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We consider the transport of the electric field temporal autocorrelation in heterogeneous, fluctuating
turbid media. Experiments are performed in strongly scattering media with spatially separated static
and dynamic components, and low resolution “dynamical” images of such media are obtained using
autocorrelation measurements of the emerging speckle fields taken along the sample surface. Our
analysis, based on a diffusion approximation to the field correlation transport equation, reveals that the
field correlation scatters from macroscopic dynamical heterogeneities within turbid media.

PACS numbers: 82.70.Dd, 82.70.Kj, 82.70.Rr, 87.59.—

For many years dynamical information about materi-
als has been extracted from the temporal fluctuations of
scattered light fields. Most experiments of this nature [1]
are carried out in optically thin materials that scatter inci-
dent photons no more than once. More recently there has
arisen a growing interest in the properties of diffusing light
fields emerging from turbid media [2-4]. A particularly
robust example of these developments is the technique of
diffusing-wave spectroscopy (DWS) [3,4], where the tem-
poral correlation functions of diffuse speckle fields have
provided new information about fundamental motions in
homogeneous turbid colloids [5], foams [6], and emulsions
[7]. Thus far, DWS has only been considered in the con-
text of uniform, strongly scattering media. Clearly it is
desirable to probe turbid media possessing more complex
structures. For example, in the biophysics community sim-
pler properties of diffusing photons, such as the refraction
and diffraction of diffuse photon density waves, are now
used to generate low resolution images of static absorption
and scattering variations within heterogeneous tissues [2].

In this paper we consider the diffusion of the temporal
field correlation itself through heterogeneous turbid me-
dia. We show that the transport of diffusive temporal field
correlation through a medium consisting of spatially dis-
tinct static and dynamic parts can be viewed as a scattering
process, and we experimentally demonstrate that position-
dependent measurements of the diffusing light field tem-
poral autocorrelation function can be used to reconstruct
images of the spatial variation of dynamical properties
within the medium. Besides its intrinsic interest as a new
phenomenon, the scattering of diffusive temporal field cor-
relation offers an unexplored contrast mechanism for imag-
ing within heterogeneous turbid media such as tissue, and
provides experimenters with a better framework for the in-
terpretation of correlation functions from more complex,
spatially heterogeneous colloids, foams, and emulsions.

The theoretical basis of our approach may be derived
from the linear transport equation for field correlation re-
cently presented by Ackerson et al. [8] or by field theo-
retic methods [3]. Both methods are valid for scalar fields.
Within the P; approximation [9—11], the correlation trans-
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port equation reduces to the following steady-state diffu-
sion equation for field correlation in homogeneous turbid
media such as a dense colloid,

(=D, V? + vp, + 2uDpk{T/1")Gi(r,7) = S(r). (1)

Here G(r,7) = (E(r,t)E*(r,t + 7)) is the unnormalized
temporal electric field autocorrelation function at the posi-
tion r within the sample, D, = v[*/3 is the photon diffu-
sion coefficient within the sample, [* is the photon random
walk step, w, is the absorption coefficient, and v is the
speed of light in the medium. The (- --) denote an ensem-
ble average or, in the case of an ergodic system, an aver-
age over time ¢. Dp is the particle diffusion coefficient
within the medium, kg is the wave number of the light in
the medium, and 7 is the correlation time. The source light
distribution is given by S(r). Equation (1) is expressed
equivalently as the diffusion pole of the two point correla-
tion function of the light electric field in Ref. [3].

Before introducing the experiment we briefly discuss
two simple solutions to Eq. (1). We first observe that
Eq. (1) can be recast as a Helmholtz equation for the field
correlation function, i.e.,

V2 + KXGi(r,7) = == 82 = 1), @)
¥

where K2(7) = —v(u, + 2D3k§7'/l*)/D7. Here we
have taken the light source to be pointlike, and located at
position r;. Note that 2D3k(2,7' /1" is a loss term similar to
Ma. While p, represents losses due to photon absorption,
2D3k§ 7/1* represents the “absorption” of correlation due
to dynamic processes. When 7 = 0 there is no dynamic
absorption and Eq. (2) reduces to the steady-state photon
diffusion equation [2].

For an infinite, homogeneous system with no photon
absorption (i.e., u, = 0), the solution to Eq. (2) has the
well known form G(r,7) = S exp(—+/6Dgkj7/I** |r —
rs|)/4mDyIr — ry|. The same solution has been derived
from the scalar wave equation for the electric field propa-
gating in a medium with a fluctuating dielectric constant
[3], and within the context of diffusing-wave spectroscopy
[4]. In contrast to these two approaches, the correlation
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diffusion equation provides a simple framework for con-
sidering turbid media with large scale spatially varying
dynamics, that is, media where Dg = Dp(r).

