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We use the model resolution matrix to analytically derive an
optimal Bayesian estimator for multiparameter inverse
problems that simultaneously minimizes inter-parameter
cross talk and the total reconstruction error. Application of
this estimator to time-domain diffuse fluorescence imaging
shows that the optimal estimator for lifetime multiplexing
is identical to a previously developed asymptotic time-
domain (ATD) approach, except for the inclusion of a
diagonal regularization term containing decay amplitude
uncertainties. We show that, while the optimal estimator
and ATD provide zero cross talk, the optimal estimator
provides lower reconstruction error, while ATD results in
superior relative quantitation. The framework presented
here is generally applicable to other multiplexing problems
where the simultaneous and accurate relative quantitation
of multiple parameters is of interest. © 2016 Optical Society
of America
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Optical techniques offer the unique ability for tracking multi-
ple disease markers or pathways simultaneously in vivo (also
termed as “multiplexing”) through a variety of intrinsic and
extrinsic contrast mechanisms. These mechanisms include
spectral contrast between oxy- and deoxyhemoglobin to quan-
tify tissue oxygenation [1], multispectral or fluorescence life-
time (FL) labeling of intrinsic or extrinsic fluorophores [2–5],
and intrinsic tissue absorption and scattering contrast [6]. The
ability to capitalize on these contrast mechanisms strongly relies
on inversion algorithms that can efficiently localize and quan-
tify multiple optical parameters from tomography measure-
ments. An important quantity that affects the quality of
reconstructions in multiplexing is inter-parameter cross talk
[7], which can be defined as the influence of one parameter
in the spatial location of another parameter. Cross talk can

be a significant problem for multiplexing applications and can
lead to errors in localization and quantification of the recon-
structions. For instance, in tomographic fluorescence lifetime
multiplexing (TFLM), cross talk between distinct lifetimes
results in poor quantitation and spatial localization of fluoro-
phores located within a few mm, especially when using the early
time points of time-domain (TD) fluorescence data [7,8]
or with frequency domain inversion [9].

Inversion methods in optical imaging have so far primarily
focused on minimizing reconstruction error but have not sys-
tematically addressed cross-talk minimization. In this Letter, we
present a novel methodology to address cross talk in ill-posed,
multiparameter inverse problems with special attention to FL
multiplexing using TD measurements. The methodology em-
ploys a Bayesian formulation with a zero cross-talk constraint in
addition to minimizing the mean square error (MSE) cost func-
tion. Cross talk is quantitatively represented by the off-diagonal
blocks of the model resolution matrix (the columns of which
are the imaging point-spread functions [PSFs]). While the tra-
ditional approach effectively minimizes for MSE, our approach
focuses on achieving zero cross talk at the expense of a higher
MSE. Application of the optimal estimator for the specific
case of TFLM leads to rigorous statistical generalization of a
previously derived asymptotic time domain (ATD) approach
for tomographic FL multiplexing. We present simulations to
compare the cross talk and error performance of the optimal
estimator with both the ATD approach and standard reconstru-
ction algorithms for TD imaging and show that the optimal
approach and ATD provide better localization and relative
quantitation compared with the standard MSE-based approach.

We address the problem in the context of FL multiplexing,
although the results are applicable to any linear multiparameter
inverse problem. Consider a turbid medium of volume Ω with
N fluorophores of distinct lifetimes τn and yield distributions
ηn�r�; r ∈ Ω. Discretizing the medium into V voxels, the TD
fluorescence signal for L time points andM pairs of sources and
detectors located at points rs and rd on the boundary can be
represented by the matrix equation:

y � W η; (1)
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where y is a (ML × 1) measurement vector, W �
�W 1;…;W N � is a (ML × NV ) TD weight matrix, and η �
�η1;…; ηN �T is a (NV × 1) vector of unknown fluorescence
yields of all lifetimes. As previously discussed [8], W n �
Gx�rs; r; t� � exp�−t∕τn� � Gm�r; rd ; t�, where Gx and Gm

are the excitation and emission Green’s functions for light trans-
port in the turbid medium. The central quantities of interest
are the fluorescence yield distributions, ηn�r�, of each fluoro-
phore with the assumption that the discrete lifetimes τn are
either known or are independently retrieved through global
analysis methods [3]. A straightforward solution to the above
linear problem, which we refer to as the direct TD (DTD)
approach, uses Tikhonov inversion of Eq. (1), resulting in a
reconstructed yield distribution:

bηDTD � bW DTDy; (2)

where the inverse operator bW DTD is given by the standard
Tikhonov expression with regularization parameter λ:bW DTD � WT �WWT � λI�−1: (3)

