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Abstract 
 

Detecting people in images is a challenging task because of the variability in clothing and 
illumination conditions, and the wide range of poses that people can adopt. To discriminate the 
human shape clearly, Dalal and Triggs [1] proposed a gradient based, robust feature set that 
yielded excellent detection results. This method computes locally normalized gradient 
orientation histograms over blocks of size 16×16 pixels representing a detection window. The 
block histograms within the window are then concatenated. The resulting feature vector is 
powerful enough to detect people with 88% detection rate at 10-4 false positives per window 
(FPPW) using a linear SVM. The detection window slides over the image in all possible image 
scales; hence this is computationally expensive, being able to run at 1 FPS for a 320×240 image 
on a typical CPU with a sparse scanning methodology. 

Due to its simplicity and high descriptive power, several authors worked on the Dalal-Triggs 
algorithm to make it feasible for real time detection. One such approach is to implement this 
method on a Graphics Processing Unit (GPU), exploiting the parallelisms in the algorithm. 
Another way is to formulate the detector as an attentional cascade, so as to allow early rejections 
to decrease the detection time. Zhu et al. [2] demonstrated that it is possible to obtain a 30× 
speed up over the original algorithm with this methodology.  

In this thesis, we combine the two proposed methods and investigate the feasibility of a fast 
person localization framework that integrates the cascade-of-rejectors approach with the 
Histograms of Oriented Gradients (HoG) features on a data parallel architecture. The salient 
features of people are captured by HoG blocks of variable sizes and locations which are chosen 
by the AdaBoost algorithm from a large set of possible blocks. We use the integral image 
representation for histogram computation and a rejection cascade in a sliding-windows manner, 
both of which can be implemented in a data parallel fashion. Utilizing the NVIDIA CUDA 
framework to realize this method on a Graphics Processing Unit (GPU), we report a speed up by 
a factor of 13 over our CPU implementation. For a 1280×960 image our parallel technique 
attains a processing speed of 2.5 to 8 frames per second depending on the image scanning 
density, with a detection quality comparable to the original HoG algorithm. 
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Chapter 1 

Introduction 

 
This thesis addresses the problem of object detection from images, in particular the detection of 

people. Even though this is a challenging task, the existence of various practical applications of 

person localization has made this field a well studied computer vision topic. As digital cameras 

become more wide spread, the volume of available data to digital camera owners reach such a 

point that digital content management presents itself as a problem. In order to automatically add 

tags to images to help classify the content thus has become an important research goal. Further, 

in a surveillance setting, it is of interest to detect and track people in order to monitor their 

activities. From yet another point of view, locating people in digital images might be a useful 

feature in a digital camera, which can enable automatic adjustment of imaging parameters of the 

device. Considering that many digital camera brands now include face detection routines as a 

built-in feature, it is conceivable that a reliable person detector can also be incorporated in future 

devices. 

More importantly, a person detector can be employed in a computer vision based collision 

prevention system in a vehicle. Such a system can either warn the driver when a collision is 

imminent, or may directly control an automatic breaking system. However, there are several 

obstacles that may stand in the way of this idea from being implemented in vehicles. Even 

though a computer vision based realization would consist of cheap components such as digital 

cameras and image processing chips, it would eventually come at some additional cost to the 

manufacturer. If the collision prevention / warning system does not become an official 

requirement, then it might be a difficult for it to find wide spread use. Also, if the 

aforementioned system cannot satisfy a certain detection versus false positive rate requirement, it 
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might result in unwanted warnings that can distract the driver. More importantly, if the vision 

system is employed in a collision prevention framework that can actively control the vehicle’s 

brakes, false positives may even cause traffic accidents, rather than preventing them. Therefore, 

if such a system is to be used in an on-board application, it should achieve low false positive 

rates at given detection rates.  

As drivers have limited response speed to stimuli, they need to have ample time to react when 

a dangerous situation arises. Therefore, a collision warning system that relies on computer vision 

needs to be able to operate in real time to provide a reaction time margin to the driver. The same 

consideration applies to a prevention system, since it has to make decisions on time based on the 

situation at hand. 

