""" ======================================================== Compute real-time evoked responses with FieldTrip client ======================================================== This example demonstrates how to connect the MNE real-time system to the Fieldtrip buffer using FieldTripClient class. This example was tested in simulation mode neuromag2ft --file MNE-sample-data/MEG/sample/sample_audvis_raw.fif using a modified version of neuromag2ft available at http://neuro.hut.fi/~mainak/neuromag2ft-2.0.0.zip to run the FieldTrip buffer. Then running this example acquires the data on the client side. Since the Fieldtrip buffer does not contain all the measurement information required by the MNE real-time processing pipeline, an info dictionary must be provided to instantiate FieldTripClient. Alternatively, the MNE-Python script will try to guess the missing measurement info from the Fieldtrip Header object. Together with RtEpochs, this can be used to compute evoked responses using moving averages. """ # Author: Mainak Jas # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne.viz import plot_events from mne.realtime import FieldTripClient, RtEpochs print(__doc__) # select the left-auditory condition event_id, tmin, tmax = 1, -0.2, 0.5 # user must provide list of bad channels because # FieldTrip header object does not provide that bads = ['MEG 2443', 'EEG 053'] plt.ion() # make plot interactive _, ax = plt.subplots(2, 1, figsize=(8, 8)) # create subplots with FieldTripClient(host='localhost', port=1972, tmax=150, wait_max=10) as rt_client: # get measurement info guessed by MNE-Python raw_info = rt_client.get_measurement_info() # select gradiometers picks = mne.pick_types(raw_info, meg='grad', eeg=False, eog=True, stim=True, exclude=bads) # create the real-time epochs object rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, stim_channel='STI 014', picks=picks, reject=dict(grad=4000e-13, eog=150e-6), decim=1, isi_max=10.0, proj=None) # start the acquisition rt_epochs.start() for ii, ev in enumerate(rt_epochs.iter_evoked()): print("Just got epoch %d" % (ii + 1)) ev.pick_types(meg=True, eog=False) if ii == 0: evoked = ev else: evoked = mne.combine_evoked([evoked, ev], weights='nave') ax[0].cla() ax[1].cla() # clear axis plot_events(rt_epochs.events[-5:], sfreq=ev.info['sfreq'], first_samp=-rt_client.tmin_samp, axes=ax[0]) evoked.plot(axes=ax[1]) # plot on second subplot ax[1].set_title('Evoked response for gradiometer channels' '(event_id = %d)' % event_id) plt.pause(0.05) plt.draw() plt.close()