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Fluorescence optical diffusion tomography using
multiple-frequency data
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A method is presented for fluorescence optical diffusion tomography in turbid media using multiple-frequency
data. The method uses a frequency-domain diffusion equation model to reconstruct the fluorescent yield and
lifetime by means of a Bayesian framework and an efficient, nonlinear optimizer. The method is demon-
strated by using simulations and laboratory experiments to show that reconstruction quality can be improved
in certain problems through the use of more than one frequency. A broadly applicable mutual information
performance metric is also presented and used to investigate the advantages of using multiple modulation fre-
quencies compared with using only one. © 2004 Optical Society of America
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1. INTRODUCTION
Optical diffusion tomography (ODT) or, equivalently, dif-
fuse optical tomography, has attracted considerable re-
cent interest.1,2 In ODT, volumetric images of the ab-
sorption and scattering properties of the tissue are
computed from near-infrared boundary measurements.
The propagation of light is modeled by use of a partial dif-
ferential equation known as the diffusion equation. ODT
has great potential in a variety of medical imaging appli-
cations including tumor imaging and functional brain im-
aging. In tumor imaging, the specificity and the contrast
of ODT can be enhanced through the use of fluorescent
agents.3–12 Injected fluorophores accumulate in diseased
tissue because of increased vascular density7 or selective
targeting.6,8,11,12 The fluorescent lifetime is also used to
image cancerous tissue,5 independently of fluorophore
concentration.

In frequency-domain fluorescence optical diffusion to-
mography (FODT), light at the fluorophore’s excitation
1084-7529/2004/061035-15$15.00 ©
wavelength is launched into the tissue. The light can be
sinusoidally modulated or continuous wave (CW, meaning
unmodulated). The fluorophore absorbs the incident
light and then decays to its ground state with some char-
acteristic time constant, emitting some of the light at a
longer wavelength. The emitted photons are then mea-
sured by an array of detection devices. From the data,
one can reconstruct images of the fluorescent yield (a
measure of the fluorescent efficiency) and the fluorescent
lifetime (the fluorescent decay parameter). Multiple pho-
ton scattering in tissue must be properly accounted for in
the reconstruction.13,14

Imaging of absorption, scattering, and fluorescence in
diffuse media, however, is computationally intensive.
The inversion process is also ill-posed and, frequently, un-
derdetermined. Photon scattering is inherently three di-
mensional, necessitating full three-dimensional models
and reconstructions. Because the optical absorption and
scattering properties of the tissue are represented as co-
2004 Optical Society of America
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efficients in the diffusion equation, their reconstruction is
a nonlinear optimization problem. If the scattering and
the absorption are known, the reconstruction of the fluo-
rescent yield and lifetime is linear after an invertible
transformation, provided that only one modulation fre-
quency is used. In frequency-domain imaging with mul-
tiple modulation frequencies, though, the inversion is nec-
essarily nonlinear because of coupling between the
unknown parameters and the frequency terms. As a re-
sult of these difficulties, the inverse problems must be
solved iteratively, with robust modeling and optimization
techniques.

Previously, several groups addressed the frequency-
domain FODT problem by using CW light or light modu-
lated with a single frequency (typically in the range 70–
100 MHz).15–22 In simulation studies, the fluorescent
yield and lifetime, given known absorption and scatter-
ing, have been simultaneously reconstructed.15–18 In ad-
dition, the fluorescent yield has been reconstructed from
laboratory data.19,20 Shives et al.22 have reconstructed
the spatially dependent fluorescent lifetime of an oxygen-
sensitive tissue phantom. Recently, we introduced a non-
linear Bayesian inversion method for reconstructing the
absorption, scattering, and fluorescence parameters.21

Building on our earlier work in nonfluorescent image
reconstruction,23–26 our method uses iterative coordinate
descent (ICD) optimization and a generalized Gaussian
Markov random field (GGMRF) prior model for regular-
ization. We have applied our method to reconstruct the
absorption and the fluorescent yield of a tissue phantom
composed of Intralipid solution (which scatters the light
and has optical properties similar to those of tissue) and a
glass sphere containing a mixture of Intralipid solution
and indocyanine green (ICG), a fluorescent diagnostic
agent.21

Several authors have suggested that it should be pos-
sible to improve the resolution of ODT reconstructions by
using either time-resolved or multiple-frequency
data.27,28 Intuitively, one might expect that additional
modulation frequencies would provide additional infor-
mation that is useful in the reconstruction. To date, how-
ever, no one has addressed the question of how to rigor-
ously reconstruct the fluorescent yield and lifetime by use
of multiple modulation frequencies or whether multiple-
frequency data can improve FODT reconstruction quality.
There has been little done on the use of performance met-
rics for evaluating the impact of multiple frequencies.
Here, we present a method for reconstructing the fluores-
cent yield and lifetime by using multiple modulation fre-
quencies. We show, using numerical simulations, that
the proposed method of incorporating multiple-frequency
components can indeed improve image quality when re-
constructing well-localized objects. We also validate the
reconstruction algorithm by reconstructing fluorescent
yield, fluorescent lifetime, and absorption of measure-
ments from an experimental tissue phantom containing
ICG embedded within a lipid suspension.

Based on the simulation and the experimental results,
it appears that the advantage of using multiple modula-
tion frequencies is most apparent in reconstructing well-
localized objects and less apparent in reconstructing tar-
gets with broader features. To investigate this claim, we
present a performance metric based on information
theory29,30 for evaluating an experimental configuration.
The performance metric incorporates statistical models of
both the unknown image and the measurement device.
Hence it provides insight relevant to entire classes of
problems, rather than only a few anecdotal examples.
Previously, information-theory-based performance met-
rics have been used to evaluate computed tomography31

and magnetic resonance imaging.32 Our performance
metric is closely related to previous work by Shao et al.,
who used mutual information to evaluate different aper-
ture designs for single-photon emission tomography.33,34

While information theory has not been applied to the
ODT problem, several groups have used singular-value
analysis to evaluate source/detector arrangements35,36 or
data types.37 However, none of these investigations in-
corporated statistical models of the unknown image’s
properties. Mutual information measures the degree to
which the measurement apparatus is matched to the sta-
tistical model of the unknown fluorescence image. Using
results of rate distortion theory,38 it provides a lower
bound for the mean square error (MSE) for any estimator
of the unknown image. Application of the performance
metric to various image priors and measurement models
agrees well with the reconstruction results in predicting
improvement due to use of multiple frequencies.