We can summarize the previous criteria by stating that a person detector needs to be reliable 

(e.g. it should have low false positive and high detection rates) and should be able to operate in 

real time. The gradient based, robust feature set that Dalal and Triggs [1] proposed manages to 

discriminate the human shape clearly, and yields excellent detection results. Thus, it satisfies the 

first criterion. Their method uses a sliding-window strategy to sequentially consider each 

detection window within the image. The descriptor used for classification is based on computing 

locally normalized gradient orientation histograms over small blocks. When the block histograms 

are concatenated to form a feature vector for each window, a linear SVM classifier is sufficient 

to achieve detection rate of 88% at 10-4 false positives per window (FPPW). To search for all 

people across scales, the image is gradually downscaled and all scales are evaluated. As common 

to sliding-window based detectors, the Histograms of Oriented Gradients (HoG) method suffers 

from high computation times. Even with a sparse scanning methodology, it can process a 

320×240 image at a rate of only 1 FPS on a standard CPU, hence failing to satisfy the second 

criterion. 

In this thesis, we investigate a data parallel approach to speed up the HoG algorithm. Our 

method is inspired by the seminal face detector of Viola-Jones [4] and the cascade detector of 

Zhu et al. [2]. The common point of these works is to formulate the classification task as a 

combination sub-tasks that get progressively more complex. Each sub-task focuses on evaluating 

correctly the examples that the combination of all previous sub-tasks fails to classify. This 

cascade representation decreases the overall detection time significantly by spending very little 

time on detection windows that are easy to evaluate (which constitute the majority of the image), 
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and by using more computational resources on harder detection windows (which are a small 

minority in the input). 

 The underlying data structure that makes feature evaluation for the cascade-of-rejectors type 

detectors very efficient is the notion of the integral image. The Viola-Jones detector uses Haar-

like wavelets that depend on sums of rectangular pixel areas. When HoG features are employed 

in the cascade, the integral image can be again used, by converting each histogram bin to an 

integral image referred to as the integral histogram.  

In addition to the speed up in detection time obtained with the cascade formulation and the 

integral image idea, we propose to exploit a second level of performance gain: parallelism. We 

can identify two sources of parallelism in the case of the cascade detector that utilizes HoG 

features. First, since the detector evaluates each detection window independently of the others, 

these windows can be classified in parallel. Second, it is possibly to implement integral image 

computation by using the work-efficient, parallel algorithm called parallel prefix sum. This 

algorithm can be utilized to sum the rows of the input image rapidly. Since we can sum each row 

separately, we can add a second dimension of parallelism to our implementation.  

In our work, we use the NVIDIA CUDA framework to realize these ideas. CUDA is the 

computing platform in NVIDIA graphics processing units that enables the developers to code 

parallel algorithms through industry standard languages. The CUDA programming model acts as 

a software platform for massively parallel high-performance computing by providing a direct, 

general-purpose C language interface ‘C for CUDA’ to the programmable multiprocessors on the 

GPUs. When implemented on this platform, we observed a significant speed up in our cascade 

detector’s performance. 

 

The contributions of this thesis include: 

 A quantitative comparison of different versions of the Dalal-Triggs algorithm in terms 

of detection speed and accuracy. 

 Demonstrating that integral images can be computed efficiently on graphics processing 

units. We present computation performances faster by a factor of 3 to 4 relative to 

similar previous results. 

 We present a detailed study of the first (to our knowledge) parallel implementation of 

cascade-of-rejectors type detectors. Even though this type of detectors does not fit well 
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in the GPU memory model, we do manage to obtain a 13× speed-up relative to our 

CPU implementation. 

 

The organization of this thesis is as follows. In the following chapter we provide a brief 

background on person detection and review previous work. In Chapter 3 we detail the Dalal-

Triggs algorithm and present example detection results obtained with our implementation of this 

method. We continue by considering two different versions of this approach, and observe how 

they differ from the original one. In Chapter 4, we describe the published GPU implementations 

of the Dalal-Triggs algorithm. Chapter 5 provides details about our cascaded HoG detector, and 

compares results with [1] and [2]. Efficient parallel algorithms for integral image computation 

are presented in Chapter 6. The real-time realization of the cascade detector on the GPU is 

discussed in Chapter 7, and we conclude with Chapter 8 by summarizing our results. 
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Chapter 2 

Background 

 
Thanks to its numerous application fields, object detection has been a well studied research topic. 

There is an extensive literature on object detection, and [5] gives an elegant survey on this topic. 

The proposed techniques can be classified according to 
 

 Generation of initial object hypothesis, 

 The features and descriptors they extract from the input, and 

 The classifiers that they employ to evaluate theses features. 
 

