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Image reconstruction in optical tomography is a nonlinear and generally ill-posed inverse problem. Noise
in the measured surface data can give rise to substantial artifacts in the recovered volume images of
optical coefficients. Apart from random shot noise caused by the limited number of photons detected at
the measurement site, another class of systematic noise is associated with losses specific to individual
source and detector locations. A common cause for such losses in data acquisition systems based on
fiber-optic light delivery is the imperfect coupling between the fiber tips and the skin of the patient
because of air gaps or surface moisture. Thus the term coupling errors was coined for this type of data
noise. However, source and detector specific errors can also occur in noncontact measurement systems
not using fiber-optic delivery, for example, owing to local skin pigmentation, hair and hair follicles, or
instrumentation calibration errors. Often it is not possible to quantify coupling effects in a way that
allows us to remove them from the data or incorporate them into the light transport model. We present
an alternative method of eliminating coupling errors by regarding the complex-valued coupling factors for
each source and detector as unknowns in the reconstruction process and recovering them simultaneously
with the images of absorption and scattering. Our method takes into account the possibility that coupling
effects have an influence on both the amplitude and the phase shift of the measurements. Reconstructions
from simulated and experimental phantom data are presented, which show that including the cou-
pling coefficients in the reconstruction greatly improves the recovery of absorption and scattering
images. © 2007 Optical Society of America

OCIS codes: 100.3190, 170.3010, 110.4280.

1. Introduction

Diffuse optical tomography is a novel medical imaging
modality1–3 that seeks to reconstruct 3D images of tis-
sue optical parameters and related functional images
of tissue physiology, such as blood volume and oxygen-
ation,4 particularly in peripheral muscle, breast tis-
sue,5 and the brain.6–9 Data acquisition systems
deliver light to the surface of the body and measure the
light transmitted through the tissue at multiple detec-
tor locations on the surface. Due to high scattering of

IR light by biological tissue, the relationship between
volume parameters and measurements is nonlinear,
and the measurement data carry little spatial in-
formation, which generally requires an iterative
and regularized model-based approach to image re-
construction. We have previously presented a recon-
struction algorithm that uses a finite element model
for simulating diffuse light propagation in scattering
media and a regularized Newton–Krylov approach to
image reconstruction of the absorption and scattering
distribution inside a 3D volume from boundary mea-
surements of modulation amplitude and phase shift
of radio-frequency-modulated input sources.10 This
model assumes constant coupling between each fiber
and the tissue or phantom and perfect calibration of
the instrument, without losses in the light delivery
setup or at the skin surface. In practice such losses do
occur and must be included in the model to avoid the
propagation of noise into the image. In this paper we
will extend the current image reconstruction scheme
to account for a class of systematic noise known as
coupling errors. By this we understand errors in am-
plitude and phase that are specific to individual
source and detector channels but do not vary tempo-
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rally. The most common cause for this type of error is
the imperfect delivery or collection of light on the
surface owing to losses at the interface between the
skin and light delivery system. In many data acqui-
sition systems, light is delivered and collected by op-
tical fibers. In these systems, it is possible that an air
gap between the fiber tip and the skin surface affects
the characteristics of light delivery. Hair and local
skin surface features, such as moles and follicles, will
also have an influence on the coupling where surface
areas of light delivery and collection are small, as is
commonly the case for fiber-based systems. Other
channel-specific effects, such as losses in individual
optical fibers or differences in detector gain, can also
be included in the coupling parameters.

Since coupling effects are difficult to predict and
quantify, they cannot normally be included directly in
the light transport model. Instead we propose to treat
them as unknowns and include them in the recon-
struction process. A previous study by Boas et al.11 has
used a similar approach for amplitude calibration only,
and promising results of absorption reconstruction
from simulated data were presented. Stott et al.12 have
extended this method to include the correction for po-
sitional errors in the source and detector locations.
Schmitz et al.13 have presented a method of calculating
real-valued source and detector coupling coefficients
for a linear transfer function used for measuring dy-
namic changes with a CCD detection system.

