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Abstract
We develop algorithms for imaging the time-varying optical absorption within
the breast given diffuse optical tomographic data collected over a time
span that is long compared to the dynamics of the medium. Multispectral
measurements allow for the determination of the time-varying total hemoglobin
concentration and of oxygen saturation. To facilitate the image reconstruction,
we decompose the hemodynamics in time into a linear combination of spatio-
temporal basis functions, the coefficients of which are estimated using all of
the data simultaneously, making use of a Newton-based nonlinear optimization
algorithm. The solution of the extremely large least-squares problem which
arises in computing the Newton update is obtained iteratively using the LSQR
algorithm. A Laplacian spatial regularization operator is applied, and, in
addition, we make use of temporal regularization which tends to encourage
similarity between the images of the spatio-temporal coefficients. Results
are shown for an extensive simulation, in which we are able to image and
quantify localized changes in both total hemoglobin concentration and oxygen
saturation. Finally, a breast compression study has been performed for a
normal breast cancer screening subject, using an instrument which allows for
highly accurate co-registration of multispectral diffuse optical measurements
with an x-ray tomosynthesis image of the breast. We are able to quantify the
global return of blood to the breast following compression, and, in addition,
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localized changes are observed which correspond to the glandular region of the
breast.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffuse optical tomography (DOT) has shown promise as an adjunct to x-ray mammography
(McBride et al 1999, Franceschini et al 1997, Pogue et al 2001, Shah et al 2001, Cerussi
et al 2001, Li et al 2003), in particular because it allows us to image the concentration
of blood and a number of other physiologically significant chromophores within the breast,
albeit with a considerably lower level of spatial resolution than possible with mammography.
Multiwavelength measurements also allow determination of the spatial distribution of blood
oxygen saturation (SO2). Tumors appear to differ from normal tissue in total hemoglobin
concentration (HbT) (Fishkin et al 1997), and may further differ from normal tissue in SO2

(Dehghani et al 2003) and in their scattering properties (Srinivasan et al 2005). Research
has also shown a correlation between tumor oxygen saturation and likelihood to metastasize
(Brizel et al 1996). Moreover, DOT can achieve a relatively high temporal resolution, allowing
the imaging of hemodynamics in both space and time.

In this paper, we specifically focus on the problem of imaging the hemodynamic response
of the breast to compression. This work is motivated by our efforts to develop a combined
x-ray-DOT mammography instrument (Zhang et al 2005, Li et al 2003). In our clinical
experiments, we make use of an optical imaging system which has been incorporated into
an x-ray tomosynthesis machine (Niklason et al 1997). We are able to acquire both images
without changing the position of the breast, allowing for highly accurate co-registration of
the optical and three-dimensional x-ray images. We have observed that compression induces
rapid hemodynamic changes in the breast, and it is the DOT imaging of the time-varying
mammographically-compressed breast that is the subject of this paper. Recently published
reports have studied the bulk hemodynamic response of the breast (Carp et al 2006) to
compression, showing a tendency of blood to return to the breast during pressure-relaxation
of the tissue following the initial compression. In that study, changes in oxygenation were
observed which allowed the determination of the level of oxygen consumption of normal
breast tissue using diffuse optical measurements. Compression-induced differences in oxygen
consumption between tumor and normal tissue, as noted above, may indeed prove to be a
valuable source of imaging contrast. Here we extend this bulk tissue study to the imaging
of hemodynamics, and observe the spatial distribution of the blood return to the breast. In
addition, we have also seen localized, relatively large changes in oxygen saturation, which, we
hypothesize, are due to temporary hypoxia of regions within the breast in which blood flow
and concentration have been reduced due to compression.

There have been several recent reports on methods for dynamic DOT imaging. Barbour
et al (2001) introduced the idea of imaging a dynamic medium, using diffuse optical
measurements. Collaborators subsequently published an analysis of the performance of linear
dynamic imaging algorithms for a number of data types (Graber et al 2002). Members of the
same research group proceeded to apply dynamic imaging methods to optical imaging of the
brain, in response to breath-holding (Bluestone et al 2001). Hebden et al (2004) reported on
dynamic imaging of the infant brain, using a linear perturbational approach and difference-
imaging. Barbour et al (2003) have also applied dynamic imaging methods to the imaging of
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the breast, showing that the global spatio-temporal properties of a breast containing a tumor
may differ from those of normal tissue. Recently, Intes et al (2003) published a study making
use of optical dynamic imaging with a contrast agent, indocyanine green (ICG). This report
investigated the kinetics of ICG uptake and washout in subjects with benign and malignant
lesions. In a subject with an invasive ductal carcinoma, the tumor tissue exhibited slower
uptake and washout rates than normal tissue. In our work, we make use of breast compression,
which is already a component of x-ray mammographic screening, as a form of contrast,
imaging low-frequency dynamics of total hemoglobin concentration and oxygen saturation
following a sharp compression of the breast.

A number of modeling approaches have been proposed for the solution of the spacetime
image-reconstruction problem. The application of the extended Kalman filter (EKF) to optical
tomography was introduced in Eppstein et al (1999). More recently, the EKF approach was
applied to the spatio-temporal imaging problem (Prince et al 2003, Kolehmainen et al 2003),
in order to introduce temporal smoothing. A recent study also examined the performance of
Kalman filtering with DOT using physiological a priori information (Diamond et al 2006). In
the case where there is a priori information about the shape of a given voxel’s time course, for
example in functional brain imaging, where the general shape of the hemodynamic response
function (HRF) has been demonstrated to have a particular pattern, spatio-temporal basis
functions (Zhang et al 2005) have been utilized in order to exploit this prior information.
A recent report compared a number of spatio-temporal regularization approaches, including
Kalman filtering and spatio-temporal regularization, placing them in a common statistical
framework (Zhang et al 2005).

While the Kalman filter and extended Kalman filter (EKF) do possess the advantage of
providing a recursive solution of the spatio-temporal estimation problem, for realistic, three-
dimensional problems, these approaches still involve a degree of computational complexity,
as the update step, in which the Kalman gain is computed, generally requires the inversion of
a large matrix. For the clinical measurement given in this paper, for example, computing
the Kalman gain for each time instant would require the inversion of a matrix of size
14 378 × 14 378. In this work, we do not assume that a real-time solution of the dynamic
estimation problem is necessary, and thus we estimate all of the unknowns from all of the
data simultaneously, using a regularized inversion approach, in an analogous manner to
methods applied to static image reconstruction. This methodology introduces a great deal
of computational complexity as well, but we make use of iterative methods, which avoid
explicit matrix inversion, to lessen the computational demand.

