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Abstract
We apply state space estimation techniques to the time-varying reconstruction
problem in optical tomography. We develop a stochastic model for describing
the evolution of quasi-sinusoidal medical signals such as the heartbeat,
assuming these are represented as a known frequency with randomly varying
amplitude and phase. We use the extended Kalman filter in combination
with spatial regularization techniques to reconstruct images from highly under-
determined time-series data. This system also naturally segments activity
belonging to different biological processes. We present reconstructions of
simulated data and of real data recorded from the human motor cortex
(Franceschini et al 2000 Optics Express 6 49–57). It is argued that the
application of these time-series techniques improves both the fidelity and
temporal resolution of reconstruction in optical tomography.

M This article features online multimedia enhancements

1. Introduction

Optical tomography (OT) refers to the application of low-energy visible or near infrared
light to generate images of the optical properties of highly scattering media. Typically, a
number of discrete laser sources are positioned at the surface of the medium ∂�. Light is
transported through the body � and undergoes scattering and absorption. A finite number
of detectors then measure the light emerging at various points on the surface ∂�. There are
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two common measurement schemes (Hebden et al 1997): time domain systems measure the
temporal distribution of photons emerging at the surface of the body in response to impulses
of light; frequency domain systems measure the modulation amplitude and phase delay of the
signal resulting from an intensity modulated source.

Optical tomography aims to use these measurements to reconstruct the scattering and
absorption coefficients, µa and µs , at each position r in the medium �. When applied
in a medical context, these properties can provide information about tissue structure and
the distribution of oxygenated and de-oxygenated blood. Proposed applications include
mammography (Franceschini et al 1997, Nioka et al 1997, Tromberg et al 1997, Fantini et al
1996) and functional brain imaging (Franceschini et al 2000, Gratton et al 1997, Maki et al
1996, 1997, Wenzel et al 1996, Kato et al 1993, Villringer et al 1993, Chance et al 1993).

The propagation of light through a highly scattering medium is properly described by the
radiative transfer equation (RTE):(

1

c

∂

∂t
+ ŝ · ∇ + µs(r) + µa(r)

)
φ(r, ŝ, t)

= µs(r)
∫

S2
p(ŝ′ → ŝ)φ(r, ŝ′, t) dŝ′ + q(r, ŝ, t) r ∈ � (1)

where ŝ is a unit vector in S2 and φ(r, ŝ, t) is the energy radiance at position r and time t moving
with speed c in direction ŝ. The function p(ŝ′ → ŝ) gives the probability density (scattering
phase function) for scattering from ŝ′ to ŝ, the function q represents the spatial distribution of
photon sources and µa(r) and µs(r) are the absorption and scattering coefficients, respectively.

In order to simplify the forward model, the radiative transfer equation can be approximated
by a parabolic diffusion equation (see Arridge (1999) and Heino and Somersalo (2002) for
details). In this simplified model, photon transport is described by the relation

−∇ · κ(r)∇�(r, t) +

(
µa(r) +

1

c

∂

∂t

)
�(r, t) = q0(r, t) (2)

where �(r, t) = ∫
S2 φ(r, ŝ, t)dŝ is the photon density, κ = (3(µa + (1 − g)µs))

−1 is the
diffusion coefficient, with g the average cosine of the scattering phase function p(ŝ′ → ŝ),
assumed directionally independent, and the function q0 describes an isotropic source
component within the medium �. It is only possible to derive analytic expressions for the
solution of the diffusion equation in special cases such as for a point source in an infinite
homogeneous medium. More generally, numerical solutions based on finite differences or
finite elements are applied. For a detailed exposition of the use of finite element methods in
optical tomography, see Arridge et al (1993), Schweiger et al (1993, 1995) and Arridge (1999).