Oh et al.14 have expressed the problem of coupling
coefficient recovery in a Bayesian regularization
framework, where optical parameters and coupling
coefficients were updated sequentially in each iter-
ation step of the nonlinear maximum a posteriori
reconstruction scheme. Other authors15–17 showed
that errors induced by the measurement system can
be reduced by incorporating reference measurements
obtained from phantoms with known optical proper-
ties. Recent work on calibrating measurement data to
account for coupling effects includes Tarvainen et al.18

and Nissilä et al.19

In this paper we present a method that takes into
account coupling factors for both the amplitude and
phase data obtained from frequency domain data ac-
quisition systems. Phase coupling can occur, for exam-
ple, from reflections in the optical system or dispersion
of the signal in the fiber. We will show that the recon-
struction algorithm can recover amplitude and phase
coupling coefficients in addition to the simultaneous
reconstruction of absorption and scattering images
and that the inclusion of the coupling coefficients can
improve convergence and image quality dramatically.
The results from applying the method to both simu-
lated and experimental data will be presented.

2. Forward Problem with Coupling Coefficients

A. Light Transport Model

Consider the problem of light propagation in a highly
scattering domain � bounded by ��, where absorp-
tion coefficient �a�r� and scattering coefficient �s�r�
satisfy �s�r� �� �a�r� everywhere. Further let the dis-

tance between the boundary source and detector lo-
cations be large compared to the mean free transport
path 1��s. Then the diffusion equation20,21 is an ad-
equate model for light transport in �.22,23 In the fre-
quency domain, the diffusion equation is given by

��� · ��r�� � �a�r� �
i�
c �	�r, �� 
 q�r, ��, r � �,

(1)

where � is the diffusion coefficient given by � 
 1�
�3��a � �s���, with �s� 
 �1 � g��s and g being the
anisotropy coefficient for the single-scattering phase
function. q is the boundary source distribution mod-
ulated at frequency �, and � is the photon density
field in the medium. Where the diffusion equation is
not sufficient, a higher-order approximation to the
Boltzmann equation must be used.24,25 The discus-
sion of coupling coefficients in this paper can be ap-
plied directly to these models. We employ a Robin
boundary condition:

	��, �� � 2������n	��, �� 
 0, � � ��, (2)

where � is a coefficient that incorporates the refrac-
tive index mismatch at the tissue–air interface, and
operator �n denotes the outward normal to the
boundary at point �. The complex boundary flux � is
obtained by boundary operator

��� 
 ������n	��, �� 

1
2�

	��, ��, � � ��. (3)

Consider a data acquisition system consisting of S
boundary source distributions qi���, � � ��, i 

1 . . . S, which are illuminated sequentially, and M
boundary detectors, with sensitivity profiles wj���,
j 
 1 . . . M, along the boundary. Then the signal
yij � � measured by detector j under illumination
from source i is given by

yij 
�
��

wj���i���d� 
�
��

wj���
2�

	i��, ��d�, (4)

where 	i is the solution to Eq. (1) for source distribu-
tion qi. The forward problem [Eqs. (1)–(4)] may be
formally represented by the operator

y 
 f�x�, (5)

where y � �SM is the vector of complex projection
data, and x 
 	�i, �i
 � �2B is an array of basis coef-
ficients for the optical parameters � and 	, expressed
in a suitable spatial basis expansion bk�r� of dimen-
sion B, such that a parameter distribution x�r� can be
approximated by

x�r� � �
k
1

B

xkbk�r�, (6)
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where 	xk
 is a 2B-dimensional vector of basis coeffi-
cients. We have implemented the model Eq. (5) as a
finite-element model (FEM), by subdividing domain �
into nonoverlapping elements of simple shape, such as
tetrahedra or regular voxels, and defining a basis con-
sisting of local polynomial basis functions.26,27

B. Coupling Coefficients

We now consider each source qi to be contaminated
linearly with a coupling coefficient �i � �, producing
a modified field

	̃i�r, �� 
 �i	i�r, ��, i 
 1 . . . S, (7)

and each measurement to be contaminated with a
coupling coefficient �j � �, producing modified data

̃ij��� 
 �j

1
2�

	̃i��, �� 
 �i�jij���, i 
 1 . . . S,

j 
 1 . . . M, (8)

leading to a modified forward operator

ỹ 
 f̃�x̃�, (9)

where the augmented solution vector x̃ now includes
the unknown coupling coefficients, x̃ 
 	x, �, �
, and
the forward model is modified by the multiplicative
coefficients

f̃ij�x̃� 
 �i�jfij�x�. (10)