2. FLUORESCENCE OPTICAL DIFFUSION
TOMOGRAPHY MODELS
A. Diffusion Model
The transport of light that is amplitude modulated at a
frequency v through a scattering medium can be modeled
with the photon transport equation.39–41 A common sim-
plification, the photon diffusion equation, is reasonably
accurate for imaging applications where there is signifi-
cant scatter.1 For exp( jvt) time variation and point
source excitation, it is given by

¹ • @D~r !¹f~r, v!# 2 @ma~r ! 1 jv/c#f~r, v!

5 2d ~r 2 rsk
!, (1)

where f(r, v) (W/cm2) is the complex modulation enve-
lope of the photon flux, d (r) is the Dirac function, and rsk

is the point source location. The diffusion coefficient
D(r) (cm) is inversely related to the scattering coefficient,
and ma(r) (cm21) is the absorption coefficient.

In a fluorescent scattering medium, the fluorophore is
excited with light at wavelength lx and emits light at a
longer wavelength lm (assuming a single emission wave-
length, for simplicity). In general, the scattering and ab-
sorption properties of the medium, and thus the solution
to the diffusion equation, differ between lx and lm .
Hence two diffusion equations must be used to describe a
fluorescence measurement: the first, to represent excita-
tion at lx , and the second, to represent the propagation of
the emitted lm photons to the detectors. This coupled
diffusion model13,14,42 is

¹ • @Dx~r !¹fx~r, v!# 2 @max
~r ! 1 jv/c#fx~r, v!

5 2d ~r 2 rsk
!, (2)
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¹ • @Dm~r !¹fm~r, v!# 2 @mam
~r ! 1 jv/c#fm~r, v!

5 2fx~r, v!hmaf
~r !

1 2 jvt~r !

1 1 @vt~r !#2
, (3)

where the subscripts x and m denote excitation and emis-
sion wavelengths lx and lm , respectively. We also as-
sume single exponential decay in this model. The fluo-
rescence parameters are the lifetime t(r) (s) and the yield
hmaf

(r) (cm21). The fluorescent yield hmaf
incorporates

the fluorophore’s quantum efficiency h (which depends on
the type of fluorophore and the chemical environment)
and its absorption coefficient maf

(which depends on the
fluorophore concentration). The fluorescent lifetime t(r)
is the exponential decay constant. The coupling of the
two equations takes place through the right-hand side of
Eq. (3).

B. Tomography Problem
In general, one does not know max

, mam
, Dx , Dm , t, and

hmaf
a priori in a practical experiment. To obtain the

fluorescence parameters, one would first need to perform
appropriate measurements and use them to reconstruct
max

, Dx , mam
, and Dm , because of their appearance in the

coupled diffusion equations. Previously, we have pre-
sented a suitable measurement and reconstruction
approach,21 depicted schematically in Fig. 1. Recon-
structions of Dx and max

may be obtained by using data
from sources and detectors at the excitation wavelength
lx . Similarly, Dm and mam

may be obtained by using
data from sources and detectors at the emission wave-
length lm . Finally, measurements with sources at lx
and detectors filtered at lm are used to reconstruct t and
hmaf

. In some practical situations, sufficiently accurate
reconstructions of t and hmaf

might be obtainable without
performing rigorous reconstructions of all of the remain-
ing unknowns, under reasonable simplifying assump-
tions.20,21

We discretize the domain into N voxels of equal size (al-
though one can generalize to irregular meshes). Let ri
denote the position of the ith voxel centroid, and let h de-

Fig. 1. Measurement approach for reconstructing all unknowns,
showing appropriate source and detector wavelengths for recon-
structing @max

, Dx#, @mam
, Dm#, and [h, t].
note hmaf
, for brevity. We define three image vectors,

with each corresponding to a particular measurement:

xx 5 @xxA
T , xxB

T ]T

5 @max
~r1!,..., max

~rN!, Dx~r1!,..., Dx~rN!#T, (4)

xm 5 @xmA
T , xmB

T ]T

5 @mam
~r1!,..., mam

~rN!, Dm~r1!,..., Dm~rN!#T,

(5)

xf 5 @xfA
T , xfB

T ]T

5 @h~r1!,..., h~rN!, t~r1!,..., t~rN!#T, (6)

where the subscript f denotes the fluorescence image and
the superscript T denotes the transpose operation. Note
that the three image vectors are each of size 2N, consist-
ing of two unknown parameter vectors of size N. The
photon flux measurement vectors corresponding to the
above image vectors may be defined, respectively, as yx ,
ym , and yf .

3. INVERSE PROBLEM
A. Bayesian Framework
The estimation of $xx , xm , xf% from $ yx , ym , yf% is an ill-
posed inverse problem. To address this, we formulate the
inversion in a Bayesian framework,21,23–26 as we have
presented previously. Let x denote one of the images
$xx , xm , xf%, and let y denote its corresponding data set.
We compute the maximum a posteriori (MAP) estimate by
using Bayes’ rule:

x̂MAP 5 arg max
x>0

@pXuY~ xuy !#

5 arg max
x>0

@log pYuX~yux ! 1 log pX~x !#,
(7)

where pXuY( xuy) is the posterior density, pYuX(yux) is the
data likelihood, and pX(x) is the prior density for the im-
age. The circumflex denotes estimated quantities. For
the data likelihood, we assume an independent Gaussian
model

pYuX~ yux ! 5
1

~pa!PuLu21
expS 2

i y 2 f~x !iL
2

a
D , (8)

where P is the number of measurements, a is a scalar pa-
rameter that scales the noise variance, iwiL

2 5 wHLw
(where H denotes Hermitian transpose), and aL21/2 is
the covariance matrix.23 The appropriate forward opera-
tor f is computed by solving the diffusion equations for the
photon flux at the detector positions due to the point
sources. We use the same approximate shot-noise model
as that of Ye et al.23,24 and adopt the same notation:

a

2
L21 5

a

2
diag~ u y1u, u y2u,..., u yPu!. (9)

For pX(x), we use the generalized Gaussian Markov ran-
dom field (GGMRF) model, which enforces smoothness in
the solution while preserving sharp edge transitions.23,43

We define a three-dimensional neighborhood system
around each node (voxel) from the 26 adjacent nodes.
Defining xT 5 @xA

T , xB
T #, as in Eqs. (4)–(6), we assume

that xA and xB are independent:
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pX~x ! 5 pXA
~xA!pXB

~xB! (10)

5
1

sA
Nz~rA!

