in the amplitude of the quadratic SEM, Kaczmarz reconstructions degrade more
severely near the periphery, where the quadratic field is strongest.
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Figure 4.13: O-Space reconstructions using the VO-FrFT compared with a radial image re-
constructed using the DFT and a Cartesian image reconstructed via the FFT. As the quadratic
SEM strength increases, the VO-FrFT becomes more non-unitary, causing severe ghosting and
distortion.

that grows more severe in regions where the quadratic field is strongest2. The ghosting also

becomes more pronounced as the Z2 SEM increases in amplitude. It is very similar to the

ghosting observed in section 3.6.2 when incorrectly-scaled Z2 SEMs are used to populate

the encoding matrix during image reconstruction (modeling systematic error). Incorporat-

ing an additional factor into Eq. (4.5.6) to compensate for potential off-resonance effects

does not diminish the appearance of the ghosts.

4.5.3 Non-unitarity of the VO-FrFT

At first glance, it seems possible that the ghosting arose from an error in the SEM calibra-

tion that had escaped detection. But on closer examination, fault is found to lie with the

variable-order FrFT itself. Because the order of the operator changes at every data point, the

VO-FrFT ceases to be a unitary linear operator. Strictly speaking, this implies that the in-

verse of the VO-FrFT is no longer equal to the complex conjugate of the forward transform,

2The double-ghost has been observed in simulated VO-FrFT reconstructions as well, suggesting that is
caused by the non-unitarity of the VO-FrFT rather than by experimental calibration errors.
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invalidating Eq. 4.5.6. The loss of unitary is illustrated in Fig. 4.14, where plots of EHE

and FE clearly differ, with E and F defined as the encoding and reconstruction matrices

for a one-dimensional O-Space test case1. The non-unitarity grows more pronounced for

strong Z2 SEMs, explaining why the ghosting in the Fig. 4.13 images grows more pro-

nounced with increasing Z2 encoding amplitude.

Figure 4.14: For strong Z2 SEMs, the O-
Space encoding matrix becomes increasingly non-
unitary, shown here for the 1-D case. The
SEM strength simulated is 6.8 KHz/cm2, cor-
responding to an FrFT order of α = 0.29 at the
end of the readout. Note that FE does not equal
EHE, violating the definition of unitarity.

Although these results are not en-

tirely promising, it remains an open ques-

tion whether the VO-FrFT could be mod-

ified to permit ghost-free O-Space re-

constructions. In particular, the den-

sity compensation function used in Eq.

(4.5.6) invites closer scrutiny. It was

chosen naively based only on the den-

sity of points in the underlying linear k-

space domain, ignoring the extra com-

plexity created by the evolution of spins

under the quadratic field. It is not clear how the DCF could be generalized to account for

the density of both the linear and nonlinear “k-space trajectories”.

4.5.4 Future challenges

Should the problem of non-unitarity problem be surmounted, the next task would be to

generalize the VO-FrFT to the multi-coil case. By analogy to GRAPPA (43), auto-calibrated

multi-coil reconstruction might be possible using the frequency shift rule for the FrFT, Eq.

(4.5.7), a direct generalization of the analogous rule for the Fourier transform,

1For a small one-dimensional test case, it is feasible to explicitly calculate the least-squares reconstruction
matrix, F , via the pseudoinverse.
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fα (ρ− ξ sinα) ⇐⇒ exp (iπξ sinα cosα) exp (i2πξu (1− cosα))f(u)

= ηα,ξ exp (i2π (1− cosα))f(u)

(4.5.7)

This property may permit auto-calibrated O-Space reconstructions by using multi-coil data

to fill in missing lines of spectral information, a natural extension of GRAPPA parallel imag-

ing into the fractional Fourier domain. In addition to providing auto-calibration of coil

profiles, this approach is expected to introduce additional time savings as compared with

the Kaczmarz method, which must backproject each coil’s data separately1.

1As discussed in Chapter 3, this limitation can be overcome by implementing string-averaged parallel
Kaczmarz on multiple processors or GPU cores.
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5

Outlook

5.1 Summary

This thesis represents an initial investigation of the possibilities for spatial encoding offered

by the Yale MRRC’s high-powered 12 cm Z2 insert coil, a unique resource in the emerg-

ing field of nonlinear spatial encoding. A new approach called O-Space imaging is intro-

duced, iterative image reconstruction is described, experimental obstacles are overcome,

and images are compared to radial projection imaging and standard Cartesian imaging. An

alternative, analytical reconstruction based on the Fractional Fourier transform is then dis-

cussed, but its utility for O-Space imaging appears to be limited because the order of the

transform changes continuously during signal readout. The thesis then turns its attention

to two applications of phase scrambling with quadratic pulses. The first application, “lens-

ing” of scalable-FOV MRI, has been demonstrated elsewhere via Fresnel deconvolution but

is performed here for the first time with the Fractional Fourier transform. Phase scrambled

data are then used to create GradLoc images of target ROIs without aliasing using standard

