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Ischemic depolarizing events, such as repetitive spontaneous periinfarct spreading depolarizations
(PIDs), expand the infarct size after experimental middle cerebral artery (MCA) occlusion. This
worsening may result from increased metabolic demand, exacerbating the mismatch between
cerebral blood flow (CBF) and metabolism. Here, we present data showing that anoxic
depolarization (AD) and PIDs caused vasoconstriction and abruptly reduced CBF in the ischemic
cortex in a distal MCA occlusion model in mice. This reduction in CBF during AD increased the area
of cortex with 20% or less residual CBF by 140%. With each subsequent PID, this area expanded
by an additional 19%. Drugs that are known to inhibit cortical spreading depression (CSD), such as
N-methyl-D-aspartate receptor antagonists MK-801 and 7-chlorokynurenic acid, and r-1 receptor
agonists dextromethorphan and carbetapentane, did not reduce the frequency of PIDs, but did
diminish the severity of episodic hypoperfusions, and prevented the expansion of severely
hypoperfused cortex, thus improving CBF during 90 mins of acute focal ischemia. In contrast, AMPA
receptor antagonist NBQX, which does not inhibit CSD, did not impact the deterioration in CBF.
When measured 24 h after distal MCA occlusion, infarct size was reduced by MK-801, but not by
NBQX. Our results suggest that AD and PIDs expand the CBF deficit, and by so doing negatively
impact lesion development in ischemic mouse brain. Mitigating the vasoconstrictive neurovascular
coupling during intense ischemic depolarizations may provide a novel hemodynamic mechanism of
neuroprotection by inhibitors of CSD.
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Introduction

The hemodynamic evolution of acute focal cerebral
ischemia is poorly understood. Electrophysiologi-
cally, severely ischemic core (i.e., residual cerebral
blood flow (CBF)r20%; Hoehn-Berlage et al, 1995;
Hossmann, 1994; Sick et al, 1998) undergoes anoxic

depolarization (AD), whereas in ischemic penumbra
synaptic activity ceases, but residual CBF is suffi-
cient to maintain membrane ionic gradients. With
continuing ischemia, however, more penumbral
tissue undergoes AD as the ischemic core expands
over time. The expansion of depolarized core
coincides with the occurrence of repetitive and
spontaneous periinfarct spreading depolarizations
(PIDs) (Hossmann, 1996). Anoxic depolarization
and PIDs are associated with massive redistribution
of ions across membranes, an increase in extracel-
lular potassium ([K+]e) up to 60 to 80 mmol/L, and
reduction in tissue adenosine triphosphate (ATP),
oxygen and pH (Back et al, 1994; Busch et al, 1996;
Hossmann, 1994; Nedergaard and Astrup, 1986;
Somjen, 2001). Therefore, it has been presumed that
ischemic depolarizing events increase the meta-
bolic burden and exacerbate the energy deficit,
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thereby expanding the infarct (Back et al, 1996;
Selman et al, 2004).

In addition to the expansion of depolarized core,
there is also evidence for expansion of CBF deficit
during the acute phase after middle cerebral artery
occlusion (MCAO) (LaManna et al, 1985; McColl et
al, 2004; Zaharchuk et al, 2000). The mechanism for
this deterioration is not known, although endothe-
lial swelling and microvascular plugging by acti-
vated leukocytes have been proposed (del Zoppo
and Hallenbeck, 2000). In the normal brain from
most species, cortical spreading depression (CSD)
causes marked hyperemia. Under hypoxic or par-
tially ischemic conditions, however, or in the
presence of artificially elevated [K+]e and reduced
nitric oxide concentration, CSD causes hypoperfu-
sion rather than hyperemia (Dreier et al, 1998; Sonn
and Mayevsky, 2000), suggesting that intense depo-
larizing events during focal ischemia (i.e., AD and
PIDs) may variably impact CBF in penumbra,
depending on the energy status of ischemic tissue
and [K+]e levels. The survival of penumbra depends
on the balance between CBF and metabolic demand;
therefore, hemodynamic impact of AD and PIDs
might be as important as their metabolic conse-
quences in determining the tissue outcome.

Although the metabolic and electrophysiologic
consequences of AD and PIDs have been extensively
investigated, their impact on cerebral vasculature
and CBF are less known. Using laser speckle
flowmetry (LSF), a two-dimensional CBF imaging
technique with high spatiotemporal resolution, we
present evidence for a novel form of neurovascular
coupling during focal ischemia. Our data suggest
that vasoconstrictive neurovascular coupling during
ischemic depolarizations contributes to the hemo-
dynamic progression in acute focal cerebral ische-
mia, and that mitigating the adverse vascular
effect of tissue depolarization might be a critical
mechanism by which neuroprotective drugs reduce
tissue injury.

