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Fig.S1. Depth-resolved hemodynamic imaging. Same as FIG 2. for a second rat.  

A) shows the CCD image of rat cortical surface through thinned skull. The region imaged using LOT is indicated by 

the white dotted lines. B) Shows depth-resolved LOT images of oxy-, deoxy-and total hemoglobin concentration 

changes in the cortex 0.6 seconds after cessation of a 4 second forepaw stimulus at cortical depths of 100, 300 and 700 

microns. C) shows a depth-resolved cross section of the HbO2 response at the position indicated with (i) in B 

representing a large draining vein. The corresponding HbO2, HbR and HbT depth-resolved time-courses around x = 

2850microns are shown to the right. D) shows a depth-resolved cross section of the HbO2 response at the position 

indicated with (ii) in B. The corresponding HbO2, HbR and HbT depth-resolved time-courses around x = 1050microns 

are shown to the right. Numbers on each temporal trace represent their depth of origin in microns. ‘a’,’v’ and ‘c’ 

denote regions identified as arteriole, vein and capillary for timecourse extraction. 
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Fig S2. 3D Spatiotemporal Separation of Vascular Compartments.  (Same as FIG 3. for a second rat).  

A) The average hemodynamic time-courses over 5 rats isolated from voxels in the LOT images expected to represent 

arteriolar, capillary and venous contributions. (normalized to the peak HbO2 value). B) Equivalent time courses for the 

rat shown in Fig. S1. C) Spatiotemporal components extracted from the 3D LOT data shown in figure S1B. Gray scale 

represents the amplitude of the component in each voxel that varies according to the arterial, capillary and venous 

functional time-courses shown in B. D) 3D rendering of LOT vascular compartments (40% isosurface). E) 2-photon 

image stack of fluorescent vascular cast with veins (blue) and arteries / arterioles (red) identified. F) 200 micron depth 

slice from C overlaid with the tracing of the arteries (red) and veins (blue) from the vascular cast (after rotation and 

scaling). The capillary response from the LOT results is overlaid onto the vascular cast image to indicate the position 

of the active underlying capillary bed (green).  



 
                     

 

 
 

 

Fig S3a). Objective masking rather than subjective selection of arteriole, capillary and vein regions. (Left) the 

result of objective masking of LOT data based on only the general characteristics of the vascular compartment 

timecourses. Voxels were searched to identify regions that had only the basic temporal characteristics of each vascular 

compartment. The regions identified correspond well to the regions initially selected subjectively and to those 

subsequently identified with two-photon microscopy (right). The timecourses extracted from the LOT data from the 

regions identified in each mask closely resembled those extracted via subjective selection.    

 

 

 

 
 

 

Fig S3b). Same as FIG S3a for a second rat. 

 

 



 
Fig S4 Residuals of spatiotemporal fit and singular value decomposition analysis: A) a slice from the original 

LOT HbR, HbO2 and HbT images for the rat shown in Fig 1. B) The same plane when re-formed using only the 3 basis 

time-courses and the spatial component images from Fig2. C) = (A-B), the residual of the 3 component fit relative to 

the true data (on the same color-scale). D) The time-courses of the original 3 temporal components (arteriolar, 

capillary and venous) in addition to a magenta trace showing the time-course of the (white box) region in the HbT 

residual, thought to correspond to a larger artery. E) The overlaid vascular architecture from the vascular casts shown 

in Fig2, including the arterial component from a 4-component temporal fit using the traces from D. F) the residuals of 

the images when the 4
th
 arterial temporal component is incorporated into the spatiotemporal fit. G-L are the same data 

for a second rat (that shown in figure S1). M) Shows the first three singular values of the complete 3D image data set, 

overlaid with the first three singular values of the four basis temporal components shown in J. N) Shows the residual 

spectrum of the data set, showing the fractional residual between the full data set and data created from a gradually 

increasing number of singular values (red). The small blue trace shows the residual when the first three singular values 

of the 4-component subset are used in place of the whole data set singular values (insert shows close up). This analysis 

shows that the 4 vascular compartment timecourses can account for around 85% of all variance in the 3D data. 



  

 
 

 

Fig S5. Higher resolution plots of the average hemodynamic trends extracted from the 5 rats (error bounds 

represent the standard deviation on the mean of the data after normalization to the peak of the HbO2 response).  Here, 

data has been normalized to the peak of each hemoglobin form. The central and right columns show close ups of the 

onset and decay of each trace respectively. 



 
 

Fig S6 Higher resolution plots of the average hemodynamic trends extracted from the 5 rats (error bounds 

represent the standard deviation on the mean of the data after normalization to the peak of the HbO2 response).  Here, 

data has been normalized to the absolute peak of each vascular compartment. The central and right columns show 

close ups of the onset and decay of each trace respectively. 