The reconstruction of absorption and scattering coefficients based on OT data is a nonlinear
ill-posed inverse problem. Most of the current approaches to tackle this ill-posed problem can
be classified crudely into three classes that are backprojection methods (Walker et al 1997,
Colak et al 1997), linear (perturbation) methods, see, e.g., Gaudette et al (2000), Chang et al
(1996), and the regularized output least-squares methods, see, e.g., Arridge (1999), Ye et al
(1999) and Paulsen and Jiang (1996). A common feature to all these methods is that they are
static, i.e. they assume that the absorption and scattering coefficients do not exhibit changes
during the time that is needed to measure a complete set of data for one traditional image
frame.

Current approaches to the dynamic OT problem attempt to reconstruct time-varying
absorption and scattering coefficients on an independent frame by frame basis from the
sequence of measurements using static reconstruction methods, see, e.g., Bluestone et al (2001)
and Barbour et al (1999). These methods have two intrinsic weaknesses. Firstly, with these
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Figure 1. Sample of continuous wave (CW) amplitude data from one source–detector pair in the
experiment of Franceschini et al (2000). The signal has a strong deterministic component. In
fact, oscillatory components at three different scales can be identified, which probably correspond
to arterial pulsation, breathing and the experimental manipulation which alternated between two
conditions.

methods one may lose most of the temporal information when the rate of change in the
absorption and scattering coefficient is fast compared to the time that is needed to collect a
complete dataset for one traditional image frame. Secondly, since we are observing biological
processes, it seems inappropriate to assume (implicitly) that the optical properties of the tissue
should be completely unrelated at nearby time instants. To illustrate this point, we reproduce
measurements of the motor cortex from Franceschini et al (2000) in figure 1. The plot
reveals that the measurements, and by extension, the optical properties of the tissue, have a
deterministic component. In fact, three oscillating components can be seen which correspond
to the heartbeat, breathing and experimental stimulus, respectively. Taken together, these
arguments can be taken as meaning that there may be no consistent static solution for data
measured at different times.

This paper attempts to render the reconstruction of time-varying absorption and scattering
coefficients more tractable by making use of time-series information in the measurement
stream. The basic method is to construct a stochastic model for the random process underlying
the measurement sequence. We utilize this model to generate a Bayesian prior for the
dynamic reconstruction of the absorption and scattering coefficients in turn, using a method
based on Kalman filtering techniques. Similar state space estimation approaches have been
previously applied to electrical impedence tomography (EIT) in Kaipio et al (1999), Kaipio
and Somersalo (1999), Vauhkonen et al (1999, 2001) and Seppänen et al (2001a, 2001b) and
to optical tomography in Kolehmainen et al (2003) but only with simulated data. In addition
to demonstrating the application of state space methods to optical tomography, the main
contribution of this paper is to develop a suitable state update model for describing oscillating
biological signals and to apply the method to real data from the study of Franceschini et al
(2000).

In the first part of the paper we describe the standard approach to the static reconstruction
based on the traditional image frame. We then introduce a novel method to the dynamic
reconstruction based on the state space estimation. We propose a stochastic model for
describing biological activity and present a simulation in which we reconstruct and segment
a time series of images. Finally, we demonstrate the practical application of this scheme by
reconstructing data from the experimental work of Franceschini et al (2000).

2. Static reconstruction approach

The static reconstruction approach can be stated for each frame as follows. Given a known
array of source inputs {q} and a known set of measurements {y} at detector positions {d} on
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the boundary, ∂�, we must reconstruct the absorption and scattering properties µa(r), µs(r)
of the medium �. Although there is generally no closed form solution to this problem,
the tractability of the forward problem (the diffusion equation) admits an obvious numerical
approach. For notational simplicity, we concatenate the optical properties, µa(r) and µs(r),
into a single vector, x, and the measurements into a vector y. If the forward mapping is
expressed as y = f (x), then one can consider the reconstruction problem as a minimization
of the total-squared error