Note that as each measurement is affected by a
product �i�j of two coupling coefficients, the set of
coefficients 	�, �
 is uniquely defined only up to an
arbitrary scaling factor11 � � �: 	��, ��1�
. In the it-

erative reconstruction algorithm described below this
ambiguity is implicitly taken into account by recov-
ering coupling coefficients that minimally vary from
their initial estimates 	��0�, ��0�
, such that

� 
 arg min
�̄

��
i

��̄�i � �i
�0��2 � �

j
��̄�1�j � �j

�0��2�.

(11)

3. Inverse Solver

We have previously presented a damped Gauss–
Newton scheme for recovering the optical parameters
from boundary measurements,10 which uses a Krylov
solver with implicit representation of the Hessian
matrix to solve the linearized problem at each Gauss–
Newton step k:

xk�1 
 xk � �k�JT�xk�J�xk� � �� � �xk���1�JT�xk��y � f�xk��
� ����xk�� (12)

where J is the Jacobian of the forward model, 
 is a
regularization term with �� and �� being its first and
second derivatives with respect to the parameters xk,
and � is a regularization hyperparameter. �k is a step
length obtained by a line search at each iteration.

To extend this solver to the simultaneous recon-
struction of the optical and coupling coefficients, x
must be replaced by the augmented solution vector x̃,
forward model f by the extended model f̃ defined in
Eq. (10), and the Jacobian J by an augmented matrix
J̃ that includes the derivatives of the projection data
with respect to the source and detector coupling co-
efficients.

A. Calculation of the Jacobian

The nonlinear reconstruction scheme for recovery of
the optical parameters x now must be adapted to
recover the extended solution vector x̃ including the

Fig. 1. Block structure of the augmented Jacobian including optical parameters, source and detector coupling blocks.
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coupling coefficients. Our reconstruction approach
uses a Gauss–Newton scheme that requires the cal-
culation of the Jacobian of the forward model, Jij,k

 �fij�x���xk. After extending for the additional cou-
pling coefficient parameters in the solution vector,
this becomes

J̃ 
 � f̃ij�x̃�
�xk

� f̃ij�x̃�
��l

� f̃ij�x̃�
��m

�. (13)

With Eq. (10), the components of the modified Jaco-
bian are evaluated as

� f̃ij�x̃�
�xk


 �i�j

�fij�x�
�xk

, (14)

� f̃ij�x̃�
��l


��jfij�x� if i 
 l
0 otherwise, (15)

� f̃ij�x̃�
��m


��ifij�x� if j 
 m
0 otherwise. (16)

Commonly the measurements are expressed in loga-
rithmic polar form, in terms of logarithmic amplitude
and phase:

yij 
 Aij exp i�ij )�ln Aij 
 Re�ln yij�
�ij 
 Im�ln yij�

. (17)

Similarly, the coupling coefficients can be expressed
in polar form:

�i 
 Ai
��� exp i�i

���, �j 
 Aj
��� exp i�i

���. (18)

Recasting Eq. (10) in logarithmic form leads to

f̂ ij�x̃� :
 ln f̃ij�x̃� 
 ln�Ãij� � i��̃ij�, (19)

with

Ãij 
 AijAi
���Aj

���, �̃ij 
 �ij � �i
��� � �j

���. (20)

The Jacobian Ĵ for f̂ is organized so that the ampli-
tude and phase components are stored in separate
blocks, leading to a real-valued matrix:

Fig. 2. (Color online) Target and reconstructed images of absorption (top) and scattering distributions (bottom) for the 2D test case. Image
columns from left to right: target, reconstruction from noise-free data, and reconstruction from data with 1% additive Gaussian noise.
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where the individual blocks are given by

� ln Ãij

�xk



1
Aij

�Aij

�xk



� ln Aij

�xk
, (22)

��̃ij

�xk



��ij

�xk
, (23)

� ln Ãij

� ln Ak
��� 
�1 if i 
 k

0 otherwise, (24)

��̃ij

� ln Ak
��� 
 0, (25)

� ln Ãij

� ln Ak
��� 
�1 if j 
 k

0 otherwise, (26)

��̃ij

� ln Ak
��� 
 0, (27)

� ln Ãij

��k
��� 
 0, (28)

��̃ij

��k
��� 
�1 if i 
 k

0 otherwise, (29)

� ln Ãij

��k
��� 
 0, (30)

��̃ij

��k
��� 
�1 if j 
 k

0 otherwise. (31)

The block structure of the resulting matrix is shown
in Fig. 1. Whereas the blocks relating to the optical
coefficients are dense, the coupling coefficient compo-
nents are sparse.