Materials and methods

Drugs

MK-801 (( + )-5-methyl-10,11-dihydro-5H-dibenzo[a,d]
cyclohepten-5,10-imine maleate; 0.5 or 1 mg/mL in sal-
ine), 7-chlorokynurenic acid (10 mg/mL in 0.1 N NaOH),
carbetapentane (2.5 mg/mL in saline) and NBQX (2,3-
dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline, diso-
dium salt, 24 mg/mL in saline) were purchased from
Tocris (Ellisville, MO, USA), whereas dextromethorphan
(2 mg/mL in saline) was purchased from Sigma (St Louis,
MO, USA).

Surgical Preparation and Physiologic Monitoring

Mice (C57BL/6J, 25 to 35 g, n = 64) were anesthetized with
isoflurane (2% induction, 1% maintenance), endotrache-

ally intubated and ventilated (70% N2O, 30% O2; SAR
830/P, CWE, Ardmore, PA, USA). Femoral artery was
cannulated for blood pressure (BP) and arterial blood gas
measurements (ETH-400 transducer amplifier, ADInstru-
ments, MA, USA). Blood pressure and heart rate were
continuously recorded (PowerLab, ADInstruments,
Colorado Springs, CO, USA). Mice were paralyzed
(pancuronium 0.4 mg/kg/h intraperitoneal), placed on a
stereotaxic frame, and scalp and periosteum were pulled
aside. The adequacy of anesthesia was regularly checked
by the absence of a BP response to tail pinch. Body
temperature was kept at 37.01C using a thermostatic
heating pad (FHC, Brunswick, ME, USA). Arterial blood
gases and pH were measured at least once every hour in
30 mL samples (Blood Gas Analyzer 248, CIBA/Corning,
Corning, NY, USA). All physiological parameters were
within previously reported normal limits (Table 1) (Dalk-
ara et al, 1995). Institutional guidelines for animal care
and use for research purposes were strictly followed.

Focal Cerebral Ischemia

After general surgical preparation as described above,
mice were placed in a stereotaxic frame. The temporalis
muscle was separated from the temporal bone and
removed. A burr hole (2 mm diameter) was drilled under
saline cooling in the temporal bone overlying the distal
MCA just above the zygomatic arch. The dura was kept
intact and a microvascular clip (Ohwa Tsusho, Tokyo,
Japan) was used to occlude distal MCA (dMCAO).

Infarct Volume

In 15 mice, the MCA was exposed as described above, and
permanently ligated using a 10-0 nylon suture. Direct
infarct volume was determined 24 h later using triphe-
nyltetrazolium chloride (TTC)-stained 1-mm-thick coronal
brain sections. To avoid the morbidity associated with
endotracheal and arterial cannulations, mice were al-
lowed to breathe freely and physiological monitoring was
not performed during the surgical procedure.

Laser Speckle Flowmetry

Laser speckle flowmetry was used to study the spatio-
temporal characteristics of CBF changes during focal
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Table 1 Physiological parameters

BP
(mm Hg)

pH pCO2

(mm Hg)
pO2

(mm Hg)

Control 7679 7.3670.03 4077 146733
MK-801 (5 mg/kg) 74714 7.3470.02 4074 131736
7-Chlorokynurenic
acid (100 mg/kg)

7875 7.3670.07 3874 149717

Dextromethorphan
(10 mg/kg)

7577 7.3870.02 3674 179755

Carbetapentane
(10 mg/kg)

7776 7.3970.04 3774 139718

NBQX (60 mg/kg) 70710 7.3670.03 3775 153724



ischemia. The technique for LSF in mice has been
described in detail elsewhere (Ayata et al, 2004a; Dunn
et al, 2001). Briefly, a charge-coupled device (CCD) camera
(Cohu, San Diego, CA, USA) was positioned above the
head, and a laser diode (780 nm) was used to illuminate
the intact skull. Raw speckle images were used to compute
speckle contrast, a measure of speckle visibility inversely
related to the velocity of the scattering particles, and
therefore CBF. The speckle contrast is defined as the ratio
of the standard deviation of pixel intensities to the mean
pixel intensity in a small region of the image (Briers,
2001). In all, 10 consecutive raw speckle images were
acquired at 15 Hz (an image set), processed by computing
the speckle contrast using a sliding grid of 7� 7 pixels,
and averaged to improve the signal to noise ratio. Laser
speckle flowmetry image sets were thus obtained every
7.5 secs. Speckle contrast images were converted to images
of correlation time values, which represent the decay time
of the light intensity autocorrelation function. The
correlation time is inversely and linearly proportional to
the mean blood velocity. Relative CBF images (percentage
of baseline) were calculated by computing the ratio of a
baseline image of correlation time values to the subse-
quent images.

Laser speckle flowmetry imaging was started 1 min
before dMCAO and continued for up to 90 mins. Based on
the severity of CBF reduction during the first minute of
dMCAO, three cortical regions of interest (ROI,
250mm� 250mm) were identified corresponding to the
core (center of severe CBF reduction), hemodynamic
penumbra (steep portion of CBF gradient between the
core and nonischemic cortex) and nonischemic cortex
(Figure 1, C, P and N, respectively). Relative CBF changes
within these ROIs were recorded over time.