E(x) = 1

2
‖y − f (x)‖2

R−1 = 1

2

Q∑
q=1

D∑
d=1

(
yq,d − fq,d (x)

σq,d

)2

(3)

where q is the source number, d is the detector number and R is the covariance matrix
associated with the measurement noise, which is here taken to be diagonal with entries σ 2

q,d

specifying the variance associated with this measurement. Because the problem (3) is ill posed,
Tikhonov regularization techniques are used to stabilize the problem by imposing (spatial)
prior knowledge about the optical properties of the medium (Arridge 1999, Ye et al 1999,
Paulsen and Jiang 1996). In most cases the modified problem is written in the form

ETikh.(x) = E(x) + α‖Lx‖2 (4)

where L is the regularization matrix (e.g., a discrete approximation to a differential operator)
and α > 0 is the regularization parameter.

A typical numerical approach to minimize the error functional (4) is to use iterative
optimization methods such as the Gauss–Newton method:

xn+1 = xn + (J(xn)
TR−1J(xn) + αLTL)−1(J(xn)

TR−1[y − f (xn)] − αLTLxn) (5)

where J(xn) = f ′(xn) is the Jacobian containing derivatives of the terms yq,d with respect to
components of x, evaluated at xn.

3. State space reconstruction approach

In the state space approach to dynamic image reconstruction, we consider the optical properties
of the medium, x, to be a discrete time stochastic process governed by a stochastic difference
equation. We denote this as the state update model and will assume linearity so that it takes
the form

xk = Kxk−1 + nk (6)

where the state transition matrix K gives the deterministic part of the state update model, nk

is a Gaussian random vector and the subindice k denotes the (integer) time steps. Nonlinear
state update models are also possible but will not be considered in this paper. As before,
we assume that the measurements are derived from the state using the forward model with
Gaussian additive noise:

yk = fk(xk) + mk (7)

where the observation vector yk contains measurements that are acquired at time instant k and
fk(·) is the part of the forward model that corresponds to yk, which is acquired sufficiently
quickly so that it can be assumed that the state vector xk was constant during the acquisition.
This last point is important in the application of dynamic reconstruction methods, and can
encompass several scenarios. For example, in one configuration yk may consist of a single
observation between one source and one detector, or if all detector channels are measured in
parallel, it may contain the responses of all the detectors to a given source; at the other extreme,
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it would be a fast measurement system (or slowly varying state) in which all excitations
were assumed simultaneous. The dynamic reconstruction framework is flexible enough to
accommodate all these conditions, but in this paper we concern ourselves with the intermediate
case in which each source is excited in serial and the measurements taken in parallel.

The dynamic reconstruction technique splits the update of state x̂k−1 → x̂k at time k
into an optimal estimate based on (i) the prediction of the state update model, x̂(−)

k from the
previous state x̂k−1 and (ii) the noisy measurement, yk,

x̂k−1 → x̂(−)
k → x̂k.

It is easy to see how this can help with the ill-conditioned inverse problem: when the
measurement, yk, does not adequately constrain the state, xk, the temporal priors (the
predictions) that are based on the time-series model help us to ensure that a sensible solution
is adopted. For linear state update and measurement models, with Gaussian statistics, the
well-known Kalman recursions provide a closed form solution to this problem. Unfortunately,
the measurement (forward) model (7) is nonlinear. In nonlinear cases, suboptimal estimates
can be obtained by writing linear approximations for the nonlinear measurement and/or state
update models, and then applying the Kalman recursions. This approach is known as the
extended Kalman filter, in which we linearize the forward model (7) about the predicted state
estimate. We retain a linear state update model. With these choices, the full update equations
for the extended Kalman filter are given by

State prediction:

x̂(−)
k = Kx̂k−1 (8)

Variance prediction:

C(−)
k = KCk−1KT + Qk (9)

Kalman gain:

Gk = C(−)
k JT

k

(
JkC(−)

k JT
k + Rk

)−1
(10)