By following [13] and [5], we review the literature relevant to our work according to these 

guidelines. Section 2.1 presents object detection methods based the way they obtain the initial 

object location hypothesis. Section 2.2 discusses some of the important features used in object 

detection. Section 2.3 covers the object detectors according to the classification frameworks they 

utilize.  

 

2.1 Region of Interest (ROI) Selection  

One way to generate the initial object location hypotheses is by sliding a detection window over 

the image. To account for objects of different sizes, each image scale needs to be considered 

separately. Depending on the scanning density in space and scale, the number of hypotheses 

generated will differ. Since a typical image would typically contain thousands of detection 

windows, the computational costs are often too high to allow real time processing [1, 6, 17] for 

methods of this type. It is possible to obtain significant performance benefits by expressing the 
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detector as an attentional cascade [2, 8, 14]. Another way to alleviate the high computational 

costs is to reduce the search space by imposing certain constraints on the detector, such as using 

the object aspect ratio or the knowledge about camera geometry [18, 19].  

It is also possible to generate initial object hypotheses by extracting features from the whole 

input image. A common way to achieve this is to include object motion in the detection scheme. 

In a surveillance setting, it is possible to model the background as a mixture of Gaussians and 

obtain the foreground by subtraction [20]. However, the static modeling of the background 

cannot be employed in situations where the camera itself is in motion. To generalize to these 

cases, optical flow techniques can be used [21] to compute the deviation from the estimated ego-

motion field [18]. 

 

2.2 Features and Descriptors 

There is a vast literature on using salient points or regions to obtain a sparse representation of a 

given image. Such approaches extract certain local image features, which are usually called key 

points and form feature vectors on the basis of these key points for object detection. As the 

detection methods depend solely on these points, it is crucial to choose the key points such that 

they are reliable, accurate, and repeatable [5]. That is, we would like to always find the same 

point on an object, regardless of the changes to the image. Hence, an ideal key point detector 

would locate points that are insensitive to changes in scale, lightning, perspective [22]. Some of 

the commonly used key point detectors include the Harris corner detector (invariant to rotation 

and additive intensity changes, but not to scaling), Harris-Laplacian [23] (a scale invariant 

version of the Harris detector), and the SIFT descriptor [24], which is probably the most popular 

key point locator. In the SIFT method, key locations are defined as maxima and minima of the 

result of Difference of Gaussians (DoG) function applied in scale-space to a series of smoothed 

and resampled images. Then the local scale and dominant orientation given by the key point 

detector is used for voting into orientation histograms with weights based on gradient 

magnitudes. This way the SIFT descriptor attains rotation and scale invariance. 

Another notable focus in object detection is using a parts-based approach. These methods 

involve decomposing the pedestrian appearance into semantically meaningful parts (such as 

head, torso, legs etc.) [25, 26]. By constraining the spatial relations among the parts in the 
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ensemble, parts-based approaches integrate the local part responses into a final detection [5]. In 

more detail, for each semantic part a discriminative classifier is trained, and a model is employed 

to represent the geometric relations among the parts. 

Finally, we discuss the detectors that encode image regions with operators similar to Haar 

wavelets. Among these, [6] proposes to use the absolute values of Haar wavelet coefficients at 

different orientations and scales as descriptors. The features employed in the detector suggested 

in [4] are reminiscent of Haar basis functions and form an overcomplete set for image 

representation. These features are computed as differences between sums of the intensity values 

in pixel regions. In this work, the authors also introduced the integral image, which makes it 

possible to calculate the sum of the intensities within any rectangular region by using only four 

array references, once the integral image is computed. Additionally, they expressed the detector 

as a progressive rejection based chain, in which the strong classifiers at each stage become more 

complex with depth in the chain. By adding temporal information to their detector for person 

detection in video, the authors further improved detection accuracy [8]. 

 

2.3 Classification 

After extracting a set of features from the image with any of the aforementioned detection 

methods, the image regions corresponding to evaluated features need to be assigned to one of the 

classes, positive or negative. The mapping from the features to the labels can be constructed 

either by using a generative or a discriminative method. Generative methods model the 

pedestrian appearance in terms of its class-conditional density function. Combining this with the 

class priors, it is possible to infer the posterior probabilities for both classes in a Bayesian 

framework. On the other hand, discriminative methods focus on directly modeling the decision 

boundary between the object and non-object classes from training examples. 