The amplitude of CBF changes during AD and their
latency from the onset of dMCAO (0 min) were measured
and averaged at 4 deflection points: the initial abrupt CBF
decrease on dMCAO, the onset, the trough and the partial
recovery of secondary hypoperfusion, as well as at 4 and
6 mins after dMCAO. The amplitude of CBF changes
associated with PIDs and their latency from the onset of
hypoperfusion were measured and averaged at 3 deflec-
tion points: the onset (0 min), trough and recovery of
secondary hypoperfusion, as well as at 3 and 5 mins after
the onset of hypoperfusion.

In addition, the severity of CBF deficit was assessed
two-dimensionally by calculating the area of the severely
hypoperfused cortex using a thresholding paradigm
(pixels with residual CBFr20% of the preischemic base-
line, expressed in mm2).

Closed Cranial Window

A closed cranial window was used in three experiments to
directly visualize the pial arterioles for vessel diameter
measurements during AD. The window was constructed
as described previously (Ma et al, 1996), with modifica-
tions. Briefly, a circular window was constructed on the
parietal bone using dental cement. After hardening of the
cement, a burr hole of 3 mm diameter was drilled in the

center of the window under saline cooling. The bone was
removed with care to keep the dura intact. The window
was filled with artificial cerebral spinal fluid, covered
using a glass coverslip (12 mm in diameter, 150mm in
thickness), and the circumference sealed with dental
cement. The depth of the window was approximately
1 mm.

Electrophysiology

In a subgroup of mice (n = 5), the spatiotemporal relation-
ship between cortical slow (DC) potential shifts and CBF
changes was studied by electrophysiological recordings
(Axoprobe 1A, Axon Instruments, Union City, CA, USA),
simultaneously with LSF. For this, a small burr hole was
drilled ( < 0.5 mm diameter), positioned either over the
core or penumbra. A glass micropipette was inserted
through the dura to a cortical depth of 200mm. A ground
electrode (Ag/AgCl) was placed subcutaneously in the
neck. The shank of glass microelectrode and its tip
location were identified on speckle contrast images, and
ROIs were positioned to place the microelectrode tip in
the center of ROI. Therefore, CBF changes were recorded
simultaneously with the DC shifts from the same cortical
location.

Experimental Groups

Mice were treated with MK-801 (1 or 5 mg/kg, n = 5 and 9),
NBQX (60 or 120 mg/kg, n = 5 and 4), dextromethorphan
(10 mg/kg, n = 6), carbetapentane (10 mg/kg, n = 6), 7-
chlorokynurenic acid (100 mg/kg, n = 6) or saline (0.1 mL,
n = 15). All injections were made intraperitoneally 1 h
prior to the onset of dMCAO. NBQX has a plasma half-life
of 4 h when administered intraperitoneally at a dose of
30 mg/kg in mice (Dalgaard et al, 1994).

Statistics

One- or two-way analysis of variance (ANOVA) followed
by Student–Newman–Keuls multiple comparisons test
were used to compare physiological parameters and
changes in CBF and the area of ischemic cortex, between
the control and drug-treated groups. Paired t-test was used
to test the effects of PIDs. Results were expressed as mean
7standard deviation. P < 0.05 was considered statistically
significant.

Results

Distal MCAO abruptly decreased CBF over the
dorsolateral cortex (Figure 1A, 0:30 mins; Figure
1B and 1C, dotted line). Cerebral blood flow was
reduced to 26%75% of the baseline in ischemic
core (Figure 1C, n = 15). Surrounding the core, there
was a steep CBF gradient towards the nonischemic
cortex (Figure 1A). This region, in which CBF was
reduced to 46%75%, was arbitrarily defined as
hemodynamic penumbra (Figure 1A, ‘P’). The
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nonischemic cortex also showed a small but con-
sistent CBF reduction immediately after dMCAO
(85%75%, P < 0.01 versus preischemic baseline;
Figure 1C). Within 2 mins after dMCAO, CBF in the
ischemic core started to decrease acutely (Figures
1A to 1C). This abrupt secondary hypoperfusion was
coincident with AD (Figure 2, left panel), and
associated with profound vasoconstriction (n = 3,
Figure 3).

Multiple spontaneous waves of hypoperfusion
originated from the core and propagated into the
penumbra during 90-min recordings (2.971.8/h;
Figure 4, arrowheads). Simultaneous electrophysio-

logical and LSF recordings demonstrated that AD
and PIDs (n = 2 and 15, respectively, in a total of 5
experiments) were associated with abrupt hypoper-
fusion (see Figure 2 for representative tracings). In
all of these events, the onset of depolarization
preceded the onset of hypoperfusion by less than
10 secs, but never followed it. Prolonged DC shifts
during PIDs were associated with prolonged hypo-
perfusion. The majority of PIDs originated from the
anterior ischemic regions, consistent with previous
observations (Selman et al, 2004; Strong et al, 1996).