Fourier reconstruction. GradLoc is extended here through (a) the use of a quadratic phase

RF pulse to precompensate for through-slice dephasing caused by the 3-D SEM and (b)

combination with SENSE parallel imaging for highly accelerated GradLoc imaging.
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Several potential directions for future work have been proposed, including the following:

• Incorporation of the L1 norm into the Kaczmarz algorithm for improved O-Space

image quality, particularly for highly accelerated acquisitions;

• Exploration of highly accelerated, multi-coil, phase scrambled reconstructions, tak-

ing advantage of the quadratic field’s ability to spread out k-space energy and reduce

coherence between the data domain and the sparse (wavelet) domain;

• Refinements of the quadratic-phase RF pulse used for GradLoc imaging in order to

handle stronger Z2 pulse moments and to perform more accurate precompensation

of the slice phase profile;

• More detailed exploration of the noise and resolution properties of O-Space imaging;

• Continued exploration of the variable-order FrFT as a reconstruction method for O-

Space imaging. In particular, redefinition and refinement of the proposed density

compensation function.

Most significantly, future experiments at Yale may involve imaging with a human head

insert equipped with multiple second-order spherical harmonic SEMs, bringing O-Space

imaging and other methods much closer to potential clinical and neuroscientific application.

5.2 Emerging methods for nonlinear encoding

Since the introduction of PatLoc and O-Space imaging, a number of other promising en-

coding strategies have been proposed that exploit the properties of nonlinear SEMs. In the

space below I offer a brief overview of these methods along with speculation on their po-

tential utility.
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5.2.1 COGNAC

In keeping with a venerable naming tradition that includes the likes of GRAPPA and CAIPIR-

INHA, researchers from Würzburg have introduced an approach called “Combinations of

arbitrary gradient encoding fields using SPACE-RIP”, or COGNAC (119). This method

employs linear SEMs along with the Z2 SEM to perform axial imaging. Unlike O-Space

imaging, however, one set of fields is played as the readout and the other as a phase encod-

ing field. This approach allows fast reconstruction of the data in polar coordinates using

a hybrid image-domain/k-space domain method called SPACE-RIP (44). The resulting

image is then interpolated from polar to Cartesian coordinates to create the final image.

This reconstruction enjoys the advantage of being (a) fast and (b) comparatively robust to

systematic calibration errors. Several variants on COGNAC imaging have been proposed,

including:

• A constant Z2 SEM for readout with the Y SEM played as the phase encode;

• A constant Z2 SEM for readout while the X and Y together play a radially-varying

phase encode;

• A sinusoidal X and Y SEMs to trace a circle in k-space while the Z2 is played as a

phase encode to provide high-resolution encoding in the radial direction. Because the

Z2 pulse is not refocused, signal dephasing occurs in the central region of the FOV,

suppressing unwanted signal from this region if outer-volume selection if desired.

The disadvantage that each of these COGNAC approaches provides no encoding at the

center of the FOV. However, when high resolution is desired at the periphery, or signal

from the central part of the FOV needs to be suppressed, COGNAC provides a useful and

efficient approach.
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5.2.2 4D-RIO

A new PatLoc encoding strategy, 4D-RIO, has recently been developed (15). This en-

coding scheme also uses quadrupolar encoding fields as in previous PatLoc experiments

(61),but couples these fields with the linear SEMs, thus combining features from previous

PatLoc encoding strategies and O-Space imaging. 4D-RIO is a projection-class method that

plays reciprocating radial k-space trajectories on each pair of SEMs, linear and quadrupolar.

Each pair traverses a radial “k-space” trajectory, but they are out of phase with one another,

such that one trajectory reaches the center of k-space as the other reaches the outer extents.

In this way, the spins do not all refocus at the same time. 4D-RIO holds the potential to

outperform previous PatLoc and O-Space imaging methods in undersampled acquisitions.

While calibrating four SEMs is more challenging than calibrating three SEMs (one

of which plays the same pulse for every readout), 4D-RIO calibration benefits from the

ability to play only one pair of SEMs or the other and reconstruct a test image. Comparing

the test image from the linear SEMs with that of the PatLoc SEMs, the PatLoc field map

can be tweaked (rotated and scaled) until the two reconstructed images overlay one another.