B. Parameter Scaling

Due to the heterogeneity of both the data and param-
eter spaces, a rescaling of both spaces is necessary to
compensate for ill conditioning of the linearized prob-
lem.10 For the augmented solution vector x̃, scaling of
the parameter space now must also incorporate the
coupling coefficients.

In this paper we use the solution space transfor-
mation

Ĵ 
 �
� ln Ãij

��a k

� ln Ãij

��k

� ln Ãij

� ln Ak
���

� ln Ãij

��k
���

� ln Ãij

� ln Ak
���

� ln Ãij

��k
���

��̃ij

��a k

��̃ij

��k

��̃ij

� ln Ak
���

��̃ij

��k
���

��̃ij

� ln Ak
���

��̃ij

��k
���

�, (21)

Fig. 3. Log amplitude and phase data at all detectors for a single
source. Data without coupling contamination (solid curve) and
with the three cases of coupling coefficients.

Table 1. Levels of Coupling and Random Error in the Simulated Data
Sets Used for 2D Reconstructions

Data Set

Coupling Error Relative Random Error

�(ln A(,�)) �(�(,�)) �R(ln A, �)

C0N0 0 0 0
C1N0 0.2 0.01 0
C2N0 1 0.05 0
C3N0 2 0.1 0

C0N1 0 0 0.01
C1N1 0.2 0.01 0.01
C2N1 1 0.05 0.01
C3N1 2 0.1 0.01
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x̃ → T�x̃� 
�ln
�a

�� a
�0�, ln

�

�̄�0�, ln
�

���0�, ln
�

�̄�0��,

(32)

where each of the components is rescaled by the av-
erage of its initial estimate, indicated by superscript
0, and then transformed to its logarithm.

The Jacobian J has to be rescaled accordingly. The
data and solution space transformations are repre-
sented by the premultiplication and postmultiplica-
tion with a diagonal matrix, respectively. For more
details on the application of data and solution space
transformations see Ref. 10.

4. Results

A. Simulated Two-Dimensional Data

To assess the effectiveness of the coupling coeffi-
cient recovery, reconstructions from simulated 2D
data contaminated with artificial coupling coeffi-
cients were performed. The target image is a circle
of radius 25 mm with embedded circular and ellipti-
cal absorption and scattering objects (Fig. 2). The
background parameters are �a 
 0.025 mm�1 and

�s 
 2 mm�1. The parameter ranges of the inclusions
are 0.01 mm�1 � �a � 0.06 mm�1 and 0.8 mm�1

� �s � 5 mm�1.
Data are generated for 32 source and 32 detector

positions evenly spaced along the circumference of the
object. Each measurement consists of logarithmic am-
plitude ln A and phase � at a modulation frequency of
100 MHz, using a finite-element mesh discretization
consisting of 32,971 nodes and 7261 ten-noded trian-
gles, supporting a piecewise cubic polynomial basis
expansion.

The forward model employed by the reconstruction
algorithm uses a lower-resolution mesh with 1015
nodes, 1950 three-noded triangles, and a piecewise
linear basis expansion. The FEM data are mapped
into a regular bilinear basis grid with dimensions of
40 � 40. After removing the grid points outside the
support of the domain, the basis is represented by
1332 basis coefficients. The dimensions of the real-
valued solution space is thus 1332 � 2 � �32 � 32�
� 2 
 2772, including 2664 optical coefficients and
128 coupling coefficients.