State update:

x̂k = x̂(−)
k + Gk

(
yk − fk

(
x̂(−)

k

))
(11)

Variance update:

Ck = (I − GkJk)C
(−)
k (12)

where C is the covariance matrix describing the uncertainty of the state, Q is the covariance
matrix associated with the state update noise vector nk, R is the covariance of the observation
errors mk and Jk is the Jacobian of fk

(
x̂(−)

k

)
, evaluated at x̂(−)

k . G is a pseudo-inverse that
incorporates the model and the new measurements and is termed the Kalman gain. In this
notation the superscript (−) refers to the intermediate state and covariance predictions provided
by the state update model, which are then modified by the measured data to produce the next
state value. The system (8)–(12) is initialized with a first state estimate x̂0, and an initial
covariance C0, which is usually taken to be a large multiple of the identity matrix, reflecting
the fact that our knowledge of the parameters prior to any estimates is weak. The effect of
this ‘large’ initialization tails off after a few Kalman recursions. A readable introduction to
the Kalman filter and its variants can be found in Anderson and Moore (1979).

This recursive formulation means that only data received up to the current time instant
contribute to the final answer. In order to incorporate data from future points in the sequence,
we apply the fixed interval Kalman smoother. The forward Kalman filter ((8)–(12)) performs a
complete forward sweep of the dataset. Subsequently, a backward sweep is carried out which
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adjusts each estimate to incorporate the information received after the original estimate was
made. Consider a fixed-length interval consisting of N time instants. It was shown by Rauch
et al (1963) that the adjusted estimates, x̂k|N , may be determined by

x̂k−1|N = x̂k−1 + Ak−1
[
x̂k|N − x̂(−)

k

]
(13)

where the smoothing gain, Ak, is given by

Ak−1 = Ck−1KT
k−1C(−)−1

k . (14)

The backward recursions do not require the raw data, since these are incorporated in the
estimates from the forward sweep. The reverse sweep is initialized by letting x̂N |N = x̂N .

As before, we can also iterate the system to give improved results. The extended Kalman
filter and smoother are run through the entire dataset. On the following pass through the data,
the Jacobian is calculated around the previous smoothed estimate. The state estimate equation
is modified to

x̂k = x̂(−)
k + Gk

[
yk − fk(x∗

k) − Jx∗
k

[
x(−)

k − x∗
k

]]
(15)

where the linearization point x∗
k is the estimate of the state at time k from the previous smoothing

run. In principle, the position at which the Jacobian is calculated should become more optimal
with each pass through the data, and hence the linear approximation should improve.

Just as in the static case, it is also possible to apply spatial priors to help make
the reconstruction well posed (Kaipio and Somersalo 1999). Recall that the linearized
measurement equation can be expressed as

yk ≈ fk(x̂k) + Jk[xk − x∗
k] + mk. (16)

Rearranging and combining with a linear penalty term on the solution, we form an augmented
measurement model[

yk − fk(x∗
k) + Jkx∗

k

0

]
=

[
Jkxk

αLxk

]
+

[
mk

v

]
(17)

where x∗
k is the linearization point, L is the regularization operator and v is a Gaussian random

vector. The regularization parameter α and the width of the covariance of v control the degree
to which the solution is attracted to the null space of the regularization operator in the Kalman
recursions.

In principle, an alternative to the local state prediction mechanism inherent in the Kalman
filtering technique would be to treat the entire dataset for a short time series simultaneously
and construct a solution using the Tikhonov regularization with spatial-temporal covariance,
assuming a fixed linearization point throughout the time series (i.e. the linearization point at
time t + 1 does not depend on the solution at time t). The treatment of the problem in this
paper can be interpreted as a specification of a spatial-temporal covariance under the first-order
Markov model for time evolution. Explicit construction of spatio-temporal covariances for
other than first-order Markov processes is not straightforward to approach. However, there are
also other recent treatises of nonstationary inverse problems that are based on deterministic
interpretation of the variables (Schmitt and Louis 2002, Schmitt et al 2002). These methods
have the drawback that they lack systematic parameter error estimates. The computational
feasibility of this approach to nonlinear problems has yet to be studied.