This sleight-of-hand has enabled high-quality 4D-RIO images on phantoms, with in vivo

4D-RIO expected to be achieved in the near future.

5.2.3 Null space imaging

O-Space imaging is just one of a multitude of potential nonlinear projection encoding schemes.

Investigators have begun searching for ways to obtain and evaluate the optimal SEM shapes

to complement a particular surface coil array. One approach (127) uses the singular value

decomposition of the matrix holding the coil profiles to find the orthogonal modes spanning

the space of the profiles. Pairs of frequency/phase encoding PatLoc SEMs are then chosen

so as to approximate these modes. Similarly, in an approach known as Null Space Imaging

(128), nonlinear SEMs are chosen to approximate functions residing in the null space of
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Figure 5.1: Target encoding fields are obtained from the null space of the coil profile projection
matrix. The set of available harmonics are then used to generate achievable encoding fields that
approximate the target fields in a least squares sense. Target and ideal field plots are reproduced
from (129).

the coil profile matrix. Because they satisfy Laplace’s equation, spherical harmonics form

one appealing basis set with which to approximate desired SEM shapes. In principle, linear

combinations of spherical harmonics can be used to create linearly independent projections

of the object at each echo. As the object is projected onto each of these basis functions,

successive echoes capture object features that were not resolved in the preceding echoes.

Orthogonality between all pairs of spherical harmonics exists only over a spherical volume.

This suggests that a suitable combination of first-order and higher-order spherical harmon-

ics, an extension of the approach used in this paper, might be suitable for three-dimensional

imaging.

Recent work at Yale and elsewhere (66, 128, 129, 130) shows that as the number of

higher-order SEMs grows, reconstruction error decreases and resolution improves. Efforts

are now underway to design and implement null space trajectories in the hopes of optimally

harnessing the spatial encoding of the available RF coil sensitivities. Specific aims include

highly-accelerated axial imaging, compressed sensing reconstruction with enforced spar-
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sity, and 3-D volumetric reconstructions from highly undersampled data. The question

of how to optimally encode in three dimensions using 2-D and 3-D nonlinear SEMs is an

open question that invites the use of approaches like null space imaging, which is easily

generalized from 2-D to 3-D.

5.2.4 Alternative coil arrays for generating nonlinear magnetic fields

Up until now, nonlinear encoding has only been performed using dedicated, high-power

insert coils able to synthesize one or two nonlinear SEMs. As suggested by the null space

approach, however, optimal spatial encoding may require use of numerous higher-order

spherical harmonics, or even another basis set of field shapes. One intriguing possibility

is to synthesize target fields from scalable arrays of individual, generic coils, as has been

recently demonstrated in the context of multi-coil imaging (131) and shimming (132).

Because they are placed closed to the object being imaged, arrays of shim coils offer the ad-

vantage of high efficiency, typically requiring less than 1 amp of current per coil to perform

shimming or imaging. Also, with numerous degrees of freedom, the target field can be

shaped with great flexibility, achieving third, fourth, and fifth-order spherical harmonics,

in addition to other arbitrary shapes, depending on the number of available shim coils.

Alternatively, a design has recently been proposed for generating a set of three or-

thogonal PatLoc fields using a planar array of three coils inset in the scanner patient table

(133). Such an SEM insert provides an extended FOV for PatLoc imaging of the body. As

compared with previous PatLoc coils (134), the planar array also generalizes localization

from two to three dimensions. A torque-balanced experimental coil is now under develop-

ment for use in PatLoc and GradLoc imaging of the human body.
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5.2.5 Resolution and noise amplification metrics for nonlinear fields

Quantifying noise levels and resolution in O-Space imaging is challenging because both

properties are spatially-varying. By contrast, when linear SEMs are used, the point spread

function and resolution are approximately the same everywhere in the FOV. Recently, a

new approach has been introduced to estimate the resolution of O-Space images using the

frame matrix (135), which is calculated using the encoding matrix and the noise covariance

matrix, Q = EHΨ̃E. Each row of the frame matrix provides an approximation of the point

spread function (PSF) for a particular voxel. For a given voxel, resolution is quantified as

the ratio between the PSF intensity in the voxel of interest and the sum of the PSF intensity

over all voxels.