In our work, since we do not have good prior knowledge of the shape of a given voxel’s
time course, we instead use temporal basis functions which enforce a degree of smoothness in
time. Specifically, we implement cubic-spline basis functions (Parker et al 1983). Moreover,
the fact that this basis consists of time-shifted versions of the same kernel function allows
us to easily introduce explicit spatio-temporal regularization (Zhang et al 2005, Brooks et al
1999), penalizing the dissimilarity between the images of spatio-temporal coefficients which
are adjacent in time, thus imposing a further degree of temporal smoothness. An attractive
feature of the use of a single cost function in the dynamic estimation is that we can monitor
the cost to assess the convergence of our optimization algorithm. It also provides a useful
criterion for the tuning of spatial and temporal regularization parameters.

Our interest in the fully nonlinear reconstruction of the space and time-varying nature of
the medium, coupled with a degree of practical experience we have gained through the analysis
of clinical data, have led us to posit in this paper a very specific method for decomposing
the spacetime properties of the breast. Specifically, we were inspired by the commonly
encountered temporally static reconstruction problem in which only the spatial structure is
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to be recovered, where one commonly decomposes the absorption into two components: a
bulk background term, typically assumed to be spatially constant, along with a perturbational
component that accounts for spatial variations. While the latter term is typically assumed
to be ‘small’ in some sense when linear reconstruction methods are employed, the above
decomposition is perfectly valid and often employed either explicitly or implicitly for nonlinear
inversion approaches as well, where the ‘smallness’ assumption is not required.

Here we generalize this idea to the case of dynamic imaging. As discussed in detail
in section 2.2, we decompose the spacetime variations in the absorption properties into two
components: one that is temporally constant but may be spatially varying and a second that
carries the temporal dynamics. Each of these in turn is further decomposed into a term that
is spatially constant (like the bulk absorption mentioned previously) and one that does in fact
vary as a function of space. This approach to parameterize the absorption was motivated by our
experience with the processing of clinical data, where we have found it necessary to employ
substantively different approaches to recover the static behavior of the absorption (where
absolute imaging must be employed) in contrast to the dynamic behavior (where difference
imaging can be used). In both cases, much as in the purely static reconstruction problem, it is
crucial to capture the bulk properties in order to accurately recover the space-varying structure
as well.

The estimation of the spatio-temporal dynamics is accomplished with a Newton-
based iterative image-reconstruction algorithm, which estimates all of the spatio-temporal
coefficients from all of measurements simultaneously, using a combination of spatial
regularization and temporal regularization. In order to solve the very large least-squares
system which computes the search direction for the Newton update, we make use of LSQR
(Paige and Saunders 1982), which is an iterative algorithm that only requires matrix–vector
multiplies. An important advantage of iterative methods is that, for many realistic problems,
convergence can be very rapid, requiring many fewer iterations than either M or N for an
M ×N matrix, in the case of a reasonable level of regularization. In general, we have found in
our simulation experiments and in our analysis of clinical measurements that roughly M/10
iterations are required to meet the convergence criterion for a typical level of regularization.
Direct matrix inversion would be computationally prohibitive given the size of our image-
reconstruction problem. In the case of our clinical measurements, we would need to invert a
matrix of dimension 129 402×129 402 to solve the full spatio-temporal image-reconstruction
problem.

To test our methods, we have conducted an extensive simulation study, with a breast
geometry from a normal volunteer. After validating our algorithms and implementation with
the simulation study, we proceeded to image a screening patient whose mammogram did
not present any abnormalities. In both the simulation study and in our clinical experiments,
we make measurements at two wavelengths, reconstructing the spatio-temporal absorption
at each wavelength separately. Assuming reasonable, and spatially homogeneous, lipid and
water concentrations, we then recovered the spatial distributions of oxy-hemoglobin (HbO)
and deoxy-hemoglobin (HbR) concentrations, computing these quantities for each voxel by
multiplying the estimated absorptions by a matrix derived from the extinction coefficients of
these two chromophores (Li et al 2005, McBride et al 1999).

Computational considerations did not allow us to directly reconstruct the concentrations
of HbO and HbR simultaneously while making use of the data at both wavelengths. The
spatio-temporal reconstruction for one wavelength alone consumes roughly 9 GB of memory
for a realistic three-dimensional breast geometry. However, in future we plan to make use of
direct spectroscopic image-reconstruction methods (Li et al 2004, 2005, Srinivasan et al 2005,
Zhang et al 2005), with a potentially great improvement in achievable image quality.
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We simulated hemodynamics in the breast with a nonlinear finite-difference-based forward
model. In this simulation, measurements were made at 680 and 830 nm for a realistic
experimental configuration, and with an inhomogeneous baseline HbT (total hemoglobin
concentration, where HbT = HbO + HbR) and SO2, where SO2 is defined as the ratio of HbO
and HbT. Also, the dynamics of HbT and SO2 exhibited a complex spatial structure, with
distinct spatio-temporal behavior. We found that, even with a reasonable level of noise added
to the measurements, we were able to accurately estimate the baseline images, the spatially
homogeneous temporal variation, and the spatio-temporal behavior of both HbT and SO2.
We further show that if there is significant variation in absorption over the imaging interval,
it is important to take into account the temporal variation in absorption when estimating the
baseline absorption.

Our preliminary clinical results show the time-courses for oxy-hemoglobin and the deoxy-
hemoglobin after a rapid compression of the breast, generally indicating a pressure-relaxation-
induced return of oxygenated blood to the breast. In addition, we see localized changes in
HbT and in SO2 which differ from the bulk temporal variation, and which correspond well to
the glandular region of the breast.

Computationally, both our simulation and clinical studies required approximately 12 h
of computation on an AMD Opteron workstation with 16 GB of memory. Much of the
computation time involved the line search step of our Newton-based iterative optimization
procedure, and we believe that a less accurate line search may result in little difference in the
ultimate solution achieved with a great difference in computational cost. Also, the computation
time could be considerably reduced by making use of parallel processing methods.

The organization of this paper is as follows: first, we discuss the forward model for
DOT and describe our model for the reconstructed image. Next, we describe the cost
functions which are used in the image reconstruction and detail the estimation of the spatio-
temporal coefficients. We then show results for a fairly complex simulation example, involving
measurements at two wavelengths, where we have assumed spatio-temporal variation in both
oxygen saturation and total hemoglobin concentration. Finally, clinical results demonstrate
the response of the breast of a normal screening subject to compression, as a function of both
space and time.