In the nonischemic cortex, PIDs typically caused
a brief hypoperfusion followed by longer-lasting
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Figure 1 Hypoperfusion evoked by AD. (A) Time-lapse LSF images from a representative experiment showing CBF changes during
the first 5 mins after dMCAO. Time is indicated at the lower right, and imaging field is 6�8 mm. The initial CBF deficit was typically
located in the dorsolateral cortex (upper middle image). Within 3 mins of occlusion, core ischemic territories displayed a secondary
CBF reduction (shown at 3:15), which then sequentially spread into the penumbra and nonischemic cortex as a hypoperfusion wave
(red dotted line). Electrophysiological recordings (shown in Figure 2) confirmed that the secondary CBF reduction in core was
coincident with AD, and the spreading hypoperfusion wave with the first PID. The color bar shows relative CBF as a percent of the
baseline. The lower inset shows the location of imaging field over the right hemisphere (green rectangle). Squares show the three
ROIs from which CBF was measured over time (C, core; P, hemodynamic penumbra; N, nonischemic cortex. (B) Cerebral blood flow
time course after dMCAO (dotted line) from a representative experiment measured within the 3 ROIs, and (C) the average of 15
experiments. On dMCAO, CBF abruptly dropped to 27%, 46% and 85% of baseline in the core (black symbols), penumbra (gray
symbols) and nonischemic ROIs (white symbols), respectively. Within 1 to 2 mins after dMCAO, there was an abrupt secondary
reduction in CBF starting initially in the core corresponding to AD (arrow), and spreading sequentially into the penumbra and
nonischemic cortex as a PID. Subsequent to AD and the first PID, CBF in the core and penumbra was reduced to 16% and 36%,
respectively, significantly less than the pre-AD level (**P < 0.01). In the nonischemic territory, CBF response to PID was similar to
CSD in normal mouse cortex, and was followed by post-CSD oligemia (53% of baseline, w). Vertical error bars indicate the standard
deviation of amplitude, and horizontal bars the standard deviation of latency from the onset of dMCAO, respectively. Movies of CBF
changes during AD and PIDs can be found on the Journal of Cerebral Blood Flow and Metabolism website (http://www/nature.com/
jcbfm/).



hyperemia (Figure 4), similar to CSD in the normal
mouse cortex (Ayata et al, 2004b). In the ischemic
cortex, the hyperemic component was absent in
both core and penumbra, and PIDs were mainly
associated with prolonged hypoperfusion (19% and
32% CBF decrease in the core and penumbra,
respectively). Cerebral blood flow appeared to be
permanently reduced in the wake of each PID wave
in both penumbra and core (Figure 4, horizontal
dotted lines).

Anoxic depolarization more than doubled the
cortical territory with residual CBF r20% (1.57

0.8 mm2 before AD to 3.671.3 mm2 after AD;
P < 0.01, n = 15; see Figure 5 for representative
images and tracings). Furthermore, each PID
expanded this area, and did so in a stepwise
fashion (0.370.4 mm2). In the interval between
the PIDs, the area with residual CBFr20%
decreased by 0.270.3 mm2 (P < 0.01 PID versus no
PID; Figure 5).

To determine whether neuroprotective agents
ameliorate the unfavorable vasoconstrictive
effect of ischemic depolarizing events and suppress
the expansion of hypoperfused territory, we treated
mice with N-methyl-D-aspartate (NMDA) receptor
blockers MK-801 and 7-chlorokynurenic acid,
s-1 receptor agonists dextromethorphan and car-
betapentane, or AMPA receptor blocker NBQX.
MK-801 (5 mg/kg, n = 9) diminished the hypo-
perfusion associated with AD and PIDs in both core
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Figure 3 Anoxic depolarization is associated with vasoconstriction. Images of a pial arteriole viewed through a closed cranial window
during the first 90 secs of dMCAO. Within 45 secs after dMCAO, pial arteriolar diameter abruptly decreased, and at 60 secs the
vessel completely collapsed. The vessel diameter incompletely recovered at 90 secs and remained less than pre-AD values
throughout the imaging. Pial arterioles from the dorsal frontal cortex were imaged with the CCD camera, contrast was enhanced
using a green-filtered light source, and images were rendered off-line for improved edge detection. Vessel diameter (mm) is indicated
in the upper left corner of each image, and measured at the dashed line shown in the image taken at �15 secs.
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residual CBF (horizontal dotted lines). In the nonischemic
cortex, episodic hypoperfusion was followed by hyperemia. w,
Post-CSD oligemia.



and penumbra (Figure 6). When analyzed two-
dimensionally, MK-801 significantly attenuated the
expansion of severe CBF deficit during AD (Figure 7,
arrow), and completely blocked it during PIDs (0.17
0.1 mm2 decrease in the territory with residual
CBFr20%, compared with 0.370.4 mm2 increase
in controls, P < 0.01). By so doing, MK-801 pre-
vented the expansion of cortex with severe CBF
deficit when examined over 90 mins (Figure 7). A
lower dose (1 mg/kg, n = 5) seemed equally effective
(Figure 8), although at this dose MK-801 did
not prevent the spread of PIDs into the nonischemic
cortex.