The most accurate estimate for the PSF would be provided by the matrix product

FE, which models the mapping of each source voxel from image space into the data domain

(encoding by E) and then back again (reconstruction by F ). For a particular reconstruc-

tion matrix F , this matrix product shows explicitly how signals originating in a particular

voxel spread throughout the FOV in the reconstructed image. The frame matrix EHE only

equals FE for the case of a unitary encoding matrix E, for which the pseudoinverse is equal

to the conjugate transpose. This is true for the discrete Fourier transform, whose rows and

columns are orthonormal, but the assumption of unitarity can not be made for nonlinear

encoding schemes in general (as described in the section 4.5.3). The resolution metric de-

scribed above also does not take into account the spatial distribution of the PSF “sidelobes”

relative to the source voxel. A more robust metric might take into account both the PSF

intensities in each voxel and their distance from the source voxel.

The frame matrix can be used to compute the noise variance on a voxel-by-voxel

basis (136), providing an O-Space performance metric analogous to the SENSE g-factor

for linear SEMs. Direct calculation of the noise matrix (Eq. 1.3.2) is computationally

intractable for O-Space imaging. However, it has been shown that the diagonal elements
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of the noise matrix can be calculated using a Taylor series of the inverse frame matrix, Q−1.

Because the method does not require explicit inversion of the frame matrix, it provides the

first feasible way to calculate the noise variance map of an approach like O-Space imaging.

Excellent agreement has been shown between variance maps obtained through this method

with those obtained from Monte Carlo simulations (136). In the future, the frame matrix

promises to be a useful tool for evaluating and comparing a range of nonlinear encoding

strategies.

5.2.6 RF encoding with nonlinear fields

In an approach known as Excitation Localization, or ExLoc, PatLoc SEMs are played dur-

ing RF excitation in order to select curvilinear slices with desirable properties (117). Such

slices may be used, for instance, to efficiently image the cerebral cortex, particularly when

combined with PatLoc spatial encoding.

RF excitation with the Z2 SEM has been proposed as a way to create “virtual coil

profiles” for use in highly accelerated imaging (137). By playing the Z2 field along with

an appropriate frequency offset in the RF pulse, rings of the object can be excited. By inter-

leaving several such excitations in the span of a single TR, signal can be acquired from the

entire object, but partitioned in between 2 and 8 rings. When the rings are weighted by

surface coil profiles, the effective number of coils is equal to the number of coils multiplied

by the number of rings. The set of virtual coil profiles are highly localized from one another,

providing efficient spatial encoding. This strategy has been employed in combination with

conventional radial pulse sequences to perform highly undersampled reconstructions with

only 8 receive coils. High image quality has been achieved at acceleration factors that would

not be possible using the 8 coils alone without RF localization of rings.
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5.2.6.1 Reconstruction in the Fourier transform domain

It has been shown that nonlinear SEM reconstructions can be accelerated by sparsifying

the encoding matrix (74). One way to achieve sparsity is to Fourier transform the encod-

ing matrix and the data and then truncate all entries in the encoding matrix falling below a

certain threshold. Reconstruction can then be performed using methods that are optimized

for sparse matrices, such as the LSQR algorithm(67). This can speed reconstruction by or-

ders of magnitude while introducing only a very slight blurring of the image due to loss of

some high frequency information.

More recently, efforts have begun at Yale to perform reconstruction of PatLoc, O-

Space, and related datasets in the frequency domain using a precomputed reconstruction

matrix. This approach computes the Fourier transform of the coil-weighted phasor used

at each time point in the acquisition. This spectral representation of the encoding func-

tion, or “k-space stamp”, provides a way to assemble the k-space data of the reconstructed

image. First, the appropriate linear combinations of all available k-space stamps must be

obtained. The required linear combination for a given point in k-space is the weighted sum

of all stamps that best approximates a delta function at the specified k-space point. The

set of all such linear combinations is used to populate the reconstruction matrix, which can

be directly applied to acquired data to generate the spectrum of the image. Fourier trans-

formation then provides the final image. For a given acquisition strategy, the reconstruc-

tion matrix only needs to be calculated once. Fast reconstruction via a single matrix-vector

multiplication can then be performed. This holds the promise to greatly speed the recon-

struction of data encoded with nonlinear SEMs. Furthermore, it may be compatible with

k-space parallel imaging methods like GRAPPA (43), permitting auto-calibrated O-Space

reconstructions for the first time.
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Appendix A:

Angenäherte Auflösung von Systemen

linearer Gleichungen

6.1 Approximate Solution for Systems of Linear Equations

(English translation)

By Stefan Kaczmarz (1895-1939)

Unable to find an English translation of Kaczmarz’s original article (69), I undertook the follow-

ing translation from German.

Although the approximate solution of the equation f(x) = 0 with an unknown vari-

able has been extensively treated in the literature, we nevertheless know little about the

solutions of sets of equations, even when they are linear. There are only two methods [1,2]

which permit solutions, but they are limited to equations whose diagonal coefficients, aii,
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are large in comparison with the other coefficients. For this reason, one finds in the work

of Mises and Pollaczek-Geiringer the condition aii >= (n− 1)aik, and so forth.