2. Computational and experimental methods

2.1. Sensor and experimental configuration

In our clinical protocol, we place the breast under a standard level of mammographic
compression and acquire optical data for approximately 45 s, following which the optical
probe is removed. Without changing the position of the breast, an x-ray tomosynthesis image
of the compressed breast is then taken. The same level of compression is used for both the
optical imaging and for mammographic imaging with the tomosynthesis instrument. During
the optical imaging, CW (Siegel et al 1999) and RF (radio-frequency, 70 MHz) (Zhang et al
2005) images of the breast are taken simultaneously. Our RF system, as presently configured,
does not have the temporal resolution for dynamic imaging, and is thus used solely to estimate
the bulk absorption and scattering within the breast in this study.

The continuous-wave imaging system has two source wavelengths, 685 nm and 830 nm,
split evenly between 20 frequency-division multiplexed sources (i.e. 20 lasers at each
wavelength), and 20 detector channels. Each laser is modulated at a different frequency, from
6.4 kHz to 12.6 kHz, with an interval of 200 Hz between adjacent frequencies. All detector
channels collect light from all sources simultaneously. Each detector channel consists of
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(a) (b)

Figure 1. Imaging hardware used in our experiments: (a) TOBI (tomographic optical breast
imaging) system, as it is used in conjunction with a 3D tomosynthesis mammography instrument.
(b) Structure of the optical multiplexer.

a Hamamatsu APD module (C5460-01) followed by signal conditioning and amplification
stages. Each photodetector preamp output is first highpass filtered to remove low-frequency
signals from stable interference sources such as sunlight and 1/f (flicker) noise generated
by the electronics. The medium frequency components produced by fluorescent lamps at
120 Hz and its harmonics are somewhat attenuated as well. The lowpass filter following
the gain control stage is for preventing aliasing, typically done as part of Nyquist sampling.
Each detector channel is then sampled at 41.7 kHz using a pair of National Instruments
NI6052E data acquisition cards. In addition, we use a custom-built optical multiplexer to
simultaneously make measurements at 685 and 830 nm (with both wavelengths encoded at
a different frequency in the range from 6.4 kHz to 12.6 kHz) at up to 150 different source
positions. This multiplexer has the potential of switching between positions extremely rapidly,
with transitions occurring in less than 1 ms. In our experiments, we cycle through 28 source
positions, chosen to maximize our coverage of the breast, seven times, with a dwell time of
200 ms for each position. The integration time at each source position is 100 ms. Our TOBI
(tomographic optical breast imaging) system, as it is used in conjunction with a tomosynthesis
instrument, is shown in figure 1(a). The structure of the optical multiplexer is shown in
figure 1(b).

2.2. Forward model, cost functions and sensitivities

In what follows, we describe the forward model for DOT, the cost functions used in imaging
the spatio-temporal absorption distribution, the spatial and temporal regularization schemes
employed, as well as the decomposition of the temporal response into temporal basis functions.
Finally, we describe the optimization procedure which we have developed to solve the fully
nonlinear spatio-temporal estimation problem.

For media in which µs , the optical scattering coefficient, is much greater than µa , the
optical absorption coefficient, it is well known that the diffusion approximation, a second-
order partial differential equation, can well approximate radiative transport. In this paper, we
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make use of continuous-wave (CW) optical imaging, and, in this case, the diffusion equation
can be written as

−∇ · D(r)∇φ(r) + µa(r)φ(r) = S0(r) (1)

where the diffusion coefficient, D, is defined to be 1
3(1−g)µs

, g being the average cosine of the
scattering angle. The source function is S0(r), and the photon fluence is given by φ(r). At
the air–tissue boundary, we make use of a zero partial-flux boundary condition (Haskell et al
1994):

1
2Rφφ(r) − D(r)Rj n̂ · ∇φ(r) = 0 (2)

where Rφ and Rj are the Fresnel reflection coefficients for the photon density and current,
respectively, and n̂ is the direction normal to the boundary.

We allow the absorption coefficient to be time-varying, and also take into account that
each source is activated at a different point in time but our methods can easily be extended to
the case of frequency-domain measurements. Thus we have a diffusion equation where the
absorption coefficient is a function of both space and time:

−∇ · D(r)∇φ(r, t) + µa(r, t)φ(r, t) = S0(r, t). (3)

In this work, we assume that the time scale over which µa varies is much longer than the
time scale over which the CW diffusion equation is valid, and that, thus, the absorption can
be assumed to be constant over the 100 ms during which each measurement is made. It is
possible that the scattering coefficient may vary over time as well, but in this paper we are
modeling and reconstructing changes in absorption only. We posit the following model for
the time-varying absorption:

µa(r, t) =
√

a(r, t)2 + ε2 (4)

where

a(r, t) = s(r) + v(r, t). (5)

The particular form of equation (4) is used to ensure that the absorption is always positive and
that it is also always greater than ε = 0.0035 cm−1.

Thus, we assume that the absorption can be broken into a static component, s(r), and a
component which varies in both space and time, v(r, t). This choice of model is based on
observations of clinical measurements in which the optical signal tends not to vary more than
15% from its initial value. We further decompose s(r) and v(r, t) into spatially constant and
spatially-varying components:

s(r) = µ0
a + p(r) (6)

v(r, t) =
L∑

l=1

clbl(t) +
L∑

l=1

el(r)bl(t) (7)

where {b1(t), b2(t), . . . , bL(t)} is a collection of L temporal basis functions. Thus, we
decompose the time-varying absorption into spatially and temporally constant, temporally
varying and spatially constant, spatially varying and temporally constant and spatio-temporally
varying components, denoted by the µ0

a, p(r),
∑L

l=1 clbl(t) and
∑L

l=1 el(r)bl(t), respectively.
In fact, the decomposition into these components is somewhat redundant, as

∑L
l=1 el(r)bl(t)

includes
∑L

l=1 clbl(t) as a special case, but, in our optimization procedure, we first estimate
the bulk temporal variation, described by the latter term, which is used as an initial guess for
the former model, which describes the full spatio-temporal absorption variation. We assume
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that the static bulk absorption, µ0
a , is known a priori. The temporal basis functions are used

in order to ensure a certain degree of temporal smoothness and because solving for the time-
varying absorption at each point in time that a measurement is made (in our system, every
200 ms) would be computationally prohibitive, given that we are solving the full nonlinear
optimization problem for absorption for a complex three-dimensional medium.