3 expS 2
1

rAsA
rA

(
$i, j%PNA

bi2juxi 2 xjurAD
3

1

sB
Nz~rB!

3 expS 2
1

rBsB
rB

(
$i, j%PNB

bi2juxi 2 xjurBD , (11)

where A and B correspond to Eqs. (4)–(6), xi is the ith
node of x, N consists of all pairs of neighboring (adjacent)
nodes, and bi2j is the weighting coefficient corresponding
to the ith and jth nodes. We assign the coefficients bi2j
to be inversely proportional to the node separation in a
cube-shaped node layout, requiring that ( jbi2j 5 1. The
hyperparameters r and s control the shape and the scale
of the distribution, and the partition function z(r) normal-
izes the density function.

We consider a to be an unknown instrument param-
eter, and we incorporate it into the inverse problem. Pre-
viously, we have found that this tends to improve the ro-
bustness and the speed of convergence.24 The FODT
estimation problem becomes

x̂x 5 arg max
xx>0,ax>0

@ pXxuYx
~xxu yx , ax!#, (12)

x̂m 5 arg max
xm>0,am>0

@ pXmuYm
~xmu ym , am!#,

(13)

x̂ f 5 arg max
xf>0,af>0

@ pXfuYf
~xfu yf , a f , x̂x , x̂m!#.

(14)

The estimations of xx and xm are performed initially, and
these estimates are incorporated into the coupled diffu-
sion equations (2) and (3) to estimate xf . To solve the
above joint MAP estimation problems, we follow Ye
et al.24 by maximizing the log posterior probability l(x):

l~x ! 5 2P logi y 2 f~x !iL
2

2
1

rAsA
rA

(
$i, j%PNA

bi2juxi 2 xjurA

2
1

rBsB
rB

(
$i, j%PNB

bi2juxi 2 xjurB. (15)

Equation (15) can be implemented by alternating closed-
form updates of â with updates of x̂ (Ref. 24):

â ←
1

P
i y 2 f~ x̂ !iL

2 , (16)

x̂ ← arg update
x>0

@log pYuX~ yux, â !

1 log pX~xuâ !#, (17)
where ‘‘←’’ denotes assignment and ‘‘arg update’’ denotes
an iteration of some optimizer. To implement expression
(17), we form objective functions from Eqs. (8), (11), and
(15):

c~xx , âx! 5
1

âx
i yx 2 fx~xx!iLx

2

1
1

rxAsxA
rxA

(
$i, j%PNxA

bi2juxxAi
2 xxAj

urxA

1
1

rxBsxB
rxB

(
$i, j%PNxB

bi2juxxBi
2 xxBj

urxB, (18)

c~xm , âm! 5
1

âm
i ym 2 fm~xm!iLm

2

1
1

rmAsmA
rmA

(
$i, j%PNmA

bi2juxmAi
2 xmAj

urmA

1
1

rmBsmB
rmB

(
$i, j%PNmB

bi2juxmBi
2 xmBj

urmB,

(19)

c~xf , x̂x , x̂m , â f!

5
1

â f
i yf 2 ff~xf , x̂x , x̂m!iLf

2

1
1

r fAs fA
rfA

(
$i, j%PNfA

bi2juxfAi
2 xfAj

urfA

1
1

r fBs fB
rfB

(
$i, j%PNfB

bi2juxfBi
2 xfBj

urfB, (20)

where the subscripts have the same meaning as those in
Eqs. (4)–(6).

B. Definitions
Previously,21,25 we have shown how to reconstruct xx and
xm in a framework that can incorporate multiple frequen-
cies. Hence, suppose that xx and xm have been recon-
structed or are known by some other means. The re-
maining unknowns, h and t, appear on the right-hand
side of Eq. (3) as part of the source term. Let

h~xf , r, v! 5 h~r !
1 2 jvt~r !

1 1 @vt~r !#2
. (21)

Also, let g(rsk
, rdm8

; v, x) be the diffusion equation
Green’s function for the problem domain computed by us-
ing the image vector x and a numerical forward solver,
with rsk

as the source location, rdm8
as the observation

point, and modulation frequency v. More specifically, let
gx(rsk

, rdm8
; v, xx) be the Green’s function for wave-

length lx , and let gm(rsk
, rdm8

; v, xm) be the Green’s
function at lm . Set
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f f~rsk
, rdm8

; v, xf! 5 E h~xf , r, v!gx~rsk
, r; v, xx!

3 gm~r, rdm8
; v, xm!d3r, (22)

where we omit the dependence on xx and xm for simplic-
ity. From Eq. (3),

h~xf , r, v!gx~rsk
, r; v, xx!

5 fx~r, v!
h~r !@1 2 jvt~r !#

1 1 @vt~r !#2
. (23)

Suppose that we have K sources and M detectors at a
modulation frequency v. Let fv(xf) be the forward model
describing the expected value of the data given xf . Then

fv~xf! 5 S f f~rs1
, rd1

; v, xf!

f f~rs1
, rd2

; v, xf!

]

f f~rs1
, rdM

; v, xf!

f f~rs2
, rd1

; v, xf!

]

f f~rsK
, rdM

; v, xf!

D . (24)

Let Q be the number of modulation frequencies used, and
let

f~xf! 5 @@ fv1
~xf!#

T, @ fv2
~xf!#

T,..., @ fvQ
~xf!#

T]T. (25)

Similarly, we define the measurement vector y as:

y 5 @ yv1

T , yv2

T ,..., yvQ

T ]T, (26)

corresponding to the same order as that used in Eq. (25).
Note that g(rsk

, rdm8
, • , • ) 5 g(rdm8

, rsk
, • , • ) at lx

and at lm , as a result of the reciprocity theorem.41

For the discretized problem, we define matrix operators
to approximate the integration in Eq. (22):

Gx~v!