4. Modelling biological signals

Many biological signals, including the data presented in figure 1, contain oscillatory
components. We aim to utilize this knowledge to build a plausible state update model.
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Following figure 1, we consider the optical properties at each point in the image space to be
the sum of three quasi-sinusoidal signals,

µa(ri) =
3∑

j=1

ai,j cos(2πωj t) + bi,j sin(2πωj t) (18)

where the coefficient ai,j is the amplitude of the co-sinusoidal oscillatory component of
frequency ωj at position i, and bi,j is the amplitude of the sinusoidal component. Here we
are defining quasi-sinusoidal to mean a signal with a known frequency but where amplitude
and phase are random variables. We now consider the state vector, x, to consist of all the
coefficients {ai,j , bi,j } such that

x =




...

ai,1

bi,1

ai,2

bi,2

ai,3

bi,3

...




. (19)

The state update model is modelled as a Wiener process or random walk

xk = xk−1 + nk (20)

where nk is a noise vector. This simple choice of state update means that K = I and each
random variable is modelled as an identical independent Brownian random walk. Other
choices are certainly possible, but this choice represents the simplest one in the absence of
explicit prior knowledge of the state variation. Since the coefficients aj,k, bj,k vary smoothly,
the overall effect at each frequency is of a narrow band signal, in which the amplitude and phase
change slowly over time. The speed of this change (and hence the bandwidth) depends on the
magnitude of the random components, nk . We now aim to reconstruct these six coefficients at
each position in the medium. We incorporate the time-varying sum in equation (18) into the
forward model and the Jacobian accordingly. The sum of the frequency components can be
obtained by the matrix operations,

Zk = (cos(2πω1tk), sin(2πω1tk), cos(2πω2tk), sin(2πω2tk), cos(2πω3tk), sin(2πω3tk)) ⊗ I

(21)

where ⊗ represents the Kronecker product, and I is an M × M identity matrix, where M is the
total number of voxels in the reconstruction. Thus we have

µ = Zkxk. (22)

The forward model becomes f̃k = fk(Zkxk) and the Jacobian J̃k = JkZk.
We now present a simulated example of this type of reconstruction.

5. Simulation details

We generated a test dataset which consisted of a sequence of two-dimensional 12 × 12 pixel
images (see figure 2(a)). For each time instant, the distribution of the absorption coefficient,
µa(r), consisted of the linear sum of three overlapping Gaussian components, each of which
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(A) (B)

Frame #47 Frame #48 Frame #49

Frame #50 Frame #51 Frame #52

Frame #53 Frame #54 Frame #55

Frame #56 Frame #57 Frame #58

Frame 47 Frame 48 Frame 49

Frame 50 Frame 51 Frame 52

Frame 53 Frame 54 Frame 55

Frame 56 Frame 57 Frame 58

Figure 2. (A) and (B) The true absorption distributions and their state estimate reconstructions
from the simulated sequence at 12 time instants, respectively. The sequence consists of three
overlapping blobs. Each has a narrowband time course with different mean frequency. The main
features of the original sequence are captured by the reconstructions.

M An MPEG movie of this figure is available from stacks.iop.org/PMB/48/1491.