 

2.3.1 Generative Models 
We would like to touch upon several generative detection schemes in this part. A part of them 

includes 2D shape cues, which are useful since they tend to reduce variations in pedestrian 

appearances. Some methods aim to model the shape space by a set of exemplar shapes [19, 27]. 

Such approaches require a large amount of examples to represent the in-class variations of the 
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objects. It has been demonstrated that these methods can operate in real time by using efficient 

matching techniques based on distance transforms within pre-computed hierarchical structures. 

Combining shape and texture information within a parametric appearance model has also been 

investigated [29]. This approach involves separate statistical models for shape and intensity 

variations. The intensity model is learned from shape-normalized examples and iterative error 

minimization schemes are used for estimation model parameters for shape and texture.  

In [30], a probabilistic representation is used for all aspects of object under consideration: 

shape, scale, appearance and occlusion. To learn the parameters of this scale invariant object 

model, the expectation-maximization (EM) algorithm is used in a maximum likelihood setting. 

This model is used for calculating the likelihood ratios for classification. 

 

2.3.2 Discriminative Models 
One of the most popular ways to build discriminative classifiers for object detection includes 

Support Vector Machines (SVMs) [31]. SVMs find the separating boundary between the two 

classes that attains the maximum margin in the feature space. This feature space is implicitly 

determined by the kernel that is employed in training. In [1] and [17] linear SVMs are used for 

classifying the dense descriptors computed with gradient orientation histograms. Mapping the 

input features to higher (possibly infinite) dimensional spaces by using polynomial or radial 

basis functions may also yield an increase in detection quality [6, 33]. These methods employ 

nonlinear SVMs as classifiers within a parts-based detection framework. However, using more 

complex kernels relative to a linear one results in higher computational costs. 

A second powerful tool in forming discriminative classifiers is Boosting [26]. This procedure 

generates a linear combination of a set of weak classifiers (base learners) in order to produce a 

strong classifier (ensemble). The linear combination is formed sequentially, thus each added base 

learner is chosen such that it minimizes the weighted error on the training set. The weights on the 

training examples are determined by evaluating the training set by the current strong classifier. 

Hence, if an example is classified incorrectly, it is more important for the current base learner to 

classify this point correctly. Boosting is used particularly in building rejection cascades in the 

computer vision context. In this chain of rejectors, each stage consists of a strong classifier 

trained on the false positives of the total detector up to and excluding the present stage.  These 

types of classifiers are slow to train (with training times in the order of days), but they are 
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capable of rapid execution because of the way the cascade is built. Also, special data structures 

such as the integral image significantly speed up the performance. 

Among the detectors that rely on Boosting, [14] uses covariance matrices as object descriptors, 

[4] utilizes Haar-like wavelets, and [8] combines these wavelets with motion information. In [2], 

base learners are chosen as linear SVMs of gradient orientation histogram blocks, and AdaBoost 

is put to use to train strong classifiers of the rejection cascade.  

As an example of detection frameworks that employ other types of discriminative classifiers, 

[34] can be considered. This method uses a feed-forward multi-layer neural network with 

adaptive local receptive field features as nonlinearities in the hidden network layer. 
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Chapter 3 

Histograms of Oriented Gradients Algorithm 

 
In this part, we describe the Histograms of Oriented Gradients (HoG) detection algorithm, 

originally proposed by Dalal and Triggs [1]. As this method comprises the foundation of the 

cascaded HoG detector which is of central interest to our work, we provide detail about this 

algorithm. In particular, we relate the steps of forming the HoG descriptor in a detection window, 

explain why this method is capable of achieving excellent detection results, and present 

exemplary detection results obtained with our implementation of the algorithm. In addition, we 

discuss two different flavors of the HoG method which are suggested by [9]. These two 

approaches are able to execute faster than the original Dalal & Triggs method, however they 

omit certain steps while building the window descriptors. For this reason, they are expected to be 

inferior to the original algorithm. We conclude with a performance comparison of our 

implementations of the three HoG based detectors. 

   

3.1 The Dalal & Triggs Algorithm 

The method starts by applying square root gamma correction to the input image. Color 

information is used when available. If the input is restricted to be grayscale, detection 

performance is reported to be worsened by 1.5% at 10−4 False Positives per Window (FPPW). 