5 F gx~rs1
, r1 ; v, xx! ¯ gx~rs1

, rN ; v, xx!

] � ]

gx~rsK
, r1 ; v, xx! ¯ gx~rsK

, rN ; v, xx!
G ,

(27)

Gm~v!

5 F gm~rd1
, r1 ; v, xm! ¯ gm~rd1

, rN ; v, xm!

] � ]

gm~rdM
, r1 ; v, xm! ¯ gm~rdM

, rN ; v, xm!
G ,

(28)

Jv 5 V3
G1,1

x ~v!G1,1
m ~v! ¯ G1,N

x ~v!G1,N
m ~v!

] � ]

G1,1
x ~v!GM,1

m ~v! ¯ G1,N
x ~v!GM,N

m ~v!

G2,1
x ~v!G1,1

m ~v! ¯ G2,N
x ~v!G1,N

m ~v!

] � ]

GK,1
x ~v!GM,1

m ~v! ¯ GK,N
x ~v!GM,N

m ~v!

4 ,

(29)

where V is the volume of a voxel. Let
hv~xf! 5 @h~xf , r1 , v!,..., h~xf , rN , v!#T. (30)

Neglecting discretization error, we have

fv~xf! 5 Jvhv~xf!. (31)

Suppressing the x̂x and x̂m arguments for brevity, we can
rewrite Eq. (20) as

c~xf , â f! 5
1

â f
(
q51

Q

i yfvq
2 Jvq

hvq
~xf!iLfvq

2

1
1

r fAs fA
rfA

(
$i, j%PNfA

bi2juxfAi
2 xfAj

urfA

1
1

r fBs fB
rfB

(
$i, j%PNfB

bi2juxfBi
2 xfBj

urfB.

(32)

In the single-frequency case, we can take advantage of
the linearity of fv(xf) with respect to hv(xf) by reparam-
eterizing $h, t% to create a quadratic optimization
problem.21 However, since the resulting parameters
must contain frequency terms in their denominators, they
are inappropriate for the multiple-frequency case. Hence
we perform a nonlinear optimization of Eq. (32) directly
over $h, t%.

C. Iterative Coordinate Descent
As in our previous work,21,23–26 we use the iterative coor-
dinate descent (ICD) algorithm,44 a Gauss–Seidel ap-
proach, to optimize Eq. (32). The voxels are scanned in
random order, and the cost function is optimized with re-
spect to each individual voxel. Previously,21 we have
shown how to optimize Eqs. (18) and (19). Hence we fo-
cus on Eq. (20) and omit the f subscript here for simplic-
ity. In one update scan for x̂, we update all of the N vox-
els with respect to xA 5 h and subsequently update all of
the voxels with respect to xB 5 t. Let the scalar xi de-
note the ith element of x. With all other image elements
fixed, the ICD update for the estimate x̂ i is given by

x̂ i ← arg min
xi>0

H 1

â (
q51

Q

i yvq
2 @Jvq

#* ~i !h~x, ri , vq!iLvq

2

1
1

rs r (
jPNi

bi2juxi 2 x̂ jurJ , (33)

where Ni is the set of nodes neighboring node i, and r and
s are chosen appropriately from $rA , rB% and $ sA , sB%.
@Jvq

#* (i) denotes the ith column of Jvq
. Suppose that we

have an initial guess x̃ and let zvq
5 yvq

2 fvq
( x̃). Then

relation (33) is equivalent to
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x̂ i ← arg min
xi>0

H 1

â (
q51

Q

izvq
2 @Jvq

#* ~i !@h~x, ri , vq!

2 h~ x̃, ri , vq!#iLvq

2 1
1

rs r (
jPNi

bi2juxi 2 x̂ jurJ ,

5 arg min
xi>0

X1

â (
q51

Q H u1,vq
@h~x, ri , vq! 2 h~ x̃, ri , vq!#

1
u2,vq

2
@h~x, ri , vq! 2 h~ x̃, ri , vq!#2J

1
1

rs r (
jPNi

bi2juxi 2 x̃ jurC, (34)

where

u1,vq
5 22 Re~@Jvq

#
* i
H Lvq

zvq
!, (35)

u2,vq
5 2@Jvq

#
* i
H Lvq

@Jvq
#* i . (36)

In relation (34), u1,vq
and u2,vq

are not functions of xi and
thus do not need to be recomputed during the nonlinear,
one-dimensional line search over xi . This property per-
mits significant computational savings, as repeated com-
putations of u1,vq

and u2,vq
would require numerous com-

plex multiplications. We perform the minimization over
xi by use of a Golden Section search.45

We implement the joint estimation of a and x itera-
tively. One iteration consists of a closed-form update of â
with the use of relation (16), followed by ICD scans to up-
date all of the voxels in x̂A and x̂B . Appendix A summa-
rizes the ICD optimization algorithm in pseudocode form.

4. SIMULATION
We performed a simulation incorporating multiple modu-
lation frequencies by use of the proposed algorithm. Fig-
ure 2(a) shows an 8 3 8 3 5.7 cm cubic tissue phantom,
with five sources on one side and five detectors on the
other. Two small h heterogeneities were placed near
each other, slightly off center. The other parameters
were constant, with max,m

5 0.047 cm21, Dx,m 5 0.27 cm,
and t 5 0 s. Three data sets were computed numeri-
cally, using multigrid finite differences on a 33 3 33
3 17 grid: 78.4-MHz data, 314-MHz data, and a combi-

nation of both. We used the extrapolated zero-flux
boundary condition40 with internal sources interpolated
among the nearest grid nodes. The sources were placed
0.08 cm inside the physical boundary, corresponding ap-
proximately to one transport mean free path. The voxels
were 0.26 3 0.26 3 0.38 cm in size. Gaussian noise was
added, using the shot-noise model presented by Ye et al.23

and assuming equal input source power for each modula-
tion frequency. The average signal-to-noise ratio was
21.2 dB for the 78.4-MHz data and 14.7 dB for the 314-
MHz data. With the same 33 3 33 3 17 grid, the ICD
algorithm was used to reconstruct h, with a constant ini-
tial guess of 0 cm21. The shape and scale hyperparam-
eters s and r were set to 0.021 cm21 and 2, respectively,
for all three reconstructions. For each reconstruction,
using s 5 0.021 cm21 gave the best results. The algo-
rithm was run to convergence, with subsequent iterations
changing the cost function negligibly. To avoid singulari-
ties near the sources and the detectors, we did not update
within a 2-voxel border of the computational boundary.
Figure 2(b) shows the true image cross section at
z 5 2.85 cm. Figures 2(c)–2(e) show the results. In the
single-frequency reconstructions, the two objects are not
clearly distinct. However, in the multiple-frequency re-
construction, the two objects are clearly distinguishable.
The result suggests that the proposed method for making
use of multiple-frequency components can improve recon-
struction quality in some cases.

