where the first term enforces the fit of the solution to the
measured fluence, the second enforces a constraint based
on an a priori assumption about how a reasonable solu-
tion should behave, and A is called the regularization pa-
rameter and governs the tradeoff berween the two terms.
Typically R is a norm or the norm of a derivative so as to
penalize solutions that are too large or too rough.
Choosing the value of A is often critical and sensitive, and
there is a vast literature on this topic (sec [66], for in-
stance, for a discussion). Regularization-type formula-
tions can be posed in a variety of optimization
frameworks and thus solved by a corresponding variety of
optimization methods. Statistical modeling is important
to accurately deal with the differing types of noise sources
and can also provide an alternative formulation for regu-
larization. Parametric modeling, in particular of the geo-
metric structure of the reconstruction, can serve to reduce
or climinate under-determinedness and ill-poscdness as
well as to provide attractive new formulations for con-
straints for regularization. Our discussion must necessar-
ily be brief and omits many contributions. We emphasize
recent work and organize the presentation into three gen-
eral themes: new approaches to reconstruction with lin-
car models, new formulations of forward models for
inverse solutions, and two novel approaches based on sta-
tistical regularization and parametric geometric represen-
tations, respectively.

Reconstruction with Linear Models

In linear regularization, the functional relationship s, )
in (5) is approximated as a matrix, s, ) = Hy, . Inaddi-
tion to the wide use of common linear models, since many
nonlinear methods are essentially an iterative succession
of solutions to updated linearizations, lincar regulariza-
tion may play a role in nonlinear formulations as well.
Standard approaches to regularization of linear-model
DOT reconstruction have been reported using a variety
of techniques, including the ART, SIRT, and SART alge-
braic algorithms common in tomography [89]-[91] and
subspace algorithms such as truncated singular value de-
composition (TSVD), truncated conjugate gradient
(TCG), and regularized total least squares [92]-[95]. A
direct comparison of ART, SIRT, TSVD, and TCG fora
reflection geometry was reported in [81]. One variation
on regularization that has been applied to DOT is to al-
low the relative weight given to the two error terms to
vary with space [96], in other words to weight the data
more in some locations and the constraint more in others.
The goal is to combat reconstruction artifacts which com-
monly occur near the source and detector locations, as il-
lustrated in Fig. 4. Another method to achieve a
“regularization-like” objective is to formulate the recon-
struction as an admissible solution problem, where each
constraint (including one on the difference between for-
ward-projected “data estimate” and the measured
fluence) is seen as describing a constraint set in the solu-
tion space. An admissible solution is then one which
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meets all constraints being employed. Such problems can
be placed in an optimization context and, if the class of
constraints employed is restricted to be convex, solved by
convex optimization techniques. Both projection on con-
vex sets (POCS) [92] and the ellipsoid algorithm [97]
have been tested for DOT. Using either these approaches
or more direct regularization, a number of nonstandard
constraints have been applied on reconstructions, includ-
ing positivity of the reconstructed absorption
inhomogeneity or limitation of the magnitude of its devi-
ation from the background [89], [90], [93], [97],
rescaling of the forward matrix as a normalization con-
straint [93], [98], and a total variation-type constraint
[97] to attempt to concentrate the inhomogeneity in a
small number of regions. Finally, three quite different at-
tempts to solve linearized problems have been reported
recently, all of which derive new analytic representations
of the problem. One, for the time-domain problem, uses
an “elliptic systems method” for solving a differential ver-
sion of the diffusion equation [99], [100]. The other two
use a reformulation of the solution as a Fourier-Laplace
cquation [101], [102] or derive an analytic SVD of the
forward operator [103].

Forward Modeling for Inverse Solutions

As described carlier, the two key issues in forward model-
ing for DOT inverse solutions are the use of the diffusion
equation to approximate the transport equation and
treating the nonlinearity of the diffusion equation. Two
scenarios in which the diffusion equation approximation
itself may break down are when source-detector separa-
tions are small in comparison with the mean transport
length, which is not gencrally a concern in DOT imaging,
and when the tissue region of interest contains
nondiffusing regions, as for CSF in brain imaging [80],
[104]. Two approaches to this problem have been re-
ported recently. One [ 76] attempts to model directly the
transport equation, but the computational difficulties are
nontrivial. The other attempts to fuse two distinct for-
ward models, each applied to an appropriate subregion,
the diffusion equation for turbid regions and a radiosity
approach, which uses a straight-line ray propagation
model, in clear regions.