The DTD inversion can be interpreted statistically by using
the well-known connection between Tikhonov regularization
and Bayesian inversion [10]. Given common assumptions that
the measurement noise, n, and unknown yield, η, can be mod-
eled as white Gaussian random vectors, ηDTD is equivalent to
the minimum mean square error (MMSE) solution if the regu-
larization parameter is chosen as λ � �σn∕ση�2, where σn and
ση are the variances of the measurement noise and yield, respec-
tively. Although providing an MMSE solution, DTD does not
explicitly restrict the cross talk between the ηn’s and can lead to
severe cross talk between yield distributions of distinct lifetimes.
The cross talk translates into poor spatial localization and quan-
titation [7] (see Fig. 2). The DTD approach is, thus, not the
method of choice for multiplexing applications where the rela-
tive amounts of multiple overlapping parameters (which, in the
present case, are the yield distributions) are of interest.

To systematically incorporate inter-parameter cross talk into
the inverse problem, we consider the model resolution matrix,
which takes the following form for a general linear imaging system
with forward operator W and inverse operator (estimator) bW :

R � bWW : (4)
For single parameter problems, R can be interpreted in the

standard way [10], i.e., the c’th column of R represents the
point-spread function for the c’th voxel, and the j’th row rep-
resents the contribution at the j’th voxel due to all the other
voxels in the medium. To see the usefulness of the resolution
matrix for the multiparameter case, we consider the case of two
lifetimes, τ1 and τ2, with corresponding yield distributions, η1
and η2, although the results can be readily generalized to any
number of parameters. Both W and bW can be split into two
separate submatrices for each FL:

W � �
W 1 W 2

�
; bW �

� bW 1bW 2

�
; (5)

where W 1 and W 2 are each of dimension ML × V . The res-
olution matrix R is then a block matrix with four quadrants:

R �
� bW 1W 1

bW 1W 2bW 2W 1
bW 2W 2

�
≡
�
R11 R12

R21 R22

�
: (6)

The diagonal blocks, R11 and R22, can be interpreted similar
to the single fluorophore-resolution matrix, as described above.
The off-diagonal blocks have special significance for multiplex-
ing. The columns of R12 can be interpreted as the cross talk into
the η1 distribution from a point inclusion with FL τ2 (and vice
versa for R21). Because R12 and R21 provide a complete and
quantitative measure of the intuitive notion of cross talk, we
directly incorporate these terms into the optimization problem.

We next employ a novel Bayesian inversion algorithm to
derive a general linear estimator, termed the cross-talk con-
strained TD (CCTD) estimator, which provides optimal cross-
talk performance and minimal reconstruction error. This is
achieved by finding an MMSE solution with an imposed
zero-cross-talk constraint on R12 and R21. Let the first- and
second-order moments for noise, n and η be given by
E �n� � 0, E �η� � 0, cov�n� � Cn, and cov�η� � Cη. The
optimization problem takes the form:bW CCTD � arg minbW E �‖η − η̂‖2�; (7)

with the constraints:

R12 � 0 and R21 � 0: (8)
Proceeding to solve Eqs. (7) and (8), we recognize that the

optimization problem can be categorized as a quadratic pro-
gramming problem with linear equality constraints. The de-
tailed steps in the derivation will be presented elsewhere, but,
briefly, we eliminate the constraints using a null space method
[11] and solve the resulting unconstrained optimization prob-
lem using standard methods. The final result for the CCTD
estimator is found to be (j � 1; 2):bW j � CηjW

T
j N j�NT

j �W jCηjW
T
j � Cn�N j�−1NT

j ; (9)

where N j � null�WT
j � is the matrix whose columns span the

null space of WT
j , and Cηj is the covariance matrix for the un-

knowns ηj. It is clear from Eq. (9) that a necessary condition for
the nontrivial solution for the optimal estimator is that N j ≠ 0
for all j, i.e., the matrices WT

j must have a nonzero null space.
We label this as the “nullity condition for multiplexing”
(NCM). Because no assumptions about the nature of W 1 and
W 2 have been made thus far, the solutions in Eq. (9) and the
NCM are applicable for general multiparameter inverse prob-
lems and not just for FL multiplexing.