5. EXPERIMENT
A. Design and Procedure
To test the method, we prepared a time-domain fluores-
cence and absorption imaging experiment, shown sche-

Fig. 2. Reconstruction of fluorescent yield using simulated data,
showing the improvement due to use of multiple modulation fre-
quencies: (a) source/detector geometry, (b) true image cross sec-
tion, (c) reconstruction using 78.4-MHz data, (d) reconstruction
using 314-MHz data, (e) reconstruction using 78.4- and 314-MHz
data.
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matically in Fig. 3(a). The tissue phantom comprised a
2-cm glass sphere containing ICG and 1% Intralipid (a fat
emulsion) embedded within a 1% Intralipid suspension.
As in earlier work,21 a measurement box contained the
phantom and fiber-optic connectors. The box had inner
dimensions of 17 3 17 cm, with adjustable height. A
grid of 16 3 16 fiber-optic connectors, with 1-cm spacing,
was used to position source fibers on the bottom of the
box. We selected 24 source positions, as shown in Fig. 3.
A tunable, mode-locked Spectra-Physics MaiTai Ti:sap-
phire pulsed laser was used as the source. The pulse
width was less than 100 fs, according to manufacturer’s
data. The 0.8-W average output of the laser was split by
using the reflection off a glass microscope cover slip, and
20 mW was coupled into the source fibers. A
galvanometer-based optical scanner from Nutfield Tech-
nologies was used to sequentially couple the beam into
the source fibers. The top of the phantom box was
opened, and a LaVision PicoStar image-intensified CCD
camera imaged the exposed top surface of the Intralipid.
Effective detector positions were sampled from the CCD
images by integrating over 24 square regions, each 4 mm
wide. The effective detector positions were in the same
arrangement as that of the sources in Fig. 3.

A 1.0% solution of Intralipid and distilled water was
added to the box to a depth of 5.7 cm, and to the sphere.
The sphere was measured to be vertically centered at z
. 2.8 cm. However, the sphere was suspended only by
flexible rubber tubes, which added an uncertainty of
roughly 2–3 mm to the estimated vertical position. The
rubber tubes were used for titrating the fluorophore from
a separate reservoir of Intralipid solution.

Initially, baseline measurements were performed on
the essentially homogeneous slab, without the fluoro-
phore present. These baseline measurements were in-
corporated into a calibration scheme that we have used
previously.21 For the purpose of reconstructing max

, im-
pulse responses were measured with the laser tuned to
780 nm and the intensifier voltage set to 350 V. Each
sample of the temporal response was recorded by gating
the intensifier for 1 ns and integrating for 75 ms, with the
gating triggered at the laser’s repetition rate of 80 MHz.
Using the intensifier’s adjustable triggering delay, we re-
corded samples at 250-ps-delay intervals. Because of the
80-MHz repetition rate, the impulse responses were mea-

Fig. 3. (a) Schematic of the experimental setup, showing the box
and the tissue phantom and a glass sphere filled with ICG/
Intralipid, rubber tubes, and Intralipid suspension. (b) Source
fiber positions. The same positions were selected as detection
regions from the camera images.
sured over a range of 12.5 ns, which was sufficient to en-
compass the entire impulse response duration. Simi-
larly, for the mam

reconstruction baseline data, the laser
was tuned to 830 nm, the ICG emission wavelength, and
the above measurement procedure was repeated. No
baseline data were recorded for reconstructing h and t, as
no Intralipid fluorescence was observed. After collection
of the baseline data, ICG was titrated into the sphere at a
concentration of 0.125 mM, and impulse responses were
recorded as above. To measure the fluorescence, we
tuned the laser to 780 nm, and an 830-nm bandpass filter
with 10-nm FWHM (CVI Laser Corporation) was placed
in front of the camera. Because the fluorescence mea-
surements were dimmer than the previous measure-
ments, the intensifier voltage was increased to 550 V, the
samples were collected at 500-ps intervals (thus decreas-
ing the temporal resolution and the collection time), and
the integration time per sample was increased to 1 s,
while the gate width remained at 1 ns. We did not need
to account for the finite gate width in the reconstruction,
as the normalizations performed in the calibrations can-
cel any windowing effects.

Some processing of the data was necessary before pro-
ceeding with the reconstructions. To remap the CCD cam-
era images into two-dimensional uniform grid coordi-
nates, we estimated, in a least-squares sense, the
projection transformation between the points of maxi-
mum brightness (assumed to be directly above the
sources) and the known grid locations of their correspond-
ing source fibers. This transformation was applied to
convert between detector grid locations and image pixel
coordinates. For both lx and lm , the background ma and
D and the unknown initial time offset were determined by
fitting one of the point-spread functions to the analytical
Green’s function for a homogeneous slab.46 The point-
spread functions were Fourier transformed, and the 78-,
314-, and 627-MHz components were selected. Calibra-
tion factors were obtained by computing simulated mea-
surements on a homogeneous domain discretized into 33
3 33 3 17 voxels (0.51 3 0.51 3 0.38 cm in size) and di-
viding these results by the corresponding baseline mea-
surements. These factors were used to calibrate the data
with the procedure of our previous work.21

B. Reconstructions
To reconstruct max

and mam
from the measured data, we

used the ICD algorithm presented previously21,25 to opti-
mize Eqs. (18) and (19). The domain was discretized into
33 3 33 3 17 voxels, 0.51 3 0.51 3 0.38 cm in size. The
reconstructions were initialized with the constant back-
ground ma and D values estimated from the baseline im-
pulse responses recorded without the fluorophore. Both
Dx and Dm were assumed to be constant and not modified
from the initial values. Although automatic estimation
of the GGMRF hyperparameters r and s is possible in
principle,47 we follow our previous work21,23 and use pa-
rameter values that empirically give good results. For
the max

and mam
reconstructions, the algorithm was run to

convergence (i.e., until ICD iterations produce negligible
change in the cost function’s value). We used model pa-
rameters s 5 0.005 cm21 and r 5 2. The estimates m̂ax
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and m̂am
were incorporated into the coupled diffusion

equations, and h and t were reconstructed by using the
proposed algorithm.