Like MK-801, the NMDA receptor glycine site
antagonist 7-chlorokynurenic acid (100 mg/kg,
n = 6), the s-1 receptor agonist and NMDA receptor
antagonist dextromethorphan (10 mg/kg, n = 6), and
the selective s-1 receptor agonist carbetapentane

(10 mg/kg, n = 6) also prevented the expansion of
severely hypoperfused cortex (Figure 8). At 60 mins
after dMCAO, the area of cortex with r20%
residual CBF was approximately 50% smaller in
7-chlorokynurenic acid, dextromethorphan and
carbetapentane groups compared with controls
(P < 0.05). In contrast, AMPA receptor blocker NBQX
(60 or 120 mg/kg, n = 5 and 4, respectively) did not
preserve CBF (Figure 8). None of these drugs
reduced the frequency of PIDs, or prevented their
spread into the nonischemic cortex.

To determine whether the CBF preservation by
these drugs corresponded to their neuroprotective
efficacy, we administered MK-801 (5 mg/kg, n = 5)
or NBQX (60 mg/kg, n = 5) 1 h before permanent
dMCAO, and measured infarct size 24 h later. MK-
801 decreased the infarct size by 70%, whereas
NBQX did not (Figure 9).
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Discussion

In this study, we provide evidence for a vasocon-
strictive form of neurovascular coupling in response
to intense ischemic neuronal and astrocytic depo-
larization, as a novel hemodynamic mechanism by
which focal ischemic depolarizations worsen out-
come. Our data show that AD and PIDs cause
vasoconstriction, worsen CBF and expand the area
of severely hypoperfused cortex (i.e., CBFr20%) in
a stepwise fashion. By doing this, ischemic depolar-
izing events negatively impact tissue outcome by
decreasing the blood supply, as well as increasing
the energy demand. Our data also suggest that
neuroprotective CSD inhibitors (i.e., MK-801, 7-
chlorokynurenic acid, dextromethorphan and carbe-
tapentane) prevent the CBF worsening, and that
hemodynamic improvement is an important deter-
minant of their neuroprotective efficacy.
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801 ameliorated the hypoperfusion in both core and penumbra
(upper panels). Cerebral blood flow was 36% and 39% higher
in the core and penumbra, respectively, in the MK-801 group
compared with controls at 4 mins. This corresponded to 6% and
13% higher residual CBF in absolute terms. MK-801 did not
reduce the frequency of repetitive episodic hypoperfusions (2.8
71.2/h) compared with controls (2.971.8/h), but completely
prevented their spread into the nonischemic cortex; therefore,
episodic hypoperfusion waves spread only within the penumbra
in the MK-801 group. MK-801 ameliorated the hypoperfusion
associated with PIDs in both the core (lower left) and penumbra
(lower right). During PIDs, CBF in the penumbra decreased by
32% in control, and 17% in the MK-801 group (P < 0.05).
Vertical and horizontal error bars indicate the standard
deviations for the amplitude of CBF changes, and their latency
from the onset of dMCAO (upper panel) or of hypoperfusion
(lower panel), respectively. *P < 0.05, MK-801 versus controls.
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Figure 7 MK-801 prevented the expansion of severely hypo-
perfused cortex. (A) The territory showing severe CBF deficit
expanded during AD (arrow), and continued to grow over time in
control animals (n = 15), recorded for up to 90 mins. After MK-
801 treatment (5 mg/kg, n = 9), the initial hypoperfusion was
comparable to the control group; however, the subsequent
expansion of ischemic cortex was abolished. The area of
severely hypoperfused cortex was 45% and 57% smaller, at 60
and 90 mins after dMCAO, respectively, in the MK-801 group.
Values are mean7standard deviation. *P < 0.05, MK-801
versus controls. (B) Speckle contrast images taken 60 mins
after dMCAO from representative experiments show severely
hypoperfused territories (i.e., r20% residual CBF). MK-801
pretreatment reduced the area of severe CBF deficit compared
with control.
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Figure 8 NMDA receptor inhibitors and s-1 receptor agonists,
but not AMPA receptor inhibitor, preserved CBF during focal
cerebral ischemia. The area of severe CBF deficit (i.e., r20%
residual CBF) was 70%, 47%, 48% and 41% smaller in MK-
801 (1 mg/kg, n = 5), 7-chlorokynurenic acid (100 mg/kg,
n = 6), dextromethorphan (10 mg/kg, n = 6), and carbetapen-
tane (10 mg/kg, n = 6), respectively, compared with controls
(n = 15) 60 mins after dMCAO. NBQX (60 mg/kg) did not
prevent the expansion of CBF deficit. Drugs were administered
1 h before dMCAO. *P < 0.05 and **P < 0.01 versus control.