We next apply the general estimator in Eq. (9) to the TD
fluorescence forward problem [Eq. (1)]. It is first clear that, for
overdetermined problems (ML > V ), the NCM is readily sat-
isfied, because, in this case, rank�W j� � V � rank�WT

j � so
that by the rank-nullity theorem, nullity�WT

j � � ML −
rank�WT

j � � ML − V > 0. For the underdetermined case
(ML < V ), which is more common in tomography applications,
the NCM is not generally satisfied whenW j is full rank because
rank�W j� � ML � rank�WT

j �, so that nullity�WT
j � � ML−

rank�WT
j � � 0. However, when τn > τD, where τD is the time

scale for light diffusion in the medium [8], we can show that
NCM is satisfied in the asymptotic region of the TD signal, de-
fined for t ≫ τD. In this region, the TD weight matrix factorizes
into a product of purely spatial and temporal terms [7,8]:

W � AW ; (10)
where A � �exp�−t∕τ1� ⊗ I ; exp�−t∕τ2� ⊗ I � is a (ML × 2M ),
overdetermined, basis matrix containing Kronecker products of
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exponential decay terms and the (M ×M ) identity matrix, I ,
andW � diag�W 1; W 2� is a (2M × 2V ) block diagonal matrix
containing CW weight matrices for each FL evaluated at a re-
duced medium absorption [8]. The factorization in Eq. (10) also
holds for the individual FL matrices, so thatW j � AjW j. Given
this factorization, we have nullity�WT

j � � nullity�WT
j AT

j �.
Because Aj is overdetermined, AT

j is underdetermined
with nullity�AT

j � � ML − rank�AT
j � � ML −M > 0, pro-

vided L > 1, i.e., more than one time point is included in
the measurement. The nonzero nullity of AT

j ensures that the
productWT � WT

j AT
j also has a nonzero null space (i.e., non-

trivial solutions z exist that satisfyWT
j AT

j z � 0�, thus satisfying
the NCM. In other words, the factorization in the asymptotic
region in Eq. (10) splits the underdetermined matrix W j into a
product of the overdetermined Aj and underdetermined W j,
thereby ensuring the nonzero nullity of the transpose, WT

j .
Below (Fig. 1), we will numerically illustrate the transition of
the TDweight matrix from zero nullity (i.e., NCM not satisfied)
at early time points to a nonzero value (NCM satisfied) as the
asymptotic region is approached.

We can now obtain the CCTD estimator for the TD prob-
lem by exploiting the factorization in the asymptotic region.
Substituting Eq. (10) into Eq. (9) and assuming model and
data covariance matrices, Cη � σ2ηI and Cn � σ2nI , the
CCTD estimator for TFLM takes the form:

bW CCTD � WT
�
WWT � λ

diag�Ca�
Cn

�†
A†; (11)

where Ca � �ATA∕σ2n�−1, A† is the Moore–Penrose pseudo-
inverse [12] of the well-conditioned matrix A, diag�X � sets
all off-diagonal blocks of a matrix X to zero and λ � �σn∕ση�2.
Equation (11) is the central result of this Letter and offers a
compact expression for a novel estimator for tomographic
FL multiplexing that achieves zero cross talk between multiple
lifetimes while also minimizing MSE. The matrix Ca is
immediately recognized from linear regression theory [12]
as the covariance matrix for the decay amplitudes in a linear

multiexponential analysis with basis functions A. The diagonal
terms of Ca are the uncertainties of each amplitude, while the
off-diagonal terms correspond to the covariances between the
amplitudes for distinct lifetimes. Equation (11), therefore, has
the remarkable interpretation that the optimal estimator
achieves zero cross talk by simply setting the off-diagonal ele-
ments of the decay amplitude covariance, Ca, to zero. To fur-
ther appreciate the significance of this result, we write the DTD
inverse operator [Eq. (3)] in the asymptotic region. Using
Eq. (10), Eq. (3) takes the alternate form:

bW DTD � WT
�
WWT � λ

Ca

Cn

�
−1

A†: (12)