The detector is sensitive to the way that the image gradients are computed. Among the methods 

tested (uncentered [−1, 1], centered [−1, 0, 1], cubic corrected [1, −8, 0, 8, 1] kernels, Sobel 

filter, and 2×2 diagonal masks), the centered gradient kernel turned out to give the best results. 

Also, smoothing with a Gaussian kernel prior to gradient computation is reported to significantly 
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damage the detection quality. When the inputs are in RGB color space, gradients are computed 

for each channel, and the one with the largest norm is retained at each pixel. 

Next, each pixel computes a weighted vote for an edge orientation histogram based on the 

orientation of the gradient element centered on it. These votes are accumulated into spatial bins 

that are called cells, which can either be rectangular or log-polar regions. The gradient 

orientations are evenly discretized into several orientation bins, lying between either 0° and 180° 

(unsigned gradient) or 0° and 360° (signed gradient). To reduce the aliasing, the gradient votes 

are trilinearly interpolated between neighboring bin centers in orientation and space. The votes 

that the pixels cast are a function of the gradient magnitude belonging to those pixels. In their 

experiments, Dalal & Triggs report that taking the square root of the magnitude or using binary 

edge presence voting decreases the detection quality compared to simply using the gradient 

magnitude itself.  

It is further reported that fine orientation coding is crucial for good performance, however 

increasing the number of orientation bins beyond 9 does not affect the results significantly. Also 

using unsigned gradients as opposed to signed ones is seen to be more descriptive. 

The essential part in the Dalal & Triggs algorithm is the normalization of the orientation 

histograms. Since gradient strengths vary over a wide range due to local illumination variations, 

effective local contrast normalization becomes important. The authors evaluated several local 

normalization schemes, all of which include grouping cells into larger structures called blocks 

and normalizing these independently. The HoG descriptor is then built by concatenating all the 

block responses in a detection window. Allowing overlapping between histogram blocks is also 

reported to improve detection performance. 

The investigated block geometries are square or rectangular blocks partitioned into square or 

rectangular cells, and circular blocks partitioned into cells with log-polar arrangement. The 

rectangular formulation is denoted as R-HoG and the circular one is called C-HoG. When the R-

HoG blocks are chosen to be squares, they are divided into grids of ς×ς cells, and each cell is 

made up of η×η pixels and contains β orientation bins. Authors state that optimum performance 

is obtained when ς is 2 or 3, and η is between 6 and 8. Additionally, downweighting the gradients 

near the borders of the blocks with using a Gaussian window was seen to improve detection 

results.  
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Dalal & Triggs relate that using rectangular blocks instead of square ones does not turn out to 

be as effective. More importantly, they have tried to employ multiple block types with different 

block and cell sizes. This improved the detection performance, but the size of the window 

descriptor increased significantly, and resulting in higher computational costs. We will later see 

that it is possible to take one more step along this idea by choosing which blocks sizes shall be 

used with Boosting.  

C-HoG blocks can be thought as a form of center-surround coding, as they consist of cells in a 

log-polar arrangement. Authors investigated two different forms of C-HoGs, ones with a single 

circular cell, and ones whose central cell is divided into angular sectors (Figure 3-1). The two 

types of circular blocks were seen to yield the same performance in practice. At least two radial 

bins (a center and a surround) and four angular bins are required for good performance. 

Increasing the number of radial bins does not change the detection results, but adding more 

angular bins reduces the detection quality. The optimum radius of the central bin is 4 pixels, and 

Gaussian weighting does not affect the performance. Authors’ results are very similar for R-HoG 

and C-HoG block strategies. 

 
Figure 3-1: A C-HoG block with a single circular cell (a), and a block whose central cell is 

divided into sectors (b). 

 

The cells that are grouped into blocks are normalized together using one of the four proposed 

normalization schemes. Let us denote the block descriptor vector with v, its k-norm with ||v||k and 

a small positive constant with ε. The schemes of interest are then:  
 

(a) L2-norm: 
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(b) L2-Hys: L2-norm followed by limiting the maximum element in the descriptor to 0.2, then 

renormalizing 

(c) L1-norm: 
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v
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(d) L1-norm followed by square root: 
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Except for using L1-norm, all methods were seen to yield similar results. Omitting 

normalization altogether decreases the detection rate by 27% at 10−4 FPPW, which again points 

to the importance of local normalization. It is also noted that results are insensitive to the choice 

of ε over a wide range.  