For reference, Fig. 2 shows the result of a recon-
struction of the optical parameters only from data
that are not contaminated by coupling coefficients,

Fig. 4. (Color online) Reconstructions from data in the presence of coupling errors. Shown are absorption images (left) and scattering
images (right) for the three levels of coupling contamination, without additional random noise. In each image pair, the left image shows
the conventional reconstruction without accounting for coupling noise, while the right image is obtained when coupling coefficients are
included in the reconstruction.
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both without additional random data noise and with
added Gaussian noise at a level of � 
 1%. These
results have been presented previously and show
good localization and quantitative recovery of the in-
clusions for the noiseless case, and some degradation
of the recovered shape of the inclusions when data
noise is present.

The simulated projection data are then contami-
nated by adding synthetic source coupling coeffi-
cients ln A���, ���� and detector coupling coefficients
ln A���, ���� to each of the source and detector sites. The
values of the coupling coefficients are drawn from
Gaussian-distributed random samples. We consider
three cases of increasing severety of coupling noise.
In addition to the coupling effects, random Gaussian
noise with a standard deviation of 1.0% of the data
values, simulating measurement shot noise, was
added to the data. As a best-case scenario, recon-
structions from data including coupling noise, but
excluding the random noise, are also presented for
comparison. The noise parameters of the resulting six
data sets are listed in Table 1.

Figure 3 shows an example of the boundary projec-
tion data obtained from one source after the coupling
coefficients have been applied for each of the three
cases.

The synthetic data are then applied to the Gauss–
Newton reconstruction scheme defined in Eq. (12).
To assess the effect of the coupling coefficient re-
construction, we perform reconstructions both ex-
cluding and including the recovery of the coupling
coefficients, with and without additional random
noise. In all cases the reconstructions start from
an initial estimate of the optical parameters of �a


 0.025 mm�1 and �s 
 2 mm�1. In the case of cou-
pling coefficient reconstruction the initial estimate of
all coupling coefficients ln A��,�� and ���,�� is 0. For the
regularization functional 
 we choose a first-order
Tikhonov scheme. Hyperparameter � is set to 10�5 for
coupling cases 1 and 2 and to 10�4 for case 3.

When applying the data contaminated with cou-
pling coefficients to a conventional reconstruction
scheme that recovers the distribution of optical coef-
ficients only, by employing the forward model f, the
coupling errors will manifest themselves as artifacts
in the recovered �a and �s images. Inclusion of the
coupling coefficients in the reconstruction process,
using the extended model f̃ instead, is expected to
reduce or eliminate the amount of image artifact.

Figure 4 shows reconstruction results for the three
cases of coupling contamination of the measurement

Fig. 5. (Color online) Reconstructions from data in the presence of coupling and random errors. The arrangement of images is the
same as for Fig. 4.
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data, when reconstructed both with and without re-
covering the coupling coefficients. It can be seen that
the presence of coupling coefficients severely de-
grades the image quality of the conventional recon-
structions with loss of localization of the inclusions
and the appearance of boundary artifacts. When the
coupling coefficients are reconstructed together with
the optical parameters, the results are significantly
improved. For cases 1 and 2 the image quality is
comparable with that achieved from uncontaminated
data. In case 3 the images begin to deteriorate but
still provide significant improvement in localization
compared to a reconstruction that ignores the cou-
pling coefficients.

When additional random noise is added to the data
sets, the resulting reconstructions of both the images
and coupling coefficients are affected. The images are
therefore degraded not only by the statistical noise
but also by the cross talk from the incompletely re-
covered coupling coefficients. Therefore we expect the
effect of the coupling reconstruction to decrease at
higher levels of random noise. Figure 5 shows recon-
structions from data degraded by coupling and ran-
dom noise. The inclusion of the coupling coefficients
in the reconstructions still significantly improves the
quality of the recovered images, even though the con-
trast and edge localization of the inclusions is re-

duced compared with the case without random noise.
The amount of boundary artifact is also increased,
indicating that residual coupling errors are affecting
the images.

The reconstructed coupling coefficients are shown
in Fig. 6. The results for case 1 are scaled by a factor
of 10 and those for case 2 by a factor of 2 so that they
can be compared with the same target coefficients. It
can be seen that the coefficients are recovered very
well in all cases.