Figures 4 and 5 show the reconstructions of max
and

mam
, respectively, obtained by using the 78-, 314-, and

627-MHz data. The peak value of the max
deviation from

the background is smaller than the value of 0.016 cm21

that one would obtain by dividing a previously reported14

1-mM ICG absorption value by 8 to account for the con-
centration difference. (We note, however, that an ICG so-
lution’s absorption and fluorescence may not be linear
with concentration, nor constant over time.48,49) The mam

peak value is consistent with our previous results.21

Aside from a significant artifact near one of the sources,
the images are also reasonable. The reconstructed
sphere’s center is approximately 4 mm below the center of
the box (where the true sphere lies with an uncertainty of
approximately 2–3 mm), and its diameter is close to the
true diameter of 2 cm.

Fig. 4. Reconstruction of max
(cm21), obtained by using 78-,

314-, and 627-MHz data.
The fluorescence properties were also reconstructed by
using 78-, 314-, and 627-MHz data. Figure 6 shows the
reconstruction of h, obtained by using s 5 2.5
3 1025 cm21 and r 5 2. The effects of changing the in-
tensifier voltage and inserting the bandpass filter were
accounted for in the calibration by using manufacturer’s
data. The image is accurate, with few artifacts and a po-
sition similar to that of the reconstructed absorber. Di-
viding the peak fluorescent yield by the peak absorption
of the heterogeneity at lx , we obtain a quantum effi-
ciency of approximately 0.018. This result is slightly
higher than the value of 0.016 obtained by Sevick-Muraca
et al.,14 who measured a micromolar aqueous solution
with a spectrofluorometer. Figure 7 shows the recon-
structed t, obtained by using s 5 0.1 ns and r
5 2. Quantitatively, it is similar to a literature-reported
lifetime of 0.56 ns.17 The image appears spread out, ow-
ing to the fact that t can be nonzero in regions where h
. 0, with small effect (as t is multiplied by h in the dif-
fusion equation).

Fig. 5. Reconstruction of mam
(cm21), obtained by using 78-,

314-, and 627-MHz data.
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Figures 8 and 9 show reconstructions of h and t ob-
tained by using only 78-MHz data. The results are very
similar to the reconstructions obtained by using 78-, 314-,
and 627-MHz data together. Hence, for this experiment,
the additional modulation frequencies (perhaps surpris-
ingly) do not appear to contribute information that is use-
ful for reconstructing the sphere.

C. Effects of Regularization
Figures 10 and 11 show reconstructions of h and t, respec-
tively, obtained over a range of s values. The h recon-
structions in Fig. 10 show a progression from overregular-
ization to underregularization with increasing s (where
the t prior parameters were fixed to r 5 2
and s 5 0.1 ns, as used above). Figure 10(a), which we
deem to be overregularized, appears overly broadened,

Fig. 6. Reconstruction of h (in 1024 cm21), obtained by using
78-, 314-, and 627-MHz data.
with blurred edges. In contrast, Fig. 10(e) is underregu-
larized, with sharp peaks appearing in the image. The t
images in Fig. 11 were also computed over a range of s
values, with the h prior parameters fixed to r 5 2 and s
5 2.5 3 1024 cm21. For the lifetime images, discerning
underregularized and overregularized images is more
complicated. Because t is multiplied by h in the diffusion
equations, overregularized t images may appear reason-
able and not excessively broadened. Figures 11(d) and
11(e), which are deemed to be underregularized, have
much of their structure outside the voxels containing the
fluorophore in Fig. 6 rather than within it.

One method of selecting s for the fluorescence lifetime
problem might be to choose the largest one that gives
physically acceptable images. Less regularization im-

Fig. 7. Reconstruction of t (in 10210 s), obtained by using 78-,
314-, and 627-MHz data.
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plies a more accurate fit to the data irrespective of image
quality. As in our previous work,21 we define the
weighted average lifetime:

t̂avg 5

(
i51

N

ĥ~ri!t̂~ri!

(
i51

N

ĥ~ri!

. (37)

This weighted average accounts for the possibility that
the reconstruction could be significant in spurious regions
where ĥ ' 0. It is also related to the weighting that oc-
curs in the source term of Eq. (3) and thus represents the
effect of t on the data yf . Figure 11(f) shows t̂avg as a
function of s. As s increases, t̂avg asymptotically ap-
proaches a constant value of approximately 0.49 ns, just
under a literature-reported value of 0.56 ns.17 The sta-
bility of t̂avg with increasing s suggests that selecting the

Fig. 8. Reconstruction of h (in 1024 cm21), obtained by using
only 78-MHz data.
largest s that produces a physically acceptable image is
reasonable. However, despite the stability of t̂avg , the
image becomes more distorted (and less physically mean-
ingful) with increasing s because of the inherent trade-off
between regularization and accurate fitting of the data.
We selected s 5 0.1 ns, which gave t̂avg 5 0.205 ns, as
the best compromise with the lifetime distributed evenly
throughout the fluorophore. This result is shown in
Fig. 11(c).

6. MUTUAL INFORMATION
PERFORMANCE MEASURE
A. Motivation and Mathematics
The results of Sections 4 and 5 suggest that the additional
modulation frequencies provide useful information for
some problems but not for others. Here, we use the mu-
tual information, defined in information theory,29,30,38 as

Fig. 9. Reconstruction of t (in 10210 s), obtained by using only
78-MHz data.
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an indicator of the reconstruction fidelity that can be
achieved with a particular measurement scenario.