Understanding the hemodynamic evolution of
acute focal cerebral ischemia has so far been limited
by poor spatial and/or temporal resolution of
existing techniques. For example, indicator perfu-
sion techniques lacked temporal resolution and,
therefore, did not provide information about the
dynamic CBF changes during the acute stage of focal
ischemia (McColl et al, 2004; Selman et al, 1990).
Similarly, episodic hypoperfusion was only occa-
sionally observed during PIDs, probably owing to
the lack of spatial resolution with laser Doppler
flowmetry (Back et al, 1994; Iijima et al, 1992; Mies
et al, 1994; Nallet et al, 2000; Ohta et al, 2001).
In our study, we showed the adverse consequences
of ischemic depolarizations on CBF using a novel
real-time CBF imaging technique with high spatial
and temporal resolution (12 mm/pixel, one image
every 7.5 secs).

The CBF response to spreading depression in
nonischemic mouse cortex is characterized by
hypoperfusion, strikingly different from the large
hyperemic response in rats (Ayata et al, 2004b). This
raises the possibility that vasoconstrictive coupling
during focal ischemic depolarizations is limited to
mice; however, a review of the literature reveals
both direct and indirect evidence that strongly argue
against this possibility. For example, PIDs in cats
were often associated with waves of hypoperfusion;
the authors observed that persistent depolarization
caused a secondary regional CBF decrease in the
periinfarct zone (Ohta et al, 2001). Others also
occasionally observed episodic hypoperfusion dur-
ing PIDs in rat cortex (Back et al, 1994). Using
reflectance spectroscopy, transient, spreading epi-
sodes of increased NADH fluorescence were re-
corded within penumbra in cats, suggesting that
PIDs reduce oxygen availability, possibly due to

reduced CBF (Strong et al, 1996). This was later
confirmed in preliminary experiments using LSF,
where PIDs were associated with propagating hypo-
perfusion in penumbra (Strong et al, 2003). Direct
visualization of the ischemic cortex through a closed
cranial window showed that during PIDs capillary
erythrocyte velocities are transiently reduced in
the penumbra, and flow direction reversed in rats
(Pinard et al, 2002). Although authors attributed
their findings to a steal phenomenon caused by
hyperemia in the nonischemic cortex, our data show
that the penumbral hypoperfusion associated with
PIDs precede the delayed and longer-lasting hyper-
emia in nonischemic cortex (Figure 4), and thus
suggest that hypoperfusion is caused by vasocon-
striction rather than a steal towards the nonischemic
cortex. This conclusion is further supported by data
showing four-fold increase in cerebrovascular resis-
tance due to arteriolar constriction during 10 mins of
forebrain ischemia in rats (Siemkowicz, 1980).
Altogether, these data suggest that vasoconstrictive
neurovascular coupling takes place during ischemic
neuronal and astrocytic depolarization, in species
with either lissencephalic or gyrencephalic brains.

Vasoconstriction in association with AD was
observed in studies using cerebral blood volume
(CBV) as an indirect measure. Cerebral blood
volume was greatly reduced specifically in the core
(i.e., AD with restricted water diffusion) in both rats
and cats using arterial spin labeling and steady-state
or dynamic susceptibility contrast MRI (Caramia et
al, 1998; Zaharchuk et al, 2000). The decrease in
microvascular CBV was progressive, and was a good
predictor of lesion expansion and final infarct size
in rats (Zaharchuk et al, 2000). The same relation-
ship between AD and severely reduced CBV was
also observed during hyperacute stroke in humans,
wherein reduced CBV was most closely correlated
with restricted water diffusion as an indicator of AD
(Sorensen et al, 1999).

Intense neuronal and astrocytic depolarization
such as CSD is usually a potent stimulus to increase
CBF in normal cortex. However, a hyperemic
response to CSD depends on the physiological
status of tissue. Under pathological conditions, such
as hypoxia or partial ischemia, vasoconstriction and
hypoperfusion become the predominant vascular
response to CSD, rather than hyperemia (Sonn and
Mayevsky, 2000). Furthermore, episodic vasocon-
striction was shown during intense depolarizations
in traumatized human brain (Mayevsky et al, 1996).

The mediators of vasoconstrictive neurovascular
coupling during AD and PIDs are not known. [K+]e

is implicated, because the onset of hypoperfusion
and the DC shift, and hence the [K+]e surge up to
80 mmol/L (Nedergaard and Hansen, 1993; Somjen,
2001), are temporally coincident. [K+]e higher than
20 mmol/L directly depolarizes cerebrovascular
smooth muscle and increases [Ca2 + ]i via voltage-
gated Ca2 + channels and intracellular stores, thus
causing vasoconstriction (i.e., electromechanical
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Figure 9 NMDA, but not AMPA receptor, inhibition reduced
infarct size. MK-801 (5 mg/kg, n = 5) reduced infarct size by
70% compared with controls (n = 5), whereas NBQX (60 mg/
kg, n = 5) was ineffective. Infarct size was measured 24 h after
dMCAO using TTC staining in coronal sections. Owing to the
small infarct size in this dMCAO model, only direct infarct
volume was calculated. The large standard deviations are
typical for this mouse dMCAO model. *P < 0.05 versus control
and NBQX.