Next, we consider the optimization of a(r, t) given a set of diffuse optical measurements.
In what follows, we assume that the time scale of the changes in absorption is such that the
absorption can be well approximated as being constant during the integration time (100 ms) of
each measurement. In estimating a(r, t), we make use of a nonlinear optimization procedure.
However, as the terms of a(r, t) are qualitatively different, we make use of two different cost
functions. In doing so, we are driven by realistic experimental considerations related to DOT
in practice. In order to estimate the ‘static’ (i.e. not varying with time) portion of a(r, t), s(r),
we make use of an absolute cost function, while, in order to estimate the dynamics, we make
use of difference-imaging. We have found that difference imaging is essential in estimating
v(r, t) from experimental data, as an absolute cost function tends to compound systematic
errors due to model mismatch, while difference imaging tends to cancel these errors. The
absolute cost function used is

Cabsolute =
M∑

m=1

N∑
n=1

Q∑
q=1

(
y

q
m,n − h

q
m,n

(
t
q
m, p, c, e

))2(
σ

q
m,n

)2 (8)

where y
q
m,n is the qth repetition of a measurement due to source m measured at detector n and

p = p(r), tqm is the time at which this source is activated, h
q
m,n

(
t
q
m, p, c, e

)
is the hypothesized

amplitude produced by our forward model, c = [c0c1 · · · cL]T , e = [e0(r)e1(r) · · · eL(r)]T ,
and σ

q
m,n is the standard deviation of y

q
m,n. For clinical data, we have found that, under

compression, there are sufficient differences between our measurements and our model, even
after calibration with a homogeneous phantom, that additional calibration parameters, one for
each source and detector, must be introduced into the reconstruction (Boas et al 2001, Oh et al
2002). Thus, we make use of the following cost function:

Cabsolute,calibrated =
M∑

m=1

N∑
n=1

Q∑
q=1

(
y

q
m,n − smdnh

q
m,n

(
t
q
m, p, c, e

))2(
σ

q
m,n

)2 (9)

where sm and dn are source and detector amplitude calibration coefficients, respectively. In
contrast, the following cost function is used for difference-imaging:

Crelative =
M∑

m=1

N∑
n=1

Q∑
q=2

[
y

q
m,n

y1
m,n

− h
q
m,n

(
t
q
m, p, c, e

)
h1

m,n

(
t1
m, p, c, e

)
]2

. (10)

In this we only try to match the ratio between the amplitude of the qth repetition of the
measurement for a particular source/detector pair and the amplitude recorded the first time
this measurement was made.

We next concern ourselves with the problem of computing the Fréchet derivative of the
forward model with respect to small perturbations in ei(r) and p(r), where ei(r) is the space-
varying coefficient of the ith temporal basis function and p(r) is the static absorption image.
These Fréchet derivatives are used to compute the Jacobian of the measurements with respect
to our parameters, which is at the heart of our Newton-based estimation procedure. The
sensitivity of a measurement due to a spatially-varying infinitesimal absorption perturbation
is, at a given time (Arridge 1995)

δµa(r)hm,n(t) =
∫

δµa(r′, t)um(r′, t)ũn(r′, t) d3r′ (11)
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where um(r, t) is the forward solution due to source m, ũn(r, t) is the adjoint solution due to
detector n, and δµa(r) is a small functional perturbation in absorption. Using the chain rule,
the sensitivity with respect to p(r) of a given amplitude measurement is then

δp(r)hm,n(t) =
∫

a(r′, t)√
a(r′, t)2 + ε

δp(r′)um(p, c, e, r′, t)ũn(p, c, e, r′, t) d3r′. (12)

Similarly, we see that the sensitivity of a time-varying measurement due to an infinitesimal
perturbation in ei(r) is

δei (r)hm,n(t) =
∫

a(r′, t)√
a(r′, t)2 + ε

δei(r′)bi(t)um(p, c, e, r′, t)ũn(p, c, e, r′, t) d3r′. (13)

Finally, if we denote z
q
m,n as the ratio between the qth amplitude measurement of source

m and detector n and the first

zq
m,n = h

q
m,n

(
t
q
m

)
h1

m,n

(
t1
m

) (14)

where the dependence on p(r), c and e is taken to be implicit, then the Fréchet derivative of
z
q
m,n with respect to ei(r) is

δei (r)z
q
m,n

h1
m,n

(
t1
m

)(
δei (r)h

q
m,n

(
t
q
m

)) − h
q
m,n

(
t
q
m

)(
δei (r)h

1
m,n

(
t1
m

))
(
h1

m,n

(
t1
m

))2 . (15)

2.3. Spatial and temporal regularization

In order to be able to effectively reconstruct p and e from noisy measurements, we must
make use of spatial regularization, as the inverse problem is ill-posed in these parameters.
Given the slow temporal variation that we observe in clinical measurements, we have found
that c can be represented using a small number of parameters and thus can be estimated
without explicit regularization. If we do have prior information that the system which we
are modeling is slowly-varying, it is beneficial to make use of temporal, as well as spatial,
regularization. We make use of this approach to regularization in the case where the temporal
basis functions are time-shifted versions of the same function, for example cubic splines or
Gaussians. Introducing temporal regularization imposes an additional constraint on the spatio-
temporal reconstruction, for instance, that it be smooth temporally as well as spatially. This
is accomplished by the penalizing the degree of dissimilarity of the temporal basis function
coefficients which are adjacent in time. In our spatio-temporal reconstructions, we have chosen
the approach of using as many temporal basis functions as is computationally feasible in the
reconstruction, and subsequently making use of temporal regularization, along with an L-curve
method (Hansen 1992, Hansen and O’Leary 1993) for choosing the temporal regularization
parameter, to impose a further degree of temporal smoothness. This approach avoids as much
as possible over-smoothing the reconstruction in time, as the level of temporal regularization
is chosen not a priori, but from the data itself, by examination of the L-curve.