 

3.2 Data Set and Training 

In their work, Dalal & Triggs also introduce a new and significantly challenging data set, 

‘INRIA’. This set contains 2478 training images of people in upright position with the size 

64×128, as well 1218 full-size (≥ 320×240) negative images for training. Also a test set of 288 

high resolution images is provided to evaluate detection performance. People in the training set 

appear in any orientation against a wide variety of cluttered and complex backgrounds (Figure 3-

2). 

 

 

 

 

 

 

 

Figure 3-2: Some sample images from the INRIA positives. The data set includes images with 
partial occlusions, complex backgrounds with crowds, and wide range variations in pose, 
illumination and clothing. 
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Using the default R-HoG detector (RGB color space without gamma correction, centered [−1, 

0, 1] gradient kernel without smoothing, β = 9 orientation bins in 0° − 180°, blocks consisting of 

ς×ς = 2×2 cells with dimensions η×η = 8×8 pixels, Gaussian window weighting for votes using σ 

= 8 pixels, L2-Hys block normalization, overlapping blocks with a stride of 8×8 pixels), we can 

define 7×15 = 105 blocks in each detection window of size 64×128. Since each block vector has 

2×2×9 = 36 dimensions, the window descriptors are 105×36 = 3780 dimensional feature vectors. 

Using 2478 positive samples from the INRIA data set and randomly sampling 12180 patches of 

size 64×128 from the full-size negatives, Dalal & Triggs trained a linear SVM classifier with the 

extracted window descriptors. In order to decrease the false positive rate, they further ran this 

classifier on the full-size negatives and added the results to the initial negative training patches. 

This bootstrapping process was seen to improve the detection rate by 5% at 10−4 FPPW. Authors 

also investigated the benefits of using a radial basis kernel, and observed that it improved the 

detection rate by 3%. However, this came at a high computational cost, which decreased the 

feasibility of the detector in a real time setting.  

 

3.3 Implementation Considerations 

Our software implementation of the Dalal-Triggs algorithm produces similar results to the 

original implementation offered by the authors. Our realization of the default R-HoG detector 

utilizes the functions present in the OpenCV libraries [12] and the linear SVM classifier used in 

classification is trained with SVMLight[10]. The steps of object localization are presented in 

Figure 3-3. We start by loading the RGB image into CPU’s main memory and converting it 32 

bit floating point format. Next, we convolve the input with the centered gradient kernels and 

obtain the magnitude and orientation images. The detection window scans the image with 

vertical and horizontal strides of 8 pixels. Since this is the same as the block stride within each 

detection window, we do not need to recompute the block histograms for each window 

separately. Thus, we precompute the block histograms and register them, then share them among 

neighboring detection windows to significantly decrease the detection time. Since we use 

trilinear interpolation for the magnitude votes, a pixel in a block can contribute to up to 8 

different histogram bins (2 in orientation, times 4 in space). While locally normalizing the block 

histograms, L2-Hys scheme is used with clipping the maximum value of the entries to 0.2.  
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After obtaining all window descriptors by sharing block histograms, we evaluate them by 

taking the dot product between the descriptors and the SVM weights, and subtracting the 

hyperplane constant. We register the detection result to a binary array for later use. To search for 

objects in larger scales, the image is subsampled by a ratio of 1.05. We finish downscaling when 

at least one dimension of the image is smaller than or equal to the detection window size 64×128. 

We go on to process the registered binary detection results obtained from our multi-scale search. 

As common to sliding-window based detectors, it is possible for the detector to fire multiple 

times around to the vicinity of an object in both space and scale. We use a mode estimator based 

on the mean shift algorithm to fuse these results (non-maxima suppression). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Steps of object localization with the Dalal-Triggs algorithm [2]. 
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Non-Maxima Suppression: To fuse overlapping detections as in Figure 3-4, we make use of the 

guidelines in [13]. This involves representing detections using kernel density estimation (KDE) 

in the 3-D position and scale space. KDE evaluates continuous densities by applying a 

smoothing kernel over observed data points, where the detection scores computed by evaluating 

the detection window with the linear SVM classifier are incorporated by weighting the detection 

points with these scores while computing the density estimate. The modes of the density estimate 

correspond to the final scales and locations of the detections. In this estimation setting, the width 

of the kernel that is used for smoothing should not be less than the spatial and scale strides used 

in detection. Also, it should not be wider than the objects to be detected so as not to confuse two 

nearby samples.  