We first define the mutual information for our problem.
Let X be the random vector corresponding to the fluores-
cent yield image, and let Y be the random vector corre-
sponding to the measured data. Then the mutual infor-
mation I(X; Y) is defined as30

I~X; Y ! 5 H~Y ! 2 H~YuX !, (38)

where H(Y) and H(YuX) are the differential entropy and
the conditional differential entropy30 defined by

H~Y ! 5 E@2log pY~Y !#, (39)

H~YuX ! 5 E@2log pYuX~YuX !#, (40)

where pY( y) and pYuX( yux) are the densities of X and
YuX, respectively, and E[•] is the expected value. Infor-
mally, the mutual information measures the information
that the data Y contains about the unknown image X. If
base 2 logarithms are used, then I(X; Y) has units of bits,
whereas a natural logarithm results in units of ‘‘nats.’’ We
use the natural logarithm.

For our problem, the mutual information may be easily
computed. For simplicity, assume that t 5 0 and con-
sider the information content for reconstructing h. To
model the image statistics, we use the Gaussian Markov
random field (GMRF) prior model, which is equivalent to
the GGMRF with r 5 2. In this case, the density of the
image X is given by

Fig. 10. Reconstructions of h (in 1024 cm21) using various val-
ues of s, showing a progression from overregularization to under-
regularization. The z 5 2.85 cm cross sections are shown. The
t model used s 5 1 3 10210 s in all cases.
pX~x ! 5
1

A~2p!Ns 2
uCu21/2 expS 2

1

2s 2
xHCx D , (41)

where the matrix C has elements

Ci, j 5 H 2 if i 5 j

2bi2j if i Þ j
,

and bi 2 j and s are the same as in Eq. (11). As in previ-
ous sections, we let

E@YuX# 5 JX, (42)

Fig. 11. (a)–(e) z 5 2.85 cm cross sections of reconstructed t (in
10210 s) for various s, showing a progression from overregular-
ization to underregularization. (f) t̂avg as a function of s for the
t reconstruction. The 3 symbol represents the value of s that
was used in generating the data of Fig. 7. The h model used s
5 2.5 3 1025 cm21 in all cases.
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where J is the matrix representing the linear forward op-
erator, and aL21/2 is the measurement noise convariance
matrix as defined in Eq. (9). Using these definitions, we
show in Appendix B that the mutual information is given
by

I~X; Y ! 5
1

2
logUI 1

2s 2

a
LJC21JHU, (43)

where I is the identity matrix.
While Eq. (43) provides a straightforward expression

for the mutual information, the question remains as to
why one would expect it to be a good predictor of recon-
struction quality. In fact, as the mutual information in-
creases, a lower bound on the reconstruction distortion, or
MSE, is reduced. The minimum MSE estimate of X
given Y is given by the conditional expectation X̂
5 E@XuY#. Furthermore, for each random vector X,

there exists a distortion rate function DX( • ) that lower
bounds the achievable distortion at a specified rate.38 In
communication applications, the rate is the amount of in-
formation content per unit time that is sent over a chan-
nel and decoded in order to reconstruct the original sig-
nal. Here, the rate refers to the information obtained by
the measurement device per acquisition for reconstruct-
ing the fluorescence image. Importantly, the distortion

Fig. 12. Mutual information versus a for (a) the simulation
model and (b) the experiment model. In (a), the 1 symbols
mark the results for the true value of a used in the simulation.
In (b), the 1 symbol marks the result for the estimated value of a
in the experiment. The units of information are nats rather
than bits, as the base e logarithm was used.
rate function depends only on X and the choice of the
MSE distortion metric.38 For any particular choice of Y,
we then know that38

E@ iX 2 X̂i2# > DX~I~X; Y !!. (44)

In addition, it is known that all distortion rate functions
are convex, and monotone decreasing with DX(0)
5 E@ iX 2 E@X#i2#.38 Therefore, as the mutual infor-
mation increases, this lower bound on MSE decreases.
Alternatively, when mutual information is low, then the
MSE is necessarily large.

B. Application to Simulation and Experiment Models
Figure 12(a) shows the mutual information as a function
of a for the same geometry and statistical models as those
assumed in the simulation study of Section 4. Curves
are plotted for both the single-frequency (78-MHz) case
and the multiple-frequency (78- and 314-MHz) case. The
1 symbols mark the curve points corresponding to the
true a used to generate the synthetic data. The mutual
information values differ significantly at these points.
The result suggests that the additional (multiple-
frequency) data provide significant information for the set
of problems modeled by the same image and measure-
ment statistics as those in the simulation.

In Fig. 12(b), mutual information versus a is plotted for
the geometry and statistical models used in the recon-
structions from experimental data. With the true a for
this instrument unknown, the (overlapping) 1 symbols
mark the curve points corresponding to the estimated a.
Previously, we have found that the estimation of a yields
accurate values.24 In contrast to Fig. 12(a), the mutual
information values are virtually the same. Hence there
is no significant information gain from the multiple-
frequency data in this case. In this case of a single, rela-
tively large inhomogeneity, additional frequencies, even
with a small number of sources and detectors, are not
beneficial.

7. CONCLUSIONS
The algorithm described is a general framework for recon-
structing fluorescent yield, fluorescent lifetime, absorp-
tion, and scattering from frequency-domain data. Simu-
lation results for reconstructing two small objects indicate
improvement due to the incorporation of multiple-
frequency data. However, similar improvements are not
noted in the experiment, which considers a comparatively
large and low-resolution spherical target.

The simulation used a relatively modest number of spa-
tial measurements. The limited-data case is of interest
because it is more difficult, possibly making it easier to
observe the relative advantages due to increased modula-
tion diversity. However, even when the number of spa-
tial measurements used in the experiment was reduced
dramatically, the reconstructions of fluorescent yield and
lifetime were substantially similar, showing little im-
provement with additional frequencies. Evidently, the
physical properties of the unknown image play an impor-
tant role in determining the relative improvement due to
multiple frequencies. We suppose that the additional,
higher-resolution image components observable by the
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use of the additional modulation frequencies may be
largely absent from the true sphere image. Simulations
with single, spherical images seem to confirm that the
sphere is fully resolved using just one frequency, in agree-
ment with the experiment. The frequencies considered
in the simulation and the experiment were chosen to be
typical of those used in practical measurement devices.
Reconstructions from simulated and experimental data
showed similar behavior over a wide range of frequencies.