Thus, we augment the equations (8)–(10) as follows:

Cabsolute,reg =
M∑

m=1

N∑
n=1

Q∑
q=1

(
y

q
m,n − h

q
m,n

(
t
q
m, p, c, e

))2(
σ

q
m,n

)2 + λs
s‖Lp‖2

2 (16)

Cabsolute,calibrated,reg =
M∑

m=1

N∑
n=1

Q∑
q=1

(
y

q
m,n − smdnh

q
m,n

(
t
q
m, p, c, e

))2(
σ

q
m,n

)2 + λs
s‖Lp‖2

2 (17)
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Crelative,s−t reg =
M∑

m=1

N∑
n=1

Q∑
q=2

[
y

q
m,n

y1
m,n

− h
q
m,n

(
t
q
m, p, c, e

)
h1

m,n

(
t1
m, p, c, e

)
]2

+
L∑

l=1

λd
s ‖Lel‖2

2 + λd
t

L∑
l=2

‖el − el−1‖2
2 (18)

where λs
s is the spatial regularization parameter for estimation of the static (non-time-varying)

parameters, λd
s is the spatial regularization parameter for the dynamic parameters, λd

t is the
temporal regularization parameter, el is the discretized version of the image of the l′th temporal
coefficient, and L is a regularization operator. In our implementation, L is the finite-difference
discretization of the Laplacian operator.

In order to simplify the presentation, we vectorize the elements of the above cost functions
as follows:

y = [
y1

1,1y
1
1,2 · · · y1

M,N · · · yQ
M,N

]T
(19)

h = [
h1

1,1h
1
1,2 · · · h1

M,N · · · hQ
M,N

]T
(20)

hq = [
h

q

1,1h
q

1,2 · · · hq

M,N · · · hq

M,N

]T
(21)

z = [
z2

1,1z
2
1,2 · · · z2

M,N · · · zQ
M,N

]T
(22)

f = [
f 2

1,1f
2
1,2 · · · f 2

M,N · · · f Q
M,N

]T
(23)

where

f q
m,n = y

q
m,n

y1
m,n

. (24)

We also define the vector bl which gives the value of basis function l for each measurement:

bl = [
bl

(
t1
1

)
bl

(
t1
1

) · · · bl

(
t
Q
M

)
bl

(
t
Q
M

)]T
. (25)

The vector bq

l gives the value of the basis function l for each measurement in cycle q:

bq

l = [
bl

(
t
q

1

)
bl

(
t
q

1

) · · · bl

(
t
q

M

)
bl

(
t
q

M

)]T
. (26)

Thus, equations (16)–(18) can be rewritten more compactly as follows:

Cabsolute,reg = (y − h)T Σ−1
n (y − h) + λs

s‖Lp‖2
2 (27)

where Σn is the noise covariance matrix, which we will assume to be diagonal in our clinical
and simulation studies.

Cabsolute,calibrated,reg = (y − diag(s ⊗ d)h)T Σ−1
n (y − diag(s ⊗ d)h) + λs

s‖Lp‖2
2 (28)

where s = [s1s2 · · · sM ]T and d = [d1d2 · · · dN ]T .

Crelative,reg = (f − z)T (f − z) +
L∑

l=1

λd
s ‖Lel‖2

2 + λd
t

L∑
l=2

‖el − el−1‖2
2. (29)
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2.4. Inverse problem solution

In the image reconstruction, we make use of Newton-based nonlinear optimization algorithms
to estimate c, p and e. We assume that µ0

a is known a priori. As discussed in the previous
section, we make use of both absolute and relative cost functions in order to reconstruct the
static and dynamic components of the absorption, respectively. Since the values of the two
cost functions are not comparable, we reconstruct the static and dynamic images separately,
although one could contemplate scaling the cost functions and reconstructing all spatially-
varying parameters in a single step. We begin by estimating the bulk temporal variation, c,
using difference imaging. As we are estimating in this step a small number of parameters,
regularization does not seem to be necessary. Next, we proceed to estimate p and e separately,
using absolute and relative cost functions, respectively. The order in which we estimate p and
e is not extremely significant; in our experimental work, we have seen that these parameters
largely decouple from one another, especially when using a combination of absolute and
difference imaging. However, accurate estimation of c seems to be very important in order
to attain reasonable results for imaging of both the space-varying but static component of the
absorption and the dynamics.

Each iteration of the optimization algorithms is composed of two steps: in the first step,
we compute the search direction, using a linearization about the current parameter estimate,
and, in the second, a line-search procedure is used to calculate the magnitude of the step to
take in the search direction. As the computation of the search direction involves the solution
of a very large linear system for practical three-dimensional problems, an iterative algorithm
is employed. The general outline of our estimation procedure is as follows:

(i) Estimate c, the bulk temporal variation, using a relative cost function.
(ii) Estimate p, the static absorption image, using an absolute cost function, and given the

value of c estimated in step 1.
(iii) Estimate e, the space-varying and time-varying absorption, using a relative cost function

(difference imaging) given the estimates of c and p obtained in steps 1 and 2 of the
algorithm, respectively.

Specifically, we use the following procedure, in which we have a Newton-based
optimization procedure as the ‘inner loop’ of each step.

(i) Estimate c using equations (10) by iterating the following:

ci+1 = arg min
α

Crelative(ci − αwc,i ) (30)

where

wc,i = (
JT

c,iJc,i
)−1

JT
c,i (f − z(ci , p = 0, e = 0)). (31)

(ii) Estimate p using equation (27) or (28) and given ĉ, the last iterate of ci from the first step
of the optimization algorithm:

pi+1 = arg min
α

Cabsolute,reg(pi − αwp,i ) (32)

where

wp,i = (
JT

p,iΣ
−1
n Jp,i + λs

sL
T L

)−1
JT

p,iΣ
−1
n (y − h(pi , ĉ, e = 0)). (33)

(iii) Estimate e using equation (29) and given ĉ and p̂, p̂ being the last iterate of pi estimated
during the second step of the optimization algorithm, by iterating

ei+1 = arg min
α

Crelative,s−treg(ei − αwe,i ) (34)
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where

we,i = (
JT

e,iJe,i + λd
s block diag(LT L) + λd

t GT G
)−1

JT
e,i (f − z(ĉ, p̂, ei )) (35)

and

G =




−I I · · ·
−I I · · ·

· · ·
· · · −I I


 . (36)

In principle, we could iterate this entire procedure, but this would be computationally
expensive. We have found in our simulation studies, one of which will be described in detail
below, that the above procedure gives accurate results in estimating a(r).

The matrices Jc, Jp and Je are defined as follows:

Jp =




J1
p

J2
p

· · ·
JQ

p


 (37)

where Jq
p is the Jacobian of the measurements made in cycle q with respect to a small

pertubation in absorption, each row of which is computed using equation (12). This Jacobian
is pre-multiplied by diag(s ⊗ d) in the case where we are optimizing for the calibration
coefficients and p simultaneously.