The L2 errors of the recovered coupling coefficients
with respect to the target values are shown in Fig. 7
as functions of iteration count. For moderate coupling
targets (case C1N0), the coefficients are well recov-
ered after approximately ten iterations, while conver-
gence is slower for case C2N0. For the most severe
coupling coefficients (case C3N0) the residual error of
the recovered coupling coefficients remains signifi-
cantly higher. The addition of Gaussian random noise
on the data results in an increase of the residual error
of the recovered coupling coefficients in all three
cases (bottom graph of Fig. 7).

Figure 8 shows the convergence of the reconstruc-
tion cost functions for all three cases as a function of
iteration count for the data without additional ran-
dom noise (top graph) and with random noise on the
data (bottom graph). We find again that cases C1 and

Fig. 6. (Color online) Reconstructed source and detector coupling coefficients for ln A and �. The results for cases 1, 2, and 3 are scaled
so that they can be compared to common target coefficients (solid curve).
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C2 converge to similar residuals, although at dif-
ferent rates, while in case C3 the residual remains
significantly higher. Similarly, the residuals for the
noisy data are higher than for the noiseless data in
all three cases.

To assess the effect of the coupling reconstruction
on superficial perturbations, a further simulation
was performed on a homogeneous circular mesh with
a single semicircular absorption perturbation of ra-
dius 3 mm located directly under a source site [Fig.
9(a)]. Data without coupling or random noise contam-
ination for 32 source and 32 detector sites were then
generated and used for reconstructions both exclud-
ing and including coupling coefficients. Cross sections
through the target absorption image and both recon-
structed absorption images are shown in Fig. 9(b).
The reconstructed amplitude and phase coupling co-
efficients are shown in Fig. 10. As can be seen in the
case of reconstructing for the coupling coefficients,
the surface perturbation is partly assimilated into
the coupling coefficients, leading to an underestima-
tion of the reconstructed object contrast and spurious

coupling coefficients on the sources and detectors
close to the object. Sometimes this effect of suppress-
ing superficial features in the reconstructed images
will be desirable to suppress boundary artifacts, e.g.,
from local variation in skin pigmentation. However,
in situations where superficial objects must be de-
tected, for example, in optical mammography, where
it is frequently the case that the tumor is located near
the surface, this method is not applicable.

B. Experimental Phantom Data

To test the effectiveness of the coupling parameter
reconstruction with realistic data, reconstructions
were performed with data obtained with an experi-
mental frequency domain instrument19 from a cylin-
drical phantom with embedded inclusions. The effect
of coupling errors was simulated by placing hair be-
tween the phantom surface and the tips of the fiber
optics delivering light from the sources and collect-
ing light at the detectors. Hair is one of the most
likely sources of coupling variations when optodes
are placed on the head for data acquisition in brain
imaging.

Fig. 7. L2 error of reconstructed coupling coefficients as a function
of iteration count for the three cases considered. Top, results from
data without additional random noise. Bottom, results from data
with additional 0.5% Gaussian-distributed random noise.

Fig. 8. Objective functions for the three coupling cases as a func-
tion of iteration count. Top, no additional random data noise (N0).
Bottom, 0.5% Gaussian-distributed random data noise.
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The phantom had a diameter of 70 mm and a
height of 110 mm. It consisted of a homogeneous
background material with �a � 0.01 mm�1 and �s�
� 1 mm�1. One of the two small cylindrical inclusions
had a contrast of �2 in �a, the other a contrast of �2
in �s�. A second, homogeneous cylinder with identical
background parameters was used to obtain baseline
measurement used for difference image reconstruc-
tions.

Sixteen source and sixteen detector fibers were
arranged with equal angular spacing in two rings
around the cylinder mantle above and below the
central plane, as shown in Fig. 11. Only 15 of the
detectors were used because of a technical problem
with one of the detector channels. For each source
the measurements from the four closest detectors
were discarded to reduce boundary artifacts that
can arise as a result of mismatches between model
and measurement data projected into spacially lo-
calized sensitivity regions. This leads to a total of 180
measurements, where each measurement consisted of
the amplitude and phase of the transilluminated sig-
nal, arising from source input amplitude modulated at
100 MHz.