coupling). Elevated [K+]e also depolarizes endothe-
lial cells, reduces [Ca2 + ]i and inhibits endothelium-
dependent relaxations (Nilius and Droogmans,
2001; Seol et al, 2004). Furthermore, hypoperfusion
during intense depolarization and vasoconstriction
of isolated vessels in response to elevated [K+]e are
both augmented by nitric oxide synthase inhibition
(Ayata et al, 2004b; Dreier et al, 1995; Duckrow,
1993; Fabricius et al, 1995; Schuh-Hofer et al, 2001).
In a series of elegant studies using cranial window
in rats, Dreier et al (1998, 2000, 2001, 2002) have
shown that the hyperemic response to CSD in
nonischemic cortex transforms into a spreading
hypoperfusion (i.e., ‘inverse coupling’) if [K+]e is
artificially elevated in the superfusion solution and
either nitric oxide synthesis inhibitors or scavengers
are coadministered (Petzold et al, 2005). In this
respect, vasoconstrictive neurovascular coupling in
ischemic mouse brain might be analogous to inverse
neurovascular coupling observed in rat cortex. The
first of the two factors required for inverse coupling
to occur in the nonischemic cortex (i.e., elevated
[K+]e) mimics the core and penumbra conditions.
Increased, rather than decreased, nitric oxide pro-
duction was reported in ischemic tissue acutely
after MCAO (Goyagi et al, 2001; Lin et al, 1996;
Malinski et al, 1993). However, changes in nitric
oxide production may depend on the severity of
ischemia, since reduced nitric oxide production was
observed when measurements were made within the
severely ischemic cortex undergoing AD (Ohta et al,
1997). It is possible that endothelial nitric oxide
production is selectively inhibited in ischemic
tissue (Rikitake et al, 2005; Takemoto et al,
2002), and sets the stage for vasoconstriction
during ischemic depolarizations. Although inverse
coupling in nonischemic cortex, with artificially
elevated [K+]e and reduced nitric oxide, has
been shown to cause cortical spreading ischemia
and neuronal damage (Dreier et al, 2000), the novel
observation in our study is that a similar vaso-
constrictive coupling mechanism is operational
in focal cerebral ischemia and contributes to
infarct expansion.

In addition to elevated [K+]e, there might be
vasoconstrictor mediators (e.g., endothelin, neuro-
peptide Y, thromboxane A2) released during is-
chemic depolarizing events either from the
depolarized tissue or from the vascular structures
(Rubanyi and Vanhoutte, 1985). Recently, elevations
in astrocytic [Ca2 + ]i were shown to cause vasocon-
striction via increased 20-HETE production (Mulli-
gan and MacVicar, 2004). Astrocytic [Ca2 + ]i rise
occurs during intense neuronal and astrocytic
depolarizations, and might be a vasoconstrictive
mechanism operational in cerebral ischemia, along
with microvascular compression by acute swelling
of astrocytic end-feet (Simard and Nedergaard,
2004). Lastly, physical factors such as low luminal
perfusion pressure and shear stress may also
promote vasoconstriction during AD and PIDs.

The expansion of the area of severely ischemic
cortex was markedly attenuated by neuroprotective
drugs MK-801, 7-chlorokynurenic acid, dextro-
methorphan and carbetapentane, but not by NBQX.
The CBF preservation by these neuroprotective
agents appeared to be more prominent in penumbra
than core (see Figure 6); however, the impact on the
tissue outcome of smaller CBF increases in core
might be comparable to larger increases in penum-
bra, since the core CBF may rise above thresholds for
AD and ATP depletion (Hossmann, 1994; Mies et al,
1991). MK-801 is a noncompetitive NMDA receptor
antagonist (blocks the channel pore) and 7-chlor-
okynurenic acid blocks the NMDA receptor glycine
site; both drugs show high selectivity for NMDA
receptor and inhibit CSD (Lauritzen and Hansen,
1992; Marrannes et al, 1988). As dextromethorphan
is a Ca2 + channel and NMDA receptor blocker, in
addition to being a s-1 receptor agonist, we used
carbetapentane, a selective s-1 receptor agonist
(Leander, 1989), and showed that it was as effective
as dextromethorphan. Both s-1 receptor agonists are
potent inhibitors of CSD (Anderson and Andrew,
2002; Anderson et al, 2005); therefore, our data
suggest that CBF preservation in focal ischemia is
common to neuroprotective inhibitors of CSD, and
not limited to NMDA receptor blockers. Both NMDA
receptor blockers and s-1 receptor agonists reduce
infarct size in focal ischemia when administered
before or up to 1 h after the onset of ischemia
(Britton et al, 1997; Buchan et al, 1992; Chen et al,
1993; Gill et al, 1991; Ozyurt et al, 1988; Park et al,
1988; Shimizu-Sasamata et al, 1996; Steinberg et al,
1993). Although the neuroprotective mechanism is
presumed to be inhibition of excitotoxicity, MK-801,
dextromethorphan, and a competitive NMDA recep-
tor antagonist CGS-19755 were shown to preserve
CBF in focal ischemia (Buchan et al, 1992; Liu et al,
1997; Lo and Steinberg, 1991; Meyer et al, 1990;
Ohta et al, 2001; Takizawa et al, 1991), despite the
absence of their receptors on cerebral vessels (Beart
et al, 1988). None of the drugs tested in our study
has known direct vasoactive effects. Furthermore,
they did not alter the initial CBF reduction on
dMCAO. None of the drugs tested significantly
reduced the frequency of PIDs, and only MK-801 at
a dose of 5 mg/kg prevented their spread into the
nonischemic cortex. Therefore, CBF preservation by
CSD inhibitors was not due to blockade of the
remote vasoconstrictive effects of PIDs on collateral
blood supply. The mechanism of CBF preservation
by these drugs may relate to attenuation of [K+]e