The limitations of linearized perturbative models
when inhomogeneities are large in size or amplitude is
well known [87]. One approach to nonlinear inverse so-
lutions has been based on extensions of the Born and
Rytov approaches such as iterative Born and distorted
Born [105]-[108], which perform an iterative sequence
of lincarizations by updating the background model, a
Green’s function-based propagation model, or both. An
interesting feature of [ 108] is that by careful derivation of
the appropriate Frechet derivative, needed to update the
Green’s function, the authors found a particular weight-
ing of the current estimate of the unknowns used to up-
date the model. Recent work by Boas et al. [109] reports
on expansion of the forward model to include as
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A 4. Reconstruction examples for four linear reconstruction techniques at 20 dB SNR. Panel (a) shows computational volume with loca-
tion of inhomogeneity, and (b) shows a vertical slice through the center of the true image. Each subsequent image shows the same
vertical slice through a reconstruction using the following algorithms: (c) the ART algorithm, (d) the SIRT algorithm result, (e) the

TSVD algorithm, and (f) the TCG algorithm.
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unknowns the “coupling coefficients™ that model the effi-
ciency of transfer of light from source to tissue and from
tissue to detector. These coefficients are multiplicatively
related to the detected fluence, so that even a linear model
becomes nonlinear, but by use of the Rytov approxima-
tion (which employs a logarithmic transformation of an
exponential model of the perturbation relationship) they
become linear and can be incorporated within a linear re-
construction method. Another variation is to include
fluence from more than one illumination wavelength
(since at least two are required to determine chromo-
phore concentrations) into a joint inverse problem and
estimate the results simultaneously, taking advantage for
instance of similarities in spatial structure [110].

Statistical and Parametric Inverse Models

When a statistical prior model is assumed for the unknown
parameters, a Bayesian maximum a pc steriori (MAP) solu-
tion has formal similarity to a regularization solution, but
offers extended possibilities for both algorithms and mod-
eling. In [61], Eppstein et al. use this approach to pose the
reconstruction as an extended Kalman filter, a scheme
which they originally developed for geohydrology. They
impose upper and lower limits on the prior probabili-
ties via a transformation from a true beta density to a
more tractable Gaussian approximation and reduce the
number of unknowns at each iteration by grouping like
voxels together into a large voxel with the same proper-
ties, thus ameliorating the under-determinedness.

The latter goal, reducing the number of unknowns,
has also been the goal of recent work based on a sparse
parameterization of the reconstruction domain. Two
groups have published articles in this area, with similar
but distinct approaches [111]-[115]. These methods di-
vide the tissue region into background regions and
inhomogeneities, assume that both the background and
inhomogeneities can be modeled by some low-order vari-
ation (i.e., constant, linear, etc.), and assume that the
boundaries of the regions are either known or can them-
selves be expanded as a small set of basis functions (trigo-
nometric or B-spline polynomials). Thus the unknowns
are reduced from the parameters of interest at every voxel
to the coefficients of the background and inhomogeneity
models and the location of the boundaries.

Some Examples of DOT Reconstructions

Below we present some reconstruction results drawn
from our work, illustrating aspects of the discussion
above. These are not intended to be a comprehensive pre-
sentation of the state-of-the-art, but rather to give the
reader a visual impression of the abilities, limitations, and
possibilities of some current apprc vaches.

To illustrate the possibilities and problems of stan-
dard regularized DOT reconstructions, in Fig. 4 we
show a particular simulated computational volume in a
reflection imaging scenario with an absorption
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A 5. Comparison of the use of nonstandard constraints on the solu-
tion is shown, using an admissible-solution optimization ap-
proach in a 2-D absorption inhomogeneity simulation model. The
upper left panel shows the true distribution of the absorption co-
efficient, the upper right shows a TSVD reconstruction, and the
lower left shows an admissible solution reconstruction using con-
straints on the residual of the scattered fluence and the total vari-
ation and max and min deviations of the absorption.
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inhnnmgcncit_\' as shown (for derails, see [81]), along
with reconstructions using four linear methods (ART,
SIRT, TSVD, and TCG) at 20 dB SNR. Although the
subspace methods are better able to reconstruct the ob-
ject than the algebraic methods are, the reconstructions
nonetheless suffer from artifacts (mostly near the sur-
face) and underestimation of amplitude and depth. To
illustrate the improvements possible with some of the
methods described above we present results from 2-D
simulations using two of the different approaches we
have described. The first, using an admissible solution
formulation and the ellipsoid algorithm, and employing
total variation and max and min deviation constraints
[97], is shown in Fig. 5, compared to TSVD. The ability
of the additional constraints to suppress many of the ar-
tifacts in the reconstruction can be seen in the figure. In

