""" ========================================= Visualize channel over epochs as an image ========================================= This will produce what is sometimes called an event related potential / field (ERP/ERF) image. 2 images are produced. One with a good channel and one with a channel that does not see any evoked field. It is also demonstrated how to reorder the epochs using a 1d spectral embedding as described in: Graph-based variability estimation in single-trial event-related neural responses A. Gramfort, R. Keriven, M. Clerc, 2010, Biomedical Engineering, IEEE Trans. on, vol. 57 (5), 1051-1061 https://hal.inria.fr/inria-00497023 """ # Authors: Alexandre Gramfort # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' event_id, tmin, tmax = 1, -0.2, 0.5 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) # Set up pick list: EEG + MEG - bad channels (modify to your needs) raw.info['bads'] = ['MEG 2443', 'EEG 053'] picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=True, eog=True, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, eog=150e-6)) ############################################################################### # Show event related fields images # and order with spectral reordering # If you don't have scikit-learn installed set order_func to None from sklearn.cluster.spectral import spectral_embedding # noqa from sklearn.metrics.pairwise import rbf_kernel # noqa def order_func(times, data): this_data = data[:, (times > 0.0) & (times < 0.350)] this_data /= np.sqrt(np.sum(this_data ** 2, axis=1))[:, np.newaxis] return np.argsort(spectral_embedding(rbf_kernel(this_data, gamma=1.), n_components=1, random_state=0).ravel()) good_pick = 97 # channel with a clear evoked response bad_pick = 98 # channel with no evoked response # We'll also plot a sample time onset for each trial plt_times = np.linspace(0, .2, len(epochs)) plt.close('all') mne.viz.plot_epochs_image(epochs, [good_pick, bad_pick], sigma=0.5, vmin=-100, vmax=250, colorbar=True, order=order_func, overlay_times=plt_times, show=True)