Figure 12 shows a subset of the difference data
vectors between inhomogeneous and homogeneous
phantoms for both log amplitude (top graph) and
phase measurements (bottom graph). It compares the
coupling-free case (no hair under the optodes) with
the coupling case (hair was placed between all fiber
tips and the phantom surface). It can be seen that the
effect of coupling errors is higher in log amplitude
than in phase. For the log amplitude data the effect of
the coupling errors is significantly higher than the
effect of the inclusion. For the phase data the cou-
pling effect is comparable in magnitude to the per-
turbations caused by the inclusions, except for some
spikes on the coupling data for a few measurements.

To construct a forward model, the cylinder was
discretized by a finite-element mesh consisting of
181,278 tetrahedral elements and 35,228 nodes, with
the node density highest at the surface of the mesh.

The initial parameter distributions for the re-
constructions were set to homogeneous values of

Fig. 9. (Color online) Effect of coupling coefficient reconstruction
on the recovery of a superficial perturbation. (a) Target image with
boundary absorption inclusion. (b) Cross sections of the target and
reconstructed absorption images along the line indicated in (a).

Fig. 10. (Color online) Reconstructed coupling coefficients of log
amplitude (top) and phase (bottom) for the superficial inclusion in
Fig. 9.
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�a 
 0.0103 mm�1 and �s� 
 0.807 mm�1. These ini-
tial values were obtained by a global homogeneous
parameter reconstruction from the measurements.

1. Difference Reconstructions
We first consider the case of difference imaging,
where two sets of data, representing two different
states of the probed medium, are acquired, and the
reconstruction recovers the parameter differences. In
this phantom experiment, a baseline measurement
was performed on a homogeneous cylinder that did
not contain the inclusions. The baseline measure-
ment was acquired without coupling contamination,
while the measurements of the inhomogeneous cyl-
inder were obtained both with and without hair un-
der the optodes.

Reconstruction in dynamic imaging is performed
by calculating projection data f�x0� for the initial pa-
rameter estimate x0 and adding the measured differ-
ence data y�inhomog� � y�homog� to obtain a synthetic
absolute measurement y 
 f�x0� � y�inhomog� �
y�homog�. Note that in situations where y�inhomog� and
y�homog� are contaminated with the same coupling co-
efficients, these effects cancel in the difference data,
and the reconstruction of the coupling coefficients is
less critical.

Figure 13 shows cross sections of dynamic recon-
structions of absorption (top row) and scattering
distribution (bottom row) in the central plane of the
cylinder. The left column is a reconstruction from
the inhomogeneous cylinder acquired without hair.
The middle column shows reconstructions from data
with hair but without recovery of the coupling co-
efficients. The right column used the same data for
the reconstruction but also recovered the coupling
coefficients. We find that the effect of coupling con-
tamination of the data leads to a reduction of con-
trast (in the scattering image) and localization (in
the absorption image) if the coupling coefficients
are not reconstructed. The inclusion of the coupling

coefficients in the reconstruction recovers contrast
and localization well although some residual
boundary artifacts in absorption and scattering re-
main.

2. Absolute Reconstructions
Absolute reconstructions from measurement data are
required where no baseline data are available and if
absolute values of absorption and scattering must be
recovered. The same data from the inhomogeneous
cylinder as in the previous section are used, both with
and without coupling contamination with hair.

Cross sections of the reconstructed absolute param-
eter distributions are shown in Fig. 14 for absorption
(top row) and scattering coefficients (bottom row). Be-
cause of the large differences in dynamic range be-
tween the reconstructions, the images were scaled
individually. The images in the left column show the
reconstruction from data without coupling contamina-
tion. Both inclusions are recovered although at lower
contrast and with more artifacts in the background
medium than for the corresponding difference recon-

Fig. 11. (Color online) Phantom setup for experimental data ac-
quisition: location of embedded inclusions and arrangement of
sources and detectors on the surface.

Fig. 12. Subset of 100 measurements of the experimental data
vectors of log amplitude (top) and phase (bottom). Shown are the
data differences between inhomogeneous and homogeneous phan-
tom for the two cases with and without hair under the optodes.
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struction. In particular, the scattering image suffers
from boundary artifacts similar in magnitude to the
recovered target object. The central column of images
shows the reconstruction results from data with cou-
pling coefficients induced by hair under the optodes,

where the coupling coefficients were not reconstructed.
In this case the reconstruction fails entirely with
complete loss of the inclusions, and the appearance
of high-contrast boundary artifacts under individ-
ual optode positions. When the coupling coefficients

Fig. 13. (Color online) Cross sections of reconstruction of absorption (top) and scattering distributions (bottom) from difference phantom
data. Columns from left to right, reconstruction of uncontaminated data, reconstruction of hair data without recovery of coupling
coefficients, reconstruction of hair data with coupling coefficients. Target locations are marked with a black circle.

