""" ==================================================== Extracting the time series of activations in a label ==================================================== We first apply a dSPM inverse operator to get signed activations in a label (with positive and negative values) and we then compare different strategies to average the times series in a label. We compare a simple average, with an averaging using the dipoles normal (flip mode) and then a PCA, also using a sign flip. """ # Author: Alexandre Gramfort # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.minimum_norm import read_inverse_operator, apply_inverse print(__doc__) data_path = sample.data_path() label = 'Aud-lh' label_fname = data_path + '/MEG/sample/labels/%s.label' % label fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif' snr = 3.0 lambda2 = 1.0 / snr ** 2 method = "dSPM" # use dSPM method (could also be MNE or sLORETA) # Load data evoked = mne.read_evokeds(fname_evoked, condition=0, baseline=(None, 0)) inverse_operator = read_inverse_operator(fname_inv) src = inverse_operator['src'] # Compute inverse solution pick_ori = "normal" # Get signed values to see the effect of sign filp stc = apply_inverse(evoked, inverse_operator, lambda2, method, pick_ori=pick_ori) label = mne.read_label(label_fname) stc_label = stc.in_label(label) mean = stc.extract_label_time_course(label, src, mode='mean') mean_flip = stc.extract_label_time_course(label, src, mode='mean_flip') pca = stc.extract_label_time_course(label, src, mode='pca_flip') print("Number of vertices : %d" % len(stc_label.data)) # View source activations plt.figure() plt.plot(1e3 * stc_label.times, stc_label.data.T, 'k', linewidth=0.5) h0, = plt.plot(1e3 * stc_label.times, mean.T, 'r', linewidth=3) h1, = plt.plot(1e3 * stc_label.times, mean_flip.T, 'g', linewidth=3) h2, = plt.plot(1e3 * stc_label.times, pca.T, 'b', linewidth=3) plt.legend([h0, h1, h2], ['mean', 'mean flip', 'PCA flip']) plt.xlabel('Time (ms)') plt.ylabel('Source amplitude') plt.title('Activations in Label : %s' % label) plt.show()