Actual Component #1 Actual Component #2 Actual Component #3

Reconstructed #1 Reconstructed #2 Reconstructed #3

Figure 3. The state vector contains the amplitudes of the separate oscillating components. Hence,
it is possible to visualize a map of the activity of each. The actual square deviation from the mean
value is shown in the top row, and the reconstructed maps are shown below. The reconstruction
successfully segments the image.
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was quasi-sinusoidal in time, with differing mean frequencies of 0.1111 Hz, 0.0654 Hz
and 0.0300 Hz, respectively. The distribution of scattering coefficients µs(r) is assumed
constant and known. We simulate eight detectors and eight sources which are alternately
and equally spaced around the exterior boundary ∂�. Each source fires alternately and
yields simultaneously eight measurements of continuous wave (CW) intensity from the
detectors, leading to a measurement vector yk ∈ R

8×1 at each time instant. Thus, the time that
is needed to measure a complete dataset y ∈ R

64×1 for one traditional (static) image frame
consists of eight time instants. The forward model is implemented using a simple finite
difference approximation to the diffusion equation, with Dirichlet conditions assuming the
photon density is always zero on the boundary. The Dirichlet boundary condition is not
the most appropriate one for photon propagation in tissue, a more correct model being
the Robin boundary condition (known as the partial current boundary condition in optics,
Schweiger et al 1995), but since we are using relative measurements normalized to a baseline,
the differences are largely cancelled out.

The detector measurements are taken as the photon density � at the exterior boundary
next to the detector. Independent noise samples drawn from a normal distribution were added
to each measurement where the standard deviation of the noise was equal to 1% of the mean
signal level from the detector over the whole sequence.

The image sequence was reconstructed using the state space estimation method described
above. The Jacobian matrix J was calculated using the adjoint method (Arridge 1995, 1999).
Each row of the Jacobian, which, loosely speaking, relates infinitesimal changes in µa to the
infinitesimal changes in the measurement from source q and detector d, consists of a photon
measurement density function (PMDF), ρ, (Arridge and Schweiger 1995) and is given by the
expression

Jq,d = ρ(r, rq, rd) = −G+(r, rd)G(r, rq) (23)

where G(r, rq) is the Green’s function propagating from the position of source rq and G+(r, rd)

is the adjoint Green’s function propagating from the position of detector rd . In simple terms,
the PMDF is the pointwise product of the solutions to the diffusion equation with a unit
source at the position of q with that of the solution with a unit source at the position of d.
In the discrete framework of a finite subspace method such as that used here, the function
ρ is projected into the basis representing the coefficients ai,j , bi,j . The Jacobian relating the
detector measurements to the oscillatory parameters ai,j and bi,j is calculated as described in
the previous section.

Figure 2(a) shows the simulated absorption distribution at 12 consecutive time instants.
Example reconstructions of this simulated dataset after two passes of the Kalman filter and
smoother are shown in figure 2(b). These were calculated by summing the three recovered
frequency components, as described in equation (18). The recovered images represent well
the structure of the original images.

Note that the state estimate is generated each time a source is fired. We have only eight
noisy measurements with which to reconstruct (144 × 6) coefficients (144 pixels). For a
given time instant, the measurements may contain information only from a part of the image
space, but the reconstruction remains stable because the state update model predicts the results
elsewhere. As described above, we also simultaneously apply spatial regularization to help
make the problem well posed,using a discrete approximation to the two-dimensional Laplacian
for the regularization operator. Furthermore, the state space estimation approach has obvious
advantages. Firstly, the temporal resolution of the state space reconstruction is eight times
higher than the case if a series of static reconstructions was made from each complete set of
source–detector responses. Secondly, each observation is integrated into the reconstruction
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at the exact time it is received. For example, in the case of Franceschini et al (2000), the
acquisition of a traditional frame might be spread out over a 160 ms period. Thirdly, the
Jacobian, J, is reduced in size, increasing reconstruction speed, although this is not the case if
we simultaneously apply spatial regularization as in (15).

One advantage of estimating the coefficients of the individual narrow band components is
that it is easy to examine the spatial distribution of each part. Figure 3 shows the mean energy
at each frequency, as calculated from the sum of the squares of the coefficients over the whole
time series. The reconstruction has successfully segmented the structural components of the
original images.