The mutual information performance metric provides a
theoretical foundation for our observations. A significant
increase in the information corresponds with improved
reconstruction results in the simulation. Also, a lack of
information gain corresponds with lack of improvement in
the reconstruction results for the experiment. Hence it
appears that information theory can accurately predict
any improvement in reconstruction results due to changes
in the experimental configuration. If accurate statistical
models of the unknown image and measurement devices
are known, this property is useful in the design of an ex-
periment. Theoretically, a variety of other important de-
sign parameters, such as the source/detector locations
and the measurement data types, may also be optimized
by application of the mutual information performance
metric. In principle, for Gaussian problems, it is possible
to use other, related performance metrics such as the re-
construction MSE. However, the reconstruction MSE is
quite difficult to compute,50 making it less computation-
ally tractable than the mutual information.

As in a previous study,21 we note that the baseline cali-
bration procedure simplifies the experimental reconstruc-
tion. In practice, baseline data may be available before
administration of a contrast agent, but collecting it still
may be problematic. Previous investigations, such as the
normalized Born approximation used by Ntziachristos
and Weissleder,20 suggest that the baseline calibration
step can be circumvented under certain simplifying as-
sumptions about the absorption problem. Using higher-
order transport equations51 to improve modeling accuracy
or estimating source/detector and boundary condition co-
efficients numerically26,52–54 may also alleviate the need
for baseline calibrations.

APPENDIX A: PSEUDOCODE FOR
INVERSION ALGORITHM
main $

1. Form Gx
(s) and Gm

(d)

2. Repeat until converged: $
(a) â f ← (1/Pf)i yf 2 ff( x̂ f , x̂x , x̂m)iLf

2

(b) x̂ f ← ICDIupdate( x̂ f , â f , Gx
(s) , Gm

(d))
%

%
x̂ ← ICDIupdate(x̂, â, G (s), G (d); x) $

1. For q 5 1,..., Q $
(a) zvq

← yvq
2 Jvq

hvq
( x̂)

%
2. For i 5 1,...,N (in random order), $

(a) x̃ i ← x̂ i
(b) For q 5 1,..., Q $
i. Compute @Jvq
#* (i) by taking the ith column in

Eq. (29)
ii. u1,vq

← 22 Re(@Jvq
#
* i
H Lvq

zvq
)

iii. u2,vq
← 2@Jvq

#
* i
H Lvq

@Jvq
#* i

%
(c) x̂ i ← arg minxi>0((1/â)(q51

Q $u1,vq
@h(x, ri , vq)

2 h( x̃, ri , vq)]
1 (u2,vq

/2)@h(x, ri , vq) 2 h( x̃, ri , vq)#2%

1 @1/(rAsA
rA)#( jPNi

bi2juxi 2 x̃ jurA)
(d) For q 5 1,...,Q $

zvq
← zvq

1 @Jvq
#* i@h( x̂, ri , vq)

2 h( x̃, ri , vq)]
%

%
3. For i 5 N 1 1,...,2N (in random order), $

(a) x̃ i ← x̂ i
(b) For q 5 1,...,Q $

i. Compute @Jvq
#* (i2N) by taking the (i 2 N)th

column in Eq. (29)
ii. u1,vq

← 22 Re(@Jvq
#
* (i2N)
H Lvq

zvq
)

iii. u2,vq
← 2@Jvq

#
* (i2N)
H Lvq

@Jvq
#* (i2N)

%
(c) x̂ i ←

arg minxi>0((1/â)(q51
Q $u1,vq

@h(x, ri 2 N , vq)
2 h( x̃, ri 2 N , vq)]
1 (u2,vq

/2)@h(x, ri 2 N, vq) 2 h( x̃, ri 2 N , vq)#2%

1 @1/(rBsB
rB)#( jPNi

bi2juxi 2 x̃ jurB)
(d) For q 5 1,...,Q $

zvq
← zvq

1 @Jvq
#* (i2N)@h( x̂, ri 2 N , vq)

2 h( x̃, ri 2 N , vq)]
%

%
%

APPENDIX B: MUTUAL INFORMATION
DERIVATION
Here, we derive the expression for the mutual informa-
tion that is given in Eq. (43). The mutual information
given by Eq. (38) depends on H(Y) and H(YuX). We ob-
tain the expressions for H(Y) and H(YuX) and use them
to compute I(X; Y).

Let pX(x), pYuX( yux), s, a, the linear forward operator
J, and the matrices C and L be as in Eqs. (8), (11), (41),
and (42). Define the shot-noise process Z 5 Y 2 JX,
and assume that Z is independent of X. Then Y 5 JX
1 Z is Gaussian, and

E@Y# 5 E@E@YuX## 5 E@JX# 5 JE@X# 5 0. (B1)

In addition,

E@YYH# 5 E@~JX 1 Z !~JX 1 Z !H# (B2)

5 E@ZZH# 1 E@~JX !ZH#

1 E@Z~JX !H# 1 E@JXXHJH# (B3)

5 E@ZZH# 1 JE@XXH#JH (B4)

5
a

2
L21 1 s 2JC21JH. (B5)
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Hence

pY~ y ! 5
1

@~2p!PuYu#1/2
expH 2

1

2
i yiY21

2 J , (B6)

where

Y 5
a

2
L21 1 s 2JC21JH. (B7)

With Eqs. (39) and (B6), H(Y) is given by30

H~Y ! 5
1

2
log@~2p!P# 1

P

2
1

1

2
loguYu. (B8)

Similarly, using Eq. (40), we obtain

H~YuX ! 5
1

2
log@~2p!P# 1

P

2
1

1

2
logUa

2
L21U. (B9)

Substituting Eqs. (B8) and (B9) into Eq. (38) yields

I~X; Y ! 5 H~Y ! 2 H~YuX !

5
1

2
log

uYu

u a
2 L21u

5
1

2
log

u a
2 L21 1 s 2JC21JHu

u a
2 L21u

5
1

2
log UI 1

2s 2

a
LJC21JHU, (B10)

where I is the identity matrix, and we have used the de-
terminant identity uAuuBu 5 uABu.
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