(a)  

  

(b)  

(c)  

(d)  

(e)  

(f)  

(g)  

 

                            (a)                                                                                        (b) 

Figure 3-4: (a) A typical detection result obtained with the Dalal-Triggs detector, without 
applying any post-processing. (b) Final image obtained with fusing the detections in the space 
and scale domain with a mean shift algorithm.   
 

We detail the mode estimation process by following [13] and [35]. We let yi denote the 

detections in the 3-D position-scale space for i = 1, …, n and define a 3×3 covariance matrix Hi 

that represents the smoothing widths for each detection. We note that the scale dimension of the 

detection vectors is expressed in the log domain, to account for the exponential increments in this 

dimension coming from the HoG detector. To fuse the detections, we search for the local modes 

of the density estimate by taking the smoothing kernel as a Gaussian. In this case, the kernel 

density estimate at point y is given as 
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stands for the transformation function used for evaluating the detection weights. In the case of 

SVM classifiers, the weights wi are simply obtained by computing the discriminant for the 

window descriptor vectors. Let us also define the following weights 
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be the data weighted harmonic mean of the covariance matrices Hi evaluated at y. Using these, 

the mode can be iteratively estimated by the update equation 
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by starting from an initial yi until convergence. The final ym is the estimated fusion of the 

detection results. 

To run this algorithm, we need to specify the amount of uncertainty expressed by Hi for each 

detection vector. Again following [13], we constrain these matrices to be diagonal ones 

according to 
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where si is the scale of the ith detection in log scale and σx, σy, and σs are smoothing parameters 

supplied by the user. We use parameter setting σx = 8, σy = 16 and σs = log(1.3) in our 

implementation. By noting that the final detections are displayed in terms of bounding boxes 

based on the estimated modes, we conclude the discussion of the Dalal-Triggs algorithm and 

present several detection results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-5: Several detection results obtained with our implementation of the Dalal-Triggs 
algorithm. The downscaling ratio is 1.05 and the window stride is 8×8. 
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3.4 Modifications on the Dalal-Triggs Algorithm 

Apart from the original HoG algorithm proposed by Dalal & Triggs, we consider two different 

flavors of this method. These modified versions are proposed by [9], and they differ from the 

original mainly in the way that the block histograms are computed. In this section, we briefly 

detail the source of this difference, and based on our CPU implementations of these methods, we 

relate how they compare against the Dalal & Triggs algorithm in terms of detection speed and 

accuracy (detection rate vs. false positive rate). 

 

3.4.1 Detector with Histograms Precomputing and Caching 
This method corresponds to the CPU-HC detector in [9]. Its basic differences from the original 

algorithm are that, trilinear interpolation of magnitude orientation votes and the Gaussian 

weighting of histogram blocks are omitted. Secondly, it focuses on grayscale images without 

including color information. We have seen that when the block strides within a detection window 

and the stride of the detection window itself inside the image are equal, it is possible to share 

block histograms among detection windows. The same idea is utilized in the case of CPU-HC, 

however the shared data structures are the cell histograms now. This is made possible by the fact 

that the cell histograms are not coupled via the Gaussian weights and interpolation anymore. 

More formally, let us denote the strides of the detection windows in the horizontal and vertical 

directions by d. Moreover, let the cell sizes, denoted with r, be equal to d such that d = r = 8 

pixels. In this setting, CPU-HC computes histogram cells independently of the scan windows, 

and shares them among different windows during classification, as opposed to sharing histogram 

blocks as the Dalal-Triggs algorithm does. 

 

3.4.2 Detector with Integral Images 
This variant of the HoG detector is denoted as CPU-II in [9]. As its counterpart CPU-HC does, 

this method omits the usage of Gaussian weights, vote interpolation and RGB color space 

information. The major difference of this approach is that, it uses the integral histogram idea [2] 

to improve efficiency. For each histogram bin, an integral image of gradients is computed. In our 

case, we have 9 integral images to store the histogram bins. As the sum of the pixels within any 
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rectangular region inside the integral image can be computed with four array access operations (a 

point we will further elaborate in Chapter 4), the window descriptor for any window can be 

computed using 4 ∙ 9 ∙ (w/r) ∙ (h/r) references. In this relation, w and h are the width and the 

height of the detection window, and r is again the cell size.  

An important advantage of this approach is that it does not require the assumption of having 

equal window and block