6. Reconstructing experimental data

Franceschini et al (2000) presented a method for non-invasive imaging of a 9 × 4 cm2 area
of the brain in which a complete set of measurements is collected every 160 ms. This is
faster than twice the heart rate and so it is possible to image arterial pulsation. The apparatus
consisted of 16 intensity modulated laser diodes and two heterodyned photo-multiplier tube
detectors. We restrict our analysis to the continuous wave component of the eight sources
which carried light at 758 nm, giving a total of 16 source–detector pairs. However, of these,
six are sufficiently distant from one another that the measured signal is negligible, leaving
a total of only ten separate measurements, collected over a period of 160 ms. Data were
collected from the human motor cortex during two alternating conditions, in which the subject
performed a hand tapping task, or rested respectively.

We reconstructed these data using the state space estimation techniques described above.
An exact model predicting measurement values within the tolerance of experimental noise
requires a highly sophisticated 3D numerical scheme, incorporating techniques for handling
non-scattering voids, anisotropies and boundary coupling effects. However, if we consider
only relative differences in data from a baseline measurement we can employ a cruder model.
Nevertheless, it is important to consider both 3D effects, and also the effect of layers of skin
and bone in the head which quite dramatically change the spatial form of the PMDF functions
(Arridge and Schweiger 1995).

We construct a finite difference grid of size 21 × 11 × 4 (width × height × depth) within
which to reconstruct the data. Each element was 0.5 cm × 0.5 cm × 0.5 cm for compatibility
with the back-projected reconstructions presented in the original paper. We model the four
layers as skin (µa = 0.022 mm−1, µs = 1.000 mm−1), bone (µa = 0.025 mm−1, µs =
1.000 mm−1), grey matter (µa = 0.020 mm−1, µs = 0.550 mm−1) and white matter
(µa = 0.01 mm−1, µs = 2.000 mm−1), where these parameters define the diffusion constant
κ for each layer. The structure of the model together with the placement of the sources and
detectors in the original experiment is depicted in figure 4. Since heart rate and respiration
were measured in the original experiment, we calculate the model frequencies in (18) from
the Fourier transform of these data. The frequency with which the experimental independent
variable (i.e. hand tapping) changed is similarly known a priori.

The reconstruction is highly underdetermined—at each time instant k, we aim to
reconstruct 924 × 6 parameters (924 voxels, 6 amplitude coefficients) from only two
independent measurements (i.e. yk ∈ R

2×1), one of which is often impossibly noisy.
In order to make the reconstruction tractable, we assume that only the absorption

coefficients in the third layer (grey matter) change as a function of time. This reduces
the number of parameters to be estimated to 231× 6 and the number of voxels to only 231. In
practice, this is achieved by using the full three-dimensional forward model, but only taking the
rows of the Jacobian that correspond to parameters from the layer representing the grey matter.
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Figure 4. Experimental arrangement and grid model. Eight detectors measured light from two
sources giving a total of 16 measurements per frame. We divide the volume under the measurement
positions into a regular grid of 21 × 12 × 4 voxels. The four layers represent skin, bone, grey
and white matter, respectively. We treat all layers apart from the grey matter as having constant
absorption properties.

There are two problems associated with reconstruction from real data, which were not
encountered in the simulations. Firstly, the level of noise in each source–detector pair may
differ and therefore we must estimate the measurement covariance matrix R. Ideally, this
should be established experimentally by imaging a constant medium. However, for our post
hoc reconstruction we must estimate it from the data itself. We assume that the noise for each
source–detector pair is independent of all the others, and proportional to the total variation
within that measurement channel. Hence, the measurement distance metric, R, is defined as a
diagonal matrix with the channel covariance values on the diagonal.