increase during neuronal and astrocytic depolariza-
tion, although, when [K+]e is artificially increased
and nitric oxide is scavenged in rat cortex using a
cranial window (i.e., a model of inverse coupling),
NMDA receptor blockade did not prevent the
occurrence of spreading ischemia or attenuate the
rise in [K+]e during these events (Petzold et al,
2005). NMDA receptor antagonists elevate the [K+]e

threshold for neuronal and astrocytic depolarization
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both in vivo and in slices (Katayama et al, 1991;
Petzold et al, 2005). Therefore, it is also possible that
neuroprotective agents prevent the catastrophic [K+]e

rise in moderately ischemic tissue, thereby reducing
the [K+]e that cerebral vessels are exposed. As
astrocytes harbor NMDA and s-1 receptors (Klouz
et al, 2003), the increase in astrocytic [Ca2 +]i and
20-HETE production might also be inhibited by
NMDA receptor antagonists and s-1 receptor
agonists, thus attenuating the vasoconstriction
(Mulligan and MacVicar, 2004).

Unlike NMDA receptors, AMPA/kainate receptors
do not impact the initiation or propagation of CSD
(Kruger et al, 1999; Lauritzen and Hansen, 1992;
Nellgard and Wieloch, 1992). NBQX is a competitive
AMPA/kainate glutamate receptor antagonist that is
neuroprotective in some, but not all, focal ischemia
studies (Buchan et al, 1991; DeGraba et al, 1994;
Graham et al, 1996; Lo et al, 1997; Pitsikas et al,
2001; Smith and Meldrum, 1993). Unlike MK-801,
and consistent with our data, AMPA/kainate antago-
nists do not appear to impact CBF (Buchan et al,
1991; Mies et al, 1994). In our study, NBQX did not
preserve CBF nor reduce infarct size, suggesting that
CBF preservation by neuroprotective agents might
be an important mechanism of infarct reduction.
Regardless of its mechanism, this secondary hemo-
dynamic benefit conferred by CSD inhibitors is a
novel mechanism that might be shared by other
neuroprotective drugs. Although PIDs are known to
occur for up to 24 h (Hartings et al, 2003), the
therapeutic window for neuroprotective drugs is
relatively brief (e.g., approximately 1 h for MK-801)
(Hatfield et al, 1992; Lyden et al, 1995; Ma et al,
1998; Margaill et al, 1996). Therefore, attenuation of
vasoconstrictive coupling, as a relevant neuropro-
tective mechanism in vivo, appears to be effective
only during the acute phase of ischemia. In this
study, we performed imaging for up to 90 mins and
only tested the effects of pretreatment with MK-801.
More work is needed to determine whether PIDs
continue to worsen CBF after the first 90 mins, and
whether delayed postischemic administration of
MK-801 impacts CBF.

Although much effort has been directed towards
developing neuroprotective agents in acute stroke,
the success rate in human trials has been generally
disappointing. In experimental animals, neuropro-
tectants reduce infarct volume concentrically. Often
there is pan-necrosis within the ischemic lesion
(neurons, glia and blood vessels), whereas, sur-
rounding the lesion, cells are rescued and appear
normal regardless of whether they express the
receptors targeted by neuroprotectants. Despite the
clear demonstration in vitro that neuroprotectants
target specific receptors (and by so doing ameliorate
cell death), the pattern of neuroprotection in vivo is
one that might be expected from interventions that
augment CBF. If the mechanism of action of
neuroprotective agents (e.g. NMDA receptor antago-
nists) only involved occupancy of specific receptors,

one might expect a pattern similar to that seen in
culture models of oxygen–glucose deprivation,
where surviving cells are interspersed among non-
viable ones, a pattern similar to that seen in
neuroprotection in culture models of oxygen–glu-
cose deprivation. Our data suggest that neuropro-
tective agents such as MK-801 improve the ischemic
CBF deficit by stabilizing neuronal and astrocytic
membranes, and, therefore, interfering with the
adverse vasoconstrictive effects of tissue depolariza-
tion. Such a secondary CBF-dependent benefit
might be the critical determinant of a concentric
pattern of infarct reduction by neuroprotective drugs
primarily targeting neurons and glia.
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