Je =




J2
e1

J2
e2

· · · J2
eL

J3
e1

J3
e2

· · · J3
eL

· · · · · · · · · · · ·
JQ

e1 JQ
e2 · · · JQ

eL


 (38)

where

Jq
el

= (diag(h1))−2
(
diag(h1)diag

(
bq

l

)
Jq

p − diag(hq)diag
(
b1

l

)
J1

p

)
(39)

as can be easily shown using equations (15) and (13). We compute the Jacobian of the
measurements with respect to c as

Jc = Je1 (40)

where 1 is a vector of all ones with dimension (V L) × 1, V being the number of voxels for
which we are reconstructing the image.

Computation of the search directions, up,i and ue,i for steps 2 and 3 of the optimization
algorithm shown above is a computationally intense problem, particularly the computation
of ue,i , which involves the estimation of the spatially-varying perturbations in the images for
all of the temporal coefficients from all of the data at once. In order to solve this extremely
large linear system, we make use of the LSQR algorithm, which involves the solution of the
following equivalent systems in the least-squares sense:

Sp,iwp,i =
[
Σ−1/2

n (y − h(pi , c, e = 0))

0

]
(41)

Se,iwe,i =




(f − z(ei , p, c))
0
0

· · ·
0


 (42)
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where

Sp,i =
[
Σ−1/2

n Jp,i√
λs

sL

]
(43)

Se,i =




Je,i√
λd

s L 0 · · · 0
0

√
λd

s L · · · 0
· · · · · · · · · · · ·
0 0 · · · √

λd
s L

−
√

λd
t I

√
λd

t I 0 · · ·
0 −

√
λd

t I
√

λd
t I · · ·

· · · · · · · · · · · ·
· · · 0 −

√
λd

t I
√

λd
t I




. (44)

The dimension of Sp,i and Se,i are (MNQ + V ) × V and (MN(Q − 1) + 2LV ) × LV ,
respectively, for the case where L is the Laplacian matrix.

The LSQR algorithm computes the least-squares solutions for the above systems in an
efficient manner, requiring only the computation of Au and AT v, for arbitrary vectors u and
v. The matrices Sp,i and Se,i have a highly sparse structure, particularly as we represent L as
a sparse matrix, allowing these matrix–vector products to be computed with relatively little
computation or storage. Additional computational savings can be achieved by noting that Je,i

itself has a highly redundant structure, as is evident from equation (39).
Finally, we address the question of regularization parameter selection. In the optimization

algorithm described above, we make use of three regularization parameters, λs
s, λ

d
s and λd

t .
However, as has been previously mentioned, the static and dynamic estimation problems,
steps 2 and 3 of the optimization algorithm, which make use of different cost functions,
can be largely decoupled from one another. Thus, the selection of λs

s , the baseline-imaging
regularization parameter, can be accomplished by standard methods, such as L-curve analysis
(Hansen 1992, 1998, Hansen and O’Leary 1993, Vogel 2002).

The joint selection of λd
s and λd

t , the spatial and temporal dynamic-imaging regularization
parameters, respectively, is somewhat more problematic, as we have found that these
parameters interact with one another. For the purposes of this work, exploring the full
parameter space of λd

s and λd
t using a technique such as L-surface analysis (Brooks et al 1999,

Belge et al 2002) would have been too computationally costly, as producing the full nonlinear
spatio-temporal reconstruction for a single

{
λd

s , λ
d
t

}
pair requires roughly 12 h of processing

time at present. Our purpose in this paper was to demonstrate qualitatively the reduction of
noise sensitivity and the increased temporal smoothness of reconstructions produced as we
increase the temporal regularization parameter, λd

t . Thus, we first choose an appropriate level
of spatial regularization, λd

s , using the L-curve, and then, holding the spatial regularization
parameter fixed, we select the temporal regularization parameter, λd

t using an additional L-
curve analysis. We do anticipate that further improvement in imaging quality may be possible
using a method which selects both the spatial and temporal dynamic-imaging regularization
parameters simultaneously.

3. Simulation setup

Using a finite-difference-based forward model, we have simulated a time-varying breast,
using a breast geometry generated from the tomosynthesis reconstruction of a breast cancer
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(b)

(d)(c)

(a)

Figure 2. Simulation setup: (a) geometry used in the simulation, (b) source positions, (c) detector
positions and (d) time schedule of sources.

screening subject, age 79. In all images shown, labels on the x, y and z axes of images of the
breast denote centimeters. The forward solution was computed with voxels 4 mm on a side.
Figure 2(a) shows the imaging configuration for our simulation study which was based upon
the tomosynthesis reconstruction for a breast cancer screening subject, age 79. As shown, we
have inserted two inclusions into the geometry. The setup for our clinical experiment was very
similar, with only the breast geometry differing. Positions of sources and detectors are shown
in figures 2(b) and (c), respectively. The schedule of measurements is depicted in figure 2(d),
where the x-axis indicates time and the y-axis gives the source that is active at each point in
time.

We simulate continuous-wave (CW) measurements at 685 and 830 nm simultaneously,
which again corresponds to the wavelengths currently available in our clinical system.
Gaussian noise has been added to the simulated measurements such that the SNR of each
measurement was 60 dB. In the results which follow, we reconstruct the time-varying
absorption at each wavelength separately and, given the measured extinction coefficients
of oxy-hemoglobin, deoxy-hemoglobin, water and lipids, convert these estimated absorptions
to chromophore concentrations, assuming that the breast is uniformly composed of 35% water
and 35% lipids (Shah et al 2004). The initial bulk HbT of the breast was 30 µM, with SO2

of 70%. All of the reconstructions shown in what follows depict a slice in the center of the
breast (z = 2.5 cm).

The simulated breast has been divided into three regions, as shown in figure 2(a), each
of which with different temporal and static characteristics. The baseline HbT differs from
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(a) (b)

Figure 3. True and estimated HbO and HbR time courses: (a) true and estimated HbO time courses
and (b) true and estimated HbR time courses.

the background for only the left-most object in figure 2(a). The object on the left also
experiences the same quadratic increase in HbT of 1.87 µM over the data collection interval
as the background, while the object on the right experiences a quadratic decrease in HbT of
1.87 µM, following the same time course. The SO2 of the background does not vary with
time, but the object on the left experiences a decrease in SO2 of 4.4% over the data collection
interval, while the object on the right experiences an increase of 4.4% with the same time
course.