Fig. 6 we present a 2-D example of a parametric basis
function approach, in which the region is modeled as
consisting of a constant background with constant in-
homogeneity, and the inhomogeneous region is
bounded by a B-spline curve. The values of the absorp-
tion in each region and the shape of the boundaries are
found through iterative updates which are locally opti-
mal. The improvement over TSVD is illustrated in the
figure, and objective measures such as mean square error
confirm the result. Details can be found in [115

We also present one example of reconstruction from
measured data using a phantom built at MGH and the re-
construction scheme outlined above for recovering both
coupling and absorption coefficients. The phantom con-
sisted of a highly scattering solution of Intralipid [116]
mixed with India ink to produce optical properties of
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A 6. A 2-D example of a shape-based reconstruction. The upper left panel shows the true model of the inhomogeneity. The upper right
panel shows a truncated SVD reconstruction, while the lower left panel shows a shape-based reconstruction. The lower right panel
shows the outline of the true object along with the initial guess at the outline and the final outline reconstructed by the shape-based
method. In all four panels the x and y axes are marked in centimeters.
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p, =5cm™” and p, =0025 cm™. Thirty sources were
placed on one XY boundary of the phantom at z=0, while
nine detectors were placed on the other XY boundary at
z=>5.1 cm. The sources and detectors spanned 8 x 10 cm
in the XY planes. A spherical absorber (4, >02 cm™)
with a diameter of 2 cm with the same scattering as the
background medium was centered in the phantom. The
arrangement of the source and detectors relative to the
absorbing sphere are shown in Fig. 7(a). Note that this
imager is different from the one pictured carlier. Mea-
surements were made with an RF system, 830 nm illumi-
nation wavelength and 70 MHz intensity modulation,
and both amplitude and phase of the detected signals
were measured. Three-dimensional images were recon-
structed from the 270 independent measurements. Fig.
7(b) shows the image reconstructed from the actual mea-
sured fluence with an approximate calibration of the
source and detector amplitudes made prior to the phan-
tom experiment. The absorbing object can be discerned
within the center of the image, but it is overshadowed by
large amplitude fluctuations near the source and detector
lanes. These artifacts near the surfaces result from errors
in the calibration. In Fig. 7(c) we show a reconstruction
from the same data after including the coupling coefti-
cients of each source and detector in the inverse problem.

Conclusions

As both imaging technology and our understanding of
the physical modeling of propagation of scattered light
have developed over the last decade, DOT has become in-
creasingly able to take advantage of sophisticated signal
processing for both acquisition and reconstruction. The
current challenge is twofold: in the near-term the chal-
lenge is to provide compelling evidence of its potential on
clearly relevant applications such as detection of breast tu-
mors and functional imaging of the brain. In parallel with
this effort, in the longer-term the challenge is to develop
better imaging devices, physical models, inverse recon-
structions, and associated efficient algorithms, to extract
the information which the multiply-scattered light is now
known to possess. In particular, we believe there may be a
role to play for many sophisticated image reconstruction
and signal modeling techniques developed in the signal
processing community for other purposes. Careful atten-
tion must be paid, however, to the integration of such
techniques with appropriate models of light propagation
to achieve useful and reliable results.

Acknowledgments

This work was supported in part by CenSSIS, the Center
for Subsurface Sensing and Imaging Systems, under the
Engineering Rescarch Centers Program of the National
Science Foundation (NSF) (Award Number
EEC-9986821). David A. Boas and Quan Zhan acknowl-
edge financial support from Advanced Research Technol-

NOVEMBER 2001

(a)

M lerbee o) 200 My LInBorefde, To 001 M, Selbdred0h In |01 M Lore e 0 20 L1

(b)

., i
o ] s .
.
“omng [TR] y
i " i

wdnidntar i dubditen wet e

IEEE SIGNAL PROCESSING MAGAZINE

A 7. A diagram of the configuration of a phantom with 30
sources, nine detectors, and the absorbing sphere is shown in
(a). All reconstructions in panels (b) and (c) are done using
data measured by this experimental setup. The sequence in
panel (b) shows an absorption image reconstructed without
source/detector amplitude fitting. XY slices are shown at differ-
ent z levels. Axes are labeled in centimeters. The sequence in
(c) shows the same image reconstructed simultaneously with
the source/detector amplitude factors.
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