In general, however, one can completely solve the equations by means of iterative

methods. We assume that a system is given,

ai1x1 + ai2x2 + ...+ ainxn + bi = 0, i = 1, 2, ...n (6.1.1)

which possesses only one solution, x1, x2, ... xn. We presuppose that equation (6.1.1) by

multiplication with appropriate constants is transformed in such a way that

n∑
k=1

a2ik = 1 (6.1.2)

is valid for all i = 1, 2, ... n.

Let there exist a first estimate, x0
1, x

0
2, ...x

0
n, which can be completely arbitrary. We

divide successive estimates into groups, each consisting of n (approximate) solutions,

x
(p,1)
1 , x

(p,1)
2 , ... x(p,1)

n ,

. . . .

x
(p,n)
1 , x

(p,n)
2 , ... x(p,n)

n ,

the n solutions of the pth group. We define the (p+ 1)th group as follows
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x
(p+1,1)
i = x

(p,n)
i − a1iL

(p,n)
1

x
(p+1,2)
i = x

(p+1,1)
i − a2iL

(p+1,1)
2

. . . . . .

x
(p+1,n)
i = x

(p+1,n−1)
i − aniL

(p+1,n−1)
n

(i = 1, 2, ... n)

In these equations, L(r,s)
i =

∑n
k=1 aikx

(r,s)
k + bi defines the left side of the ith equation in

(6.1.1), wherein the sth solution to the rth group is used for the variables x1, x2, ... xn.

Consequently, we submit that the solution

x
(r,s)
1 , x

(r,s)
2 , ... x(r,s)

n s = 1, 2, ... n, r = 1, 2, ... (6.1.3)

converges toward x1, x2, ... xn. From (6.1.3) it follows that

x
(r,s+1)
i − xi = x

(r,s)
i − xi − as+1,iL

(r,s)
s+1 , s = 0, 1, ... n− 1, (6.1.4)

(for s = 0, we have x(r,1)
i − xi = x

(r−1,n)
i − xi − a1iL

(r−1,n)
i ). By squaring and summing

from i = 1 to n one obtains 1

n∑
i=1

(x
(r,s+1)
i − xi)

2 =
n∑

i=1

(x
(r,s)
i )2 + L2

s+1 − 2Ls+1

n∑
i=1

as+1,i(x
(r,s)
i − xi) (6.1.5)

But because

∑
as+1,i(x

(r,s)
i − xi) = Ls+1 − bi+1 + bi+1 = Ls+1, (6.1.6)

1In (6.1.5) the double subscript for L is omitted.
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if one substitutes

yr,s =
n∑

i=1

(x
(r,s)
i − xi)

2 (6.1.7)

for the sake of conciseness, one then obtains from (6.1.5),

yr,s+1 = yr,s − L2
s+1. (6.1.8)

The sequence yr,s thus falls monotonically toward the boundary y. Since yr,s are limited,

one can find a subsequence ofx(r,s)
i which approaches the bound y1, y2, ... yn. From (6.1.8),

it follows that

lim
r→∞

L
(r,s)
s+1 = Ls+1(y1, y2, ... yn) = 0, (6.1.9)

and also limx
(r,s)
i = yi = xi, the system in (6.1.1) possesses only one solution. Therefore

yr,s must converge toward zero, which means that x(r,s)
i tends toward xi.

When the system (6.1.1) has more solutions, then naturally y1, y2, ... yn is one of the

possible solution.

For the practical execution of calculations it is important to note that the condition∑n
1 a

2
ik = 1 does not have to be strictly fulfilled. If one sets

∑n
1 a

2
ik = ci, ci ̸= 1, then

relation (6.1.5) turns into

yr,s+1 = yr,s + cs+1L
2
s+1 − 2L2

s+1. (6.1.10)

We therefore see that yr,s+1 < yr,s (and thus converges) if cs+1 < 2. One can choose coef-

ficients ci such that ci < 2 and the multiplication becomes very easy.
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Geometrically the algorithm means the following:

The point x0
1, ... x

0
n is projected orthogonally onto the first hyperplane L1 = 0; this

projection is just the point x(1,1)
1 , ... x

(1,1)
n , which is now cast onto L2 = 0, etc. The point

x
(1,n)
1 , ... x

(1,n)
n is again cast onto L1 = 0, giving the point x(2,1)

1 , ... x
(2,1)
n , etc. In this way,

the convergence of the algorithm is easily plausible.
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