4. Results and discussion

4.1. Simulation study

The reconstruction of the bulk time-variation in the breast, corresponding to step 1 of our
optimization procedure (the estimation of c) is shown in figures 3(a) and (b), which compare
the true and reconstructed time courses for oxy-hemoglobin (HbO) and deoxy-hemoglobin
(HbR), respectively. We see that the reconstructed and true time courses agree quite well, with
somewhat more error in the deoxy-hemoglobin time course. Next, we consider the estimation
of p given c, the estimation of the static (temporally homogeneous) portion of the hemoglobin
distribution given the bulk hemodynamics, step 2 of the optimization procedure. In our
simulation, the left-most object in figure 2(a) has a greater baseline HbT than the background
of the breast, while the object on the right has the same baseline properties as the breast
background. If we take into account the estimate of the background time-variation in the breast
(c) and reconstruct p for each wavelength, the images shown in figures 4(a) and (c) are obtained
for HbO and HbR, respectively. The corresponding true images for HbO and HbR are shown in
figures 4(b) and (d). We see that the background HbO and HbR concentrations localize the
inclusion very well and quantitatively estimate the increase in HbO and HbR concentrations
well, with some degree of underestimation due to regularization.

If the medium is truly time-varying, it is quite crucial to take this temporal variation into
account when performing the image reconstruction. The effect of ignoring temporal variation
in the image reconstruction is illustrated in figure 5, which has the same layout as figure 4.
When we ignore the background temporal variation in absorption (i.e. when we assume that
c = 0), and using the same level of spatial regularization as was used to produce figure 4,
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Figure 4. True and estimated baseline HbO and HbR images: (a) estimated HbO baseline, (b) true
HbO baseline, (c) estimated HbR baseline and (d) true HbR baseline.
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Figure 5. True and estimated baseline HbO and HbR images. Estimated images are reconstructed
for the case where it is assumed that there is no bulk temporal variation in optical properties in the
breast. (a) Estimated HbO baseline. (b) True HbO baseline. (c) Estimated HbR baseline. (d) True
HbR baseline.
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Table 1. Estimation of HbT as a function of time.

8.4 s 14 s 19.6 s 25.2 s 30.8 s 36.4 s

Maximum change estimated in HbT (µM)
Background 0.71 0.87 1.10 1.32 1.62 2.11
Left inclusion 0.50 0.59 0.82 1.17 1.50 1.97
Right inclusion 0.29 0.48 0.50 0.58 0.80 1.38

True change seen in HbT (µM)
Background 0.14 0.30 0.54 0.87 1.31 1.87
Left inclusion 0.14 0.30 0.54 0.87 1.31 1.87
Right inclusion −0.14 −0.30 −0.54 −0.97 −1.31 −1.87

Table 2. Estimation of SO2 as a function of time.

8.4 s 14 s 19.6 s 25.2 s 30.8 s 36.4 s

Maximum change estimated in SO2 (%)
Background −1.1 1.0 1.3 1.3 1.4 1.3
Left inclusion 0.4 −0.4 −0.7 −0.9 −0.8 −0.7
Right inclusion 0.8 1.0 1.2 1.3 1.5 1.5

True change seen in SO2 (%)
Background 0.0 0.0 0.0 0.0 0.0 0.0
Left inclusion −0.3 −0.7 −1.3 −2.1 −3.1 −4.4
Right inclusion 0.3 0.7 1.3 2.1 3.1 4.4

we see that the visibility of the inclusion is significantly reduced by image artifacts. Thus, in
imaging the baseline (non-time-varying) component of our images, it may be of importance
to take into account tissue dynamics that take place in the course of our imaging procedure.

Next, we consider the estimation of e given c and p. The true images of HbT and SO2, as
a function of time, are shown in figures 6(a) and (b). In the simulation, the right-most object
in figure 2(a) experiences a decrease in HbT over time, relative to the background, while the
object on the left varies in HbT at the same rate as the background. In contrast, both of the
inclusions experience changes in SO2 relative to the background, with the left-most inclusion
decreasing over time and the right-most inclusion increasing over time. The reconstructed
images of HbT and SO2, using a temporal regularization parameter of λd

t = 1.0, are given
in figures 6(c) and (d), respectively. All of the reconstructed images which we will show in
the remainder of this paper are differential images, showing only the difference between each
parameter at a given time and the value of the parameter at t = 0.

A quantitative analysis of reconstruction accuracy for HbT and SO2 has been performed,
with the results shown in tables 1 and 2. Each table gives the maximum change from each
parameter’s value at time t = 0 as well as the true change, for the three regions of interest:
the left inclusion, the right inclusion and the background of the breast. The analysis is given
for the six time points corresponding to the images in figure 6. We see that, for HbT, the left
inclusion and breast background track the true changes closely, while, in our reconstruction
for the right inclusion, HbT increases at a slower rate than the rest of the breast, by
1.38 µM as opposed to approximately 2 µM in the background and in the left inclusion,
when, in reality a decrease of 1.87 µM occurred. This phenomenon is a common feature
of diffusive imaging, as the spatial regularization tends to reconstruct changes over a larger
volume than that in which they actually occurred, with a correspondingly smaller contrast. The
quantitative analysis for SO2 is shown in table 2. The relative noisiness of the SO2 is evident



3636 G Boverman et al

Time =  8.4 seconds

2
4
6
8

10
12 −4

−2
0
2
4

Time = 14.0 seconds

2
4
6
8

10
12 −4

−2
0
2
4

Time = 19.6 seconds

2
4
6
8

10
12 −4

−2
0
2
4

Time = 25.2 seconds

2
4
6
8

10
12 −4

−2
0
2
4

Time = 30.8 seconds

5 10 15 20

2
4
6
8

10
12 −4

−2
0
2
4

Time = 36.4 seconds

5 10 15 20

2
4
6
8

10
12 −4

−2
0
2
4

SO2

Time =  8.4 seconds

2
4
6
8

10
12

−0.05

0

0.05

Time = 14.0 seconds

2
4
6
8

10
12

−0.05

0

0.05

Time = 19.6 seconds

2
4
6
8

10
12

−0.05

0

0.05

Time = 25.2 seconds

2
4
6
8

10
12

−0.05

0

0.05

Time = 30.8 seconds

5 10 15 20

2
4
6
8

10
12

−0.05

0

0.05

Time = 36.4 seconds

5 10 15 20

2
4
6
8

10
12

−0.05

0

0.05

HbT (µM)