Direct comparison of Eqs. (11) and (12) shows that the only
difference between the optimal estimator and the DTD ap-
proach is that the optimal estimator sets the off-diagonal blocks
of the matrix of the Ca to zero, while the DTD retains the full
covariance of the decay amplitudes, thereby resulting in higher
cross talk between multiple lifetimes.

It is also interesting to compare the CCTD estimator with a
previously derived asymptotic TD (ATD) estimator for FL
multiplexing [7,8]. The ATD approach capitalizes on the fac-
torization in Eq. (10) to perform the tomographic recovery of
the yield distribution in two steps. First, the forward problem
in Eq. (1) takes the form y � AW η in the asymptotic region,
using Eq. (10). We can then write:

A†y�� a� � W η: (13)
In the above equation, a � A†y simply represents the least-

squares solution for recovering the decay amplitudes (a) from
the TD data y using a multiexponential analysis [12]. In the
second step, the standard Tikhonov regularization is applied
to recover the yield distribution η from the vector of decay
amplitudes a. The two steps of the ATD approach can be rep-
resented as a single estimator [7], bW ATD:bW ATD � WT �WWT � λI�−1A†: (14)

Thus, we see that the ATD approach is identical to the
CCTD estimator to within a quantitative correction due to
the amplitude uncertainties (diagonal elements on Cn). The in-
corporation of the amplitude uncertainties in the regularization
reduces the MSE of the CCTD approach relative to the ATD.

Finally, we compare the resolution matrices for DTD, ATD,
and CCTD methods, given by Rmethod � bW methodW . Using
Eqs. (11), (12), and (14) in Eq. (6), we have

RDTD � WT �WWT � λCa∕Cn�−1W ; (15)

RCCTD � WT �WWT � λdiag�Ca�∕Cn�−1W ; (16)

RATD � WT �WWT � λI�−1W : (17)
Here, we have used the identity A†A � I, given A is full col-

umn rank. The key difference between the above three estima-
tors resides in the fact that the resolution matrices for the CCTD
and ATD estimators are fully block-diagonal (recall that W is
block diagonal), therefore providing zero cross-talk for an arbi-
trary distribution of fluorophores. However, the DTD estimator
has off-diagonal terms, resulting in significant cross talk and poor
localization [7]. We note that, although ATD has previously
been shown to reduce cross talk compared with DTD [7,8],
Eq. (17) is the first rigorous demonstration that ATD provides
zero cross talk, irrespective of the fluorophore distributions or
measurement conditions.
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Fig. 1. Simulation to show that the asymptotic region of TD data
satisfies the positive nullity condition [nullity�WT

1 � > 0 for each FL
component τj] for the existence of an optimal estimator in Eq. (11).
Nullity�WT

1 � is plotted (blue, solid line, right axis) along with the
diffuse fluorescence signal (red, dashed line) and a 1.2 ns pure expo-
nential decay (green, dashed line). The nullity is zero for the early TD
data but sharply rises to 2M (M = number of source-detector pairs) at
the onset of the asymptotic region.

1354 Vol. 41, No. 7 / April 1 2016 / Optics Letters Letter



We next illustrate the theoretical results of the Letter using
numerical simulations. First, we show in Fig. 1 the transition of
the TD weight matrix from zero to positive nullity toward the
asymptotic region where it satisfies the NCM condition. We
consider a diffusive slab (2 cm × 2 cm × 2 cm, bulk absorption
of μa � 0.6 cm−1, reduced scattering of μ 0

s � 10 cm−1 ) with a
single fluorophore inclusion (FL τ � 1.2 ns) at the center, and
with 42 sources and 42 detectors (M � 1764) arranged in a
transillumination geometry and with three adjacent time points
(L � 3) per measurement set. The time-dependent nullity of
the single FLTD weight matrix, WT

1 , plotted in Fig. 1, is zero
for early time points but rapidly transitions to 2M as the
asymptotic region is approached. Thus, late time points in the
TD fluorescence problem satisfy the NCM, thereby allowing
optimal estimators with zero cross talk, while early time points
do not allow for zero cross-talk estimators.