 

 

 

 

 

 

 

 

 



Supplemental methods I: Data processing and image reconstruction for LOT.  
 

LOT data pre-processing 

All data acquisition and processing was performed using Matlab™ software. For each stimulus block, 

90 LOT image frames were acquired at each wavelength (473nm or 532nm) during the first 23 seconds 

(including 3 seconds pre-stimulus, 4 seconds stimulus and 16 seconds post-stimulus, with a 27 second inter-

stimulus interval). Between 140 and 500 separate stimulus blocks were recorded for each rat. The responses 

in the raw data were examined alongside simultaneously acquired physiology data, and the corresponding 

absolute images so that exclusion criteria could be applied. The remaining scans for each rat were then 

spatially co-registered using custom-written Matlab™ code which spatially shifted each frame to minimize 

its absolute difference relative to a reference frame. The data were then block-averaged and the percentage 

changes relative to pre-stimulus baseline were calculated for all images of each wavelength: Where Ms,Dark is 

a measurement of the signal on each detector when the focused laser beam is deflected into a beam-dump, 

the average stimulus response over N trials, for each detector s, and position p, over time t for each rat was 

calculated using:  
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where the resulting data represents the percentage change in signal relative to a baseline given by the mean 

of the 1
st
 12 time-points of each scan. No spatial or temporal filtering was used. Since the two wavelengths 

were acquired sequentially (100ms apart), the 473nm image series was then temporally linearly interpolated 

to the same time base as the 532nm images. The resulting dual-wavelength raw data time-series for each rat 

were then converted into 3D images of wavelength-specific absorption changes, and then subsequently 

converted into maps of ∆HbR, ∆HbO2 and ∆HbT changes as described below. 
 

Image reconstruction 

Raw LOT data is converted into 3D images of wavelength-dependent absorption using a computed-

tomography-like deconvolution procedure, based on Monte-Carlo modeling of light propagation in scattering 

tissue. This step is discussed in more detail in (Dunn and Boas, 2000; Hillman et al., 2004). Briefly, a 

linearized model (under the Born approximation: eq 2) is solved using Tikhonov regularization (eq 3) to 

produce 3D image timecourses of the change in absorption ∆µa(λ1,r,t) at each wavelength λ1  and λ2. 
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where ∆M/M0 = ∆Ms,p(t)/Ms,p(0) (eq 1) is the set of percentage change LOT raw measurements. J are depth-

sensitivity profiles (as shown in Fig 1) generated using Monte Carlo modeling. L0 is a factor representing the 

simulated baseline signal and was also calculated using the Monte Carlo model. Since LOT measurements 

are not within the diffusion regime, the angle of propagation of each photon was carefully taken into account. 

The Monte Carlo model also incorporated a 50 micron thick ‘skull’ layer and the background optical 

properties for the model were determined by systematic comparison between in-vivo rat LOT data (for 7 

source-detector separations) and phantom measurements made on well-characterized mixtures of intralipid™ 

(a milk-like scattering solution) and bovine hemoglobin (Sigma Aldrich), with a thin sheet of wax paper 



representing the skull. The following baseline optical properties were deduced and used: At 473nm: 

scattering coefficient: µ′s = 0.56mm
-1
, absorption coefficient: µa = 0.38mm

-1
. At 532nm: µ′s = 0.5mm

-1
, µa = 

0.337mm
-1
. The skull was assumed to have µ′s = 1mm

-1
, and µa = 0.1mm

-1
. Anisotropy of 0.9 was assumed.  

The regularization parameter α was determined by calculating the variance of the in-vivo data (from 

steady-state sequences), adding this noise onto simulated data corresponding to a simple simulated shape 

(extending from 200 – 800 microns in depth), and then reconstructing this simulated data alongside the in-

vivo data. When the simulated data reconstruction was accurate and neither reconstruction seemed over 

regularized, or overwhelmed by measurement noise the corresponding regularization parameter was selected. 

After review of the values for each rat, a common parameter was chosen and applied to the data from all rats. 

Note that similar image reconstruction approaches have been well established for diffuse optical 

tomography (DOT)(Arridge, 1999). However, in the case of LOT, since the distances between source and 

detector positions are so small, image reconstruction is substantially more stable and produces much higher 

resolution images than conventional DOT. The final results of our reconstruction are 3D image timecourses 

of the change in absorption ∆µa(λ1,r,t) at each wavelength λ1 = 532nm, and λ2 = 473nm 
 

Functional conversion 

By explicitly converting the raw data into 3D absorption maps utilizing a model of light propagation 

that incorporates wavelength dependent, empirically determined optical properties of the rat brain, it is not 

necessary to account for partial volume effects or to estimate differential pathlength factors (Kohl et al., 

2000). The resulting 3D ∆µa(λ1,r,t) images can be converted into absolute images of the mM changes in 

HbR, HbO2 and HbT using the Beer Lambert law: 
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where ∆[HbO2(r,t)] is a 3D image time-series of the oxy-hemoglobin concentration changes and εHbR(λ1) is 
the molar extinction coefficient of deoxy-hemoglobin at wavelength λ1. The latter were obtained from 

published values http://omlc.ogi.edu/spectra/hemoglobin/summary.html. This process assumes that changes 

in hemoglobin are predominantly responsible for absorption changes in the brain at visible wavelengths (as is 

generally assumed in all 2D optical imaging studies).    
 