The second simple solution is for a medium which is
homogeneous in all respects except for a spherical region
(with radius a) characterized by a different value of Dg
than the surrounding medium. The analytic solution of
the correlation diffusion equation for this system reveals
that the measured correlation function outside the sphere
can be interpreted as a superposition of the incident
correlation plus a term which accounts for the scattering
of the correlation from the sphere, i.e.,

S expliK®"(7) Irg — r4l]
4D, |rg — ryl

G''(rs,ry, 7) =

+ S AHDEK Y )Y0.4). (3)

1=0

Here, H,(l) are Hankel functions of the first kind and
Y ,O (0, @) are spherical harmonics [12]. The coefficient A;
is the scattering amplitude of the /th partial wave and is
found by matching the appropriate boundary conditions
on the surface of the sphere [13]. This solution has
been discussed in detail for diffuse photon density waves
[14]. By viewing the perturbation of temporal correlation
as a scattering process, simple algorithms adapted from
scattering theory can be applied to reconstruct images of
spatially varying dynamics in turbid media.

We demonstrate the scattering of temporal correlation
by a dynamical inhomogeneity in an experiment shown
in Fig. 1. In this experiment, the temporal intensity
correlation function is measured in remission from a semi-
infinite, highly scattering, solid slab of TiO, suspended
in resin (Dp = 0). The slab contains a spherical cavity
filled with a turbid, fluctuating suspension of 0.296 um
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FIG. 1. The 514 nm line from an argon ion laser (operated
at 2.0 W with an etalon) is coupled into a multimode fiber
optic cable and delivered to the surface of a solid slab
of TiO, suspended in resin. The slab has dimensions of
15 X 15 X 8 cm. A spherical cavity with a diameter of 2.5 cm
is located 1.8 cm below the center of the upper surface. The
cavity is filled with a 0.2% suspension of 0.296 um diameter
polystyrene spheres at 25 °C resulting in /* = 0.15 cm, u, =
0.002 cm™!, and D = 1.5 X 1078 cm?/s. For the solid, [* =
0.22 cm and p, = 0.002 cm™~'. A single-mode fiber collects
light at a known position and delivers it to a photomultiplier
tube (PMT), whose output enters a digital autocorrelator to
obtain the temporal intensity correlation function. The temporal
intensity correlation function is related to the temporal field
correlation function by the Siegert relation [4]. The fibers can
be moved to any position on the sample surface.
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FIG. 2. Experimental measurements of the normalized tem-
poral field autocorrelation function for three different source-
detector pairs are compared with theory. With respect to an
x-y coordinate system whose origin lies directly above the cen-
ter of the spherical cavity, the source-detector axis was aligned
parallel to the y axis with the source at y = 1.0 cm and the
detector at y = —0.75 cm. Keeping the source-detector sepa-
ration fixed at 1.75 c¢m, measurements were made at x = 0.0,
1.0, and 2.0 cm, and are indicated by the ¢’s, +’s, and *’s,
respectively. The uncertainty for these measurements is 3%
and arises from uncertainty in the position of the source and
detector. The solid line was calculated using the known ex-
perimental parameters (see Fig. 1). Note that larger and more
rapid decays are observed when the source and detector are
nearest the dynamic sphere. Here the largest fraction of de-
tected photons have sampled the dynamic region.

polystyrene balls (D = 1.5 X 1078 cm?/s) [15]. In
Fig. 2 we plot the measured decay of the normalized
temporal field correlation function, g,(7) = (E(t)E*(t +
7))/{|E])?, for different source-detector positions and
compare these results to theoretical predictions based on
Eq. (3). The agreement between experiment and theory
is good, supporting our view that correlation “scatters”
from spatial variations of the particle diffusion coefficient
[Dp(r)] within the medium. In general, correlation will
scatter from spatial variations in the absorption [u,(r)],
the photon random walk step [/*(r)], and the dynamic
[Dg(r)] properties of turbid media.

Since the perturbation of correlation by inhomogeneities
can be viewed as a scattering process, one can envi-
sion the application of tomographic algorithms for the
reconstruction of images of spatially varying dynamics
[16]. We have investigated this possibility. Our inver-
sion algorithm, one of several possible schemes [16,17],
is based on a solution to the correlation diffusion equa-
tion, Eq. (1), generalized to include spatially varying dy-
namics, i.e., Dgp = Dg(r). For simplicity, we assume
here that the medium has homogeneous [* and w,. We
seek a solution of the form G (rs,ry, 7) = G?(rs, ry,7) X
exp[®,(ry, ry, 7)], where G)(rs, ry, 7) is the solution of the
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correlation diffusion equation in the absence of dynami-
cal heterogeneities and ®(ry,ry, 7) accounts for the ef-
fects of the presence of those heterogeneities. Within the
Rytov approximation [17], we obtain an integral equation
relating @, (r,, ry, 7) to the spatial variation of Dp, i.e.,

6k3 T

D (rg,ry,7) = — ————
o{r T 122G (ry, vq, 7)

X [d3r’H(r’,rd,7')G?(rs,r’,T)8DB(r').