We next compare the performance of DTD, ATD, and
CCTD methods for the diffuse medium used in Fig. 1, with
voxel size of 1 mm3 and with μa � 0.1 cm−1 and
μ 0
s � 10 cm−1. Two 1 mm3 fluorescent inclusions of equal

yield but distinct lifetimes of τ1 � 0.8 ns and τ2 � 1.2 ns
were separated by 2 mm [Figs. 2(a)–2(f )] or 4 mm
[Figs. 2(g)–2(l)] along the X axis, at depth Z � 1 cm. The
forward TD data was generated using the Monte Carlo photon
transport model [13] for 12 times points in the asymptotic TD
region, with 100 ps separation, and with 3% Gaussian noise
[equivalent to 12.73 and 12.81 dB for Figs. 2(a)–2(c) and
2(g)–2(i)]. The regularization parameter λ for each method
was chosen to produce the lowest reconstruction error (E �
‖ηtrue − ηrecon‖2�. Figure 2 shows the X –Z slices of the

DTD, ATD, and CCTD reconstructed yields for both lifetimes
and the corresponding line plots of the yield along the true lo-
cation of the inclusions. Figure 2 shows that, while both the
ATD and CCTD accurately localize the inclusions for both
the 2 and 4 mm cases, the DTD reconstructions show signifi-
cant cross talk, which leads to poor localization, with the 2 mm
separated inclusions nearly indistinguishable. While DTD pro-
vides the least reconstruction error (e.g., for the 4 mm case,
E � 1.9983 compared with 1.9989 for ATD and 1.9987
for CCTD), it resulted in an average cross talk of 55.5% [cal-
culated as �R21�j1; j1�∕R11�j1; j1� � R12�j2; j2�∕R22�j2; j2��∕2,
where j1 and j2 are the linear indices corresponding to the lo-
cations of the two inclusions], while ATD and CCTD provide
zero cross talk. The high cross talk of DTD results in incorrect
relative quantitation, leading to a nearly 2∶1 ratio of the yields
for both cases compared with the true ratio of 1∶1. Both ATD
and CCTD provided better relative quantitation than DTD.
The CCTD estimator provides lower reconstruction error, at
the expense of poorer relative quantitation, thus resulting in
a slightly higher reconstructed yield for the 1.2 ns FL [(green
line, Figs. 2(f ) and 2(l)]. This can be attributed to the distinct
regularization level for each FL component in the diagonal
covariance matrix diag�Ca� in Eq. (11).

We have presented a novel framework for tomographic
multiplexing problems, based on model resolution matrix con-
straints, to derive an optimal estimator that provides zero inter-
parameter cross talk with guaranteed minimal error. We also
showed that, for tomographic TD fluorescence data, the opti-
mal estimator exists only in the asymptotic region, where it
offers a rigorous statistically generalized version of a previously
developed ATD approach. The resolution matrix constraint-
based framework presented here can be readily applied to re-
duce inter-parameter cross talk in other multiplexing applica-
tions such as multispectral imaging and absorption-scattering
contrast in diffuse optical imaging.

Funding. National Institute of Biomedical Imaging and
Bioengineering (NIBIB) (R01 EB000768, R01 EB015325).
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Fig. 2. Tomographic reconstructions to compare the DTD, ATD,
and CCTD estimators for FL multiplexing of 0.8 and 1.2 ns fluoro-
phore inclusions (filled gray) at the center in a 2 cm thick turbid
medium. The inclusions are separated by 2 mm in (a)–(f ) and 4 mm
in (g)–(l). The X –Z slices of reconstructed yields of 0.8 and 1.2 ns are
shown for DTD [(a), (g)], ATD [(b), (h)] and CCTD [(c), (i)] as the
red (0.8 ns) and green (1.2 ns) components of a single RGB image.
Yellow indicates cross talk. (d)–(f ) and (j)–(l) show the corresponding
line plots of the yield with the gray bars indicating the true locations.
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