Parameter extraction from compartment timecourses 

Time to 30, 50 and 70% (onset and decay). 

The peak amplitude was calculated as the mean of the 3 values either side of the peak of the response 

to avoid the influence of spikes. The 30, 50 or 70% of maximum threshold was then calculated and a 

quadratic fit to the points 0.7 to 1.3 times this threshold value was calculated. The intercept of this fit with 

the true threshold value was then calculated from the coefficients of the fit. Using a polynomial fit avoided 

the influence of spurious points or noise on the rising or falling slope of the data. While the algorithm was 

automated, it was carefully supervised to ensure that all fits and results reflected the true temporal behavior 

of each response. 



Fractional contribution: sum of all voxels in each component.  

Figure 5I was calculated from 3 of the 5 rats in this study owing to the incomplete field of view in the 

remaining animals (parts of the vascular response were obscured by the un-thinned parts of the skull). 

Estimates of the relative contribution of each compartment to the overall signal were obtained from the 

vascular compartment fit data (such as shown in figure 3C). Each value in these fit images represents the 

fraction to which the voxel behaves like a given compartment. We assume therefore that within the whole 

3D sample, the highest (whitest) voxel is 100% composed of a particular compartment. The lowest voxel is 

always zero since a non-negative fit was used. Each 3D vascular compartment map was therefore normalized 

such that its maximum value was 1, and this normalization factor was applied to the functional time-courses 

used to generate the maps. The sum of all the values in the 3D map then represented the extent to which all 

the responding regions behaved like each given compartment. The relative amplitudes of the HbO2, HbR and 

HbT responses for each compartment were calculated from the scaled functional time-courses that were the 

basis of the compartment fits. Each of these compartment-specific hemoglobin amplitudes were then 

multiplied by the totals from the spatial maps. In this way it was possible to calculate the fractional 

contribution of each compartment to the total response for each hemoglobin type. Standard deviations shown 

are between the three rats analyzed. 
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Supplemental Methods II: Extraction of parameters from two-photon data: 

Vessel diameter calculation 

The orientation of the image was rotated to match vessel (using Matlab function “imrot”). The width at 0.4 

of the peak value of the vessel cross section was determined from a linear interpolation of 3 adjacent points. 

Scaling was obtained by calibrating the field of view size using a 15 micron fluorescent microsphere 

phantom, and verified via successive translation of digitized x-y micrometer stage (typically 1.13 microns / 

pixel). Timing synchronization was determined by simultaneously recording stimulus triggers and 

galvanometer motion feedback signals (along with respiration and systemic blood pressure).  

                                                                                             Speed of flow calculation  

The orientation of image was rotated to match 

the vessel (using Matlab function “imrot”) (A). 

The edges and length of the vessel were defined. 

7 pixel wide stripes parallel to the vessel 

direction were averaged to create linescans (B) 

where the gradient of the stripes correspond to 

the speed of particle flow. The linescans were 

then spline interpolated to 10 x sample rate 

(7.5ms per new pixel) (C shows a close-up). A 

30 x 4 (x by t) box (red) was then defined and its 

average timecourse compared to the timecourse 

of the 30 x 4 box below it. (blue). The t shift 

required to align the two represents the time 

taken for a red blood cell to travel 4 x-pixels 

(illustrated in D). These paired boxes are then 

moved temporally 10 points (0.75s to the right) 

and the process repeated, giving the measure of 

RBC speed at the next time-point. The paired 

boxes were then shifted down one x-pixel and 

the process repeated. The selected stripe of the 

vessel (A) was then shifted left-right across the 

vessel and the process repeated. All speed time-

courses for all locations in the vessel were then 

averaged. 

Red Blood Cell density calculation 

The target vessel was selected, and histogram-

based threshold used to determine an outline 

mask. All pixels outside mask were set to zero.  

Each image in the time-series was then 

normalized such that the lowest value in vessel 

= 0 (100% red blood cells) and maximum value 

in vessel as 1 (no red blood cell – purely 

fluorescein in the plasma).  

RBC density was then calculated as the sum of 

all pixel values in each masked, normalized 

image, divided by the number of pixels in the 

mask for each frame. 
 

 