)

Here, H(r',ry,7) is the Green’s function for the ho-
mogeneous correlation diffusion equation and 8Dp(r)
represents the spatial variation in the particle diffusion co-
efficient relative to the background value. The position of
the source (detector) is ry (ry).

In Fig. 3 we present an experimental image of Dg(r).
There are many techniques that can be employed to invert
Eq. (4) [16,17]. Our image of Dp(r) was reconstructed
from ~600 measurements of the scattered correlation func-
tion, U,(ry,ry, 7), using 400 iterations of the simultane-
ous iterative reconstruction technique [17]. The sample
medium consisted of a solid cylinder of TiO, suspended in
resin. The cylinder was homogeneous except for a 1.3 cm
diameter spherical cavity which was filled with an aqueous
suspension of 0.296 um polystyrene balls and centered at

= 0 (the z axis is the axis of the cylinder). Measure-
ments were made every 30° at the surface of the cylinder
for z = 0, 1, and 2 cm, with source-detector angular sepa-
rations of 30° and 170° and correlation times of 7 = 15,
25, 35, 45, 55, 65, 75, and 85 us. The z = O slice of the
image is shown in Fig. 3(b). From this image the center
(in the x-y plane) of the dynamic region and the magnitude
of the particle diffusion coefficient are determined. The
center of the object in the image is within 2 mm of the ac-
tual center of the dynamic sphere. This discrepancy scales
with the uncertainty in the position of the source and detec-
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FIG. 3. An image reconstructed from experimental measure-
ments of the scattered correlation function is shown in (b).
The system was a 4.6 cm diameter cylinder with [* = 0.25 cm,
Mme = 0.002 cm™!, and Dz = 0 [see illustration in (a)]. A
1.3 cm diameter spherical cavity was centered at x = 0.7 cm,
y = 0, and z = 0 and filled with a colloid with [* = 0.25 cm,
e =0.002cm !, and Dy = 1.5 X 107% cm?/s. A slice of
the image at z = O cm is presented in (b). The values of the
reconstructed particle diffusion coefficients are indicated by the
legend in units of cm?/s.

tor. The sphere diameter (~1.3 cm) and particle diffusion
coefficient (~1.8 X 1078 cm?2/s) obtained from the imag-
ing procedure also agree reasonably well with experimen-
tally known parameters (1.3 cm and 1.5 X 1078 cm?/s).

The calculations and experiments described thus far
demonstrate the diffusion and scattering of correlation
in turbid samples where the dynamics are governed by
Brownian motion. The correlation diffusion equation can
be modified to account for other dynamical processes as
well, such as shear flow and random flow. In the case of
random particle flow, K2(7) is decreased by an additional
factor k3(V2)72/1*?, where (V?) is the second moment
of the particle speed distribution (assumed Gaussian)
[18]. Flow in turbid media is an interesting problem
that has received some attention. In these measurements
experimenters typically determine a correlation function
that may be a compound of many decays representing
a weighted average of flow within the sample. For
example, Bonner and Nossal have developed an approach
for measuring random blood flow in homogeneous tissue
[18], Wu et al. have applied DWS to study uniform shear
flow [19], and Bicout and co-workers have applied DWS
to study inhomogeneous flow and turbulence [20]. In
all cases, a priori knowledge of the flow is used in the
analyses. We expect that the application of correlation
diffusion imaging will further clarify information about
heterogeneous flows in turbid media.

In conclusion, we have shown that the transport of
temporal correlation through heterogeneous turbid media
can be viewed as a scattering of diffuse correlation.
This concept has been demonstrated experimentally in
the context of both forward and inverse problems. We
anticipate these observations will stimulate further studies
of dynamical variations in heterogenous complex fluids.
In medical optical imaging this approach offers another
contrast mechanism for the identification of calcified
tumors, skeletal structures, ischemia, and blood flow.
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FIG. 3.  An image reconstructed from experimental measure-
ments of the scattered correlation function is shown in (b).
The system was a 4.6 cm diameter cylinder with /* = 0.25 cm,
e = 0.002cm™ ', and Dy = 0 [see illustration in (a)]. A
1.3 cm diameter spherical cavity was centered at x = 0.7 cm,
v =0, and z = 0 and filled with a colloid with /* = 0.25 cm,
e =0.002cm™', and Dg = 1.5 X 107% cm?/s. A slice of
the image at z = 0 cm is presented in (b). The values of the
reconstructed particle diffusion coefficients are indicated by the
legend in units of cm?/s.