Fig. 14. (Color online) Cross sections of reconstructions of absorption (top) and scattering distributions (bottom) from absolute phantom
data. Columns from left to right, reconstruction of uncontaminated data, reconstruction of hair data without recovery of coupling
coefficients, reconstruction of hair data with coupling coefficients. Target locations are marked with a black circle.
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are reconstructed (right column), both inclusions
can be recovered well again, although at some loss
of contrast. The absorption object exhibits slight
bleeding toward the boundary, similar to the differ-
ence reconstruction case. Interestingly, the recov-
ery of the scattering inclusion appears improved
compared with the reconstruction from uncontam-
inated data. This may be attributable to the pres-
ence of coupling effects in the experimental system
other than the deliberate effects caused by inserting
hair.

The recovered coupling coefficients are shown in
Fig. 15. It can be seen that the predicted magnitude
of the coupling coefficients is significantly larger than
the influence of the inclusions on the boundary data
(cf. Fig. 12), which explains the large effect of the
coupling reconstructions on the recovered images. To
provide an estimate of the quality of the recovered
coupling coefficients, we compare in Fig. 16 the prod-
uct of the reconstructed source and detector coupling
coefficients with the effect of the hair on the mea-
sured data. The spatial variability of the amplitude

coefficients is reconstructed well. The corresponding
graph for phase coefficients shows a less perfect
match. This is because of greater noise in the phase
measurement and the lack of an explicit cause of
large phase coupling effects in the data. The recon-
struction of the phase coupling coefficients in this
experiment also corrected some residual calibration
errors owing to the low optical power of the calibra-
tion measurements.

5. Conclusions

We have presented a method to address the problem of
reconstruction artifacts in optical tomography arising
from the effects of coupling losses in the complex-
valued measurement data collected by data acquisition
systems. In this context, the term coupling loss com-
bines all types of measurement error that are specific
to individual source and detector sites. This type of
measurement error is well known to be a problem in
optical tomography, in particular where fiber optics
are used for light delivery and where hair under the
optode tips, moisture, or air gaps can lead to atten-

Fig. 15. Source and detector coupling coefficients ln A��, �� (top)
and ���, �� (bottom) recovered during absolute reconstruction of ex-
perimental phantom data.

Fig. 16. (Color online) Effect of hair on the difference data for (a)
log A, (b) phase. Dashed curve is the product of source and detector
coupling coefficients obtained in the reconstruction; solid curve is
the measured difference between clean measurement of the inho-
mogeneous phantom and a measurement where the hair is in
place.
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uation of the detected signal. Other sources of cou-
pling errors not specific to fiber-optic acquisition
systems include differences in power or sensitivity
of individual light sources and detectors. Coupling
errors are difficult to quantify and therefore cannot
generally be incorporated into the forward model.
Instead, the coupling coefficients are treated as un-
knowns and appended to the solution space.

The method presented here considers coupling er-
rors in both amplitude and phase data, which are
reconstructed simultaneously with the volume distri-
butions of absorption and diffusion coefficients.

We have shown reconstructions from simulated 2D
data, which were contaminated with synthetic cou-
pling errors, and demonstrated that the reconstruc-
tions can be improved significantly even in severe
cases where the level of coupling errors causes a con-
ventional reconstruction to fail entirely.

The algorithm was then applied to experimental
phantom data where coupling errors were simulated
by placing hair between the phantom surface and the
fiber tips of source and detector fiber optics. We have
performed reconstructions from both difference data
and absolute reconstructions and demonstrated that
in both cases the inclusion of the coupling coefficients
in the reconstruction can lead to improvements that
reduce artifacts and restore the ability to recover the
inhomogeneities in optical coefficients.

The authors acknowledge grant support from the
Engineering and Physical Sciences Research Council,
grants GR�N148�01 and GR�S48837�02, and from
the Medical Research Council.
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