Secondly, the forward model does not provide estimates of the detector responses which
are equivalent to the real equipment. One reason for this is the unknown attenuation which
occurs at the coupling between the tissue and the sources and detectors. We must employ a
baseline level ymeas

base that is compatible with the measurements defined by the real detectors.
We normalize the measurements to have a mean value of unity and we can similarly define a
normalizing vector ycalc

base = f (xbase), where ycalc
base,q,d is equal to the predicted measurement at

detector d, with a source q of unity amplitude and a homogeneous medium. Effectively, we
have now formed a modified measurement model at the core of our state space formulation

f̃ (x) = ymeas
base

f (xbase)
f (x) (24)

where the vector multiplications and divisions are taken to be pointwise. This model has
the property of agreeing completely with the data at the point taken as the baseline. When
linearization is carried out, and including the estimate of the standard deviation of noise,
we get

ymeas
k − ymeas

base

σymeas
base

= J

σf (xbase)
[x − xbase] (25)

where σ has entries σ (q,d) equal to the estimated standard deviation of the noise on the signal
from source q, as measured by detector d, and the matrix vector division is taken to mean
division of the rows of the Jacobian by each term in the vector.

Example reconstruction results after a single forward and backward pass through the time
series are shown in figure 5 for a series of frames from the sequence. Note how much structural
change is there between consecutive time instants despite the small number of measurements
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Frame 3201 Frame 3202 Frame 3203 Frame 3204

Frame 3205 Frame 3206 Frame 3207 Frame 3208

Frame 3209 Frame 3210 Frame 3211 Frame 3212

Frame 3213 Frame 3214 Frame 3215 Frame 3216

Frame 3217 Frame 3218 Frame 3219 Frame 3220

Figure 5. Series of 20 reconstructed images from continuous wave data collected by Franceschini
et al (2000). In each case the scale is the same. The whole series represents a time course of only
0.4 s, and the variation is presumably principally due to arterial pulsation. Note that for the standard
reconstruction method, the sampling frequency is eight times lower, and much of the variation seen
here would be averaged together. Note that only two measurements were incorporated for the state
space estimation at each time instant.

M An MPEG movie of this figure is available from stacks.iop.org/PMB/48/1491.

Arterial Pulsation Breathing Motor Activity

Figure 6. Spatial map of activity associated with three temporal components. There is some
spatial separation in the activity due to these components. Notably this allows us to isolate the
component due to the experimental hand tapping condition which presumably corresponds to the
part of the cortex responsible for the motor task.
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coming in. Recall that with a static reconstruction we would average eight of these states
together. Once more, we have also plotted the mean energy at each frequency in figure 6.
The reconstruction allows us to segregate activity that belongs to components at different time
scales. The slowest (right-most) component corresponds to changes due to the experimental
hand tapping condition and hence represents the part of the cortex which is responsible for the
motor task.

7. Discussion

Optical measurements have been used to reconstruct the hemodynamics of the human head by
Bluestone et al (2001), using a technique which considers each (traditional) frame separately.
In this paper, we have detailed a general method for the reconstruction of time-series data in
optical tomography. Our method is based on a state space formulation in contrast to previous
spatio-temporal imaging techniques (Barbour et al 1999). The system exploits known patterns
in the state of the tissue in order to help solve the difficult ill-posed reconstruction problem. One
can view this as implementing ‘temporal regularization’ for the time-varying reconstruction
problem. In this paper we constructed a state update model consisting of a linear sum of three
narrow band oscillating components. We then solve for the parameters defining the amplitude
and phase of these components. A second advantage of the state space reconstruction is that
we can use this model to segment the activity into physiological components which are known
to have different time courses and produce dynamic activity maps for each.

A third advantage of the state space reconstruction is that measurements can be
incorporated into the system at exactly the time that they were made. To reconstruct each
frame of the data separately, we must wait for a full set of source–detector measurements.
Since the sources are typically fired alternately, this means that the measurements are spread
out in time. The state space reconstruction method permits us to integrate each measurement
at the time that it is received as well as ultimately providing a higher temporal resolution to
the reconstruction.
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