HbT (µM)

Time =  8.4 seconds

2
4
6
8

10
12 −2

0

2
Time = 14.0 seconds

2
4
6
8

10
12 −2

0

2

Time = 19.6 seconds

2
4
6
8

10
12 −2

0

2
Time = 25.2 seconds

2
4
6
8

10
12 −2

0

2

Time = 30.8 seconds

5 10 15 20

2
4
6
8

10
12 −2

0

2
Time = 36.4 seconds

5 10 15 20

2
4
6
8

10
12 −2

0

2

(c)

SO2

Time =  8.4 seconds

2
4
6
8

10
12

−0.02

0

0.02

Time = 14.0 seconds

2
4
6
8

10
12

−0.02

0

0.02

Time = 19.6 seconds

2
4
6
8

10
12

−0.02

0

0.02

Time = 25.2 seconds

2
4
6
8

10
12

−0.02

0

0.02

Time = 30.8 seconds

5 10 15 20

2
4
6
8

10
12

−0.02

0

0.02

Time = 36.4 seconds

5 10 15 20

2
4
6
8

10
12

−0.02

0

0.02

(d)

(a) (b)

Figure 6. True and estimated hemodynamic images, where, in the estimated images, a temporal
regularization parameter of λd

t = 1.0 was used. (a) True HbT images. (b) True SO2 images.
(c) Estimated HbT images. (d) Estimated SO2 images.

in noticing that a change in oxygen saturation of as much as 1.4% is seen in the background
of the breast, when no change should have been seen. The reconstruction correctly finds the
left inclusion to be decreasing in oxygen saturation with time and the right inclusion to be
increasing, but the magnitudes of the changes are underestimated by 84% and 66% for the left
and right inclusions, respectively.

4.2. Pilot clinical study

Finally, we apply the methods that we have developed and tested for simulated measurements
to data acquired from a breast cancer screening subject, age 37. Informed consent was
obtained, under Massachusetts General Hospital Institutional Research Board (IRB) protocol
no. 1999-P-010998. The experimental protocol was as follows: the patient’s breast was
compressed in the medio-lateral oblique (MLO) orientation, using a standard mammographic



Spatio-temporal imaging of the hemoglobin in the compressed breast with DOT 3637

Figure 7. Tomosynthesis reconstruction of a clinical screening subject.

level of compression, and optical data, using both the CW and RF systems, were acquired for
approximately 45 s. After acquiring the optical data, the optical probe was removed from its
casing, altering the breast position as little as possible, and an x-ray tomosynthesis image of
the breast was taken. For the CW imaging system, a pattern of 28 source positions, with each
source turned on for 200 ms, and measurements simultaneously made at 685 nm and 830 nm,
was repeated seven times. Slices of the tomosynthesis reconstruction can be seen in figure 7.
The reconstructions of the bulk time-variation within the breast, for HbO and HbR, can be seen
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(a) (b)

Figure 8. Estimated background HbO and HbR time courses for clinical measurements:
(a) estimated HbO time course and (b) estimated HbR time course.
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Figure 9. Estimated images of HbT, and SO2, as a function of time, for the clinical screening
subject. (a) HbT reconstruction. (b) SO2 reconstruction.

in figure 8. We hypothesize that the return of blood to the breast is induced by deformations
of tissue which tend to cause a reduction in pressure during the compression interval. We note
that most of the increase in blood within the breast as a function of time is due to HbO, and
we hypothesize that perhaps the arterioles exhibit a greater degree of sensitivity to changes in
pressure. The oscillatory nature of the time courses is most likely due to the basis functions
which we have used, rather than being representative of dynamics that were actually present in
the breast. Although we have chosen to make use of the same set of temporal basis functions
for the reconstruction of c as for the reconstruction of e, there is no paricular reason why this
must be the case.

We show HbT and SO2, calculated from reconstruction of e, in figure 9. We see that the
region of glandular tissue in the center of the breast experiences less increase in HbT as a
function of time, perhaps due to the increased stiffness of glandular tissue relative to adipose
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tissue, and, in addition, this region experiences a greater decrease in SO2 than surrounding
tissue, perhaps due to the increased metabolic activity within glandular tissue. One challenge
in the analysis of data from compression measurements is the difficulty of disambiguating
effects due to changes in pressure from effects due to metabolic activity or to changes in
metabolic activity. The ability to measure blood flow could aid considerably in our ability to
disentangle the effects of these two processes, but perhaps modeling-based approaches could
be effective to this end as well.

5. Conclusion and future work

We have developed a practical algorithm for the fully nonlinear reconstruction of slowly-
varying dynamic DOT measurements, using a combination of absolute and differential
measurements, estimating the static component of the image using an absolute cost function,
and making use of a differential cost function for estimation of the dynamics. We assume
that the time variation within the medium can be decomposed into a combination of temporal
basis functions, introducing a certain degree of smoothness and making the time–space image
reconstruction problem computationally tractable. Further temporal smoothing is introduced
by the use of temporal regularization. Simulation results have shown the possibility of
quantitative imaging of both the baseline and the hemodynamics, and further we have shown
the importance of taking into account the dynamics in estimating the baseline image. However,
for difference imaging, accurate estimation of the baseline seems to be far less important in
estimation of the dynamics.

In a normal screening subject, we have imaged the hemodynamics which result
immediately following a sharp compression of the breast. CW DOT measurements were
taken in a configuration which allows for near-perfect co-registration with a three-dimensional
x-ray tomosynthesis image of the breast, and we have observed both a global return of oxy-
hemoglobin to the breast following the compression, as well as more localized changes in total
hemoglobin and oxygen saturation, which correspond to a glandular region of the breast.

In the future, we plan to make use of spectroscopic constraints in our dynamic imaging,
which should improve quantification of changes in chromophores of interest. We also intend to
examine model-based dynamic image-reconstruction methods (Ntuba 2006), which directly
take into account the bio-physics of vascular dynamics. As previous studies have shown
the difference between breast tumors and normal tissue with respect to vasculature and
metabolism, breast compression, which is already a standard component of mammographic
breast screening, may prove useful as a contrast mechanism capable of probing these
differences. We plan to more thoroughly address the use of multiple regularization penalty
functions and the question of how we can select multiple regularization parameters in a
computationally efficient way. Finally, we plan to consider the more general case of a medium
in which both the absorption and scattering parameters vary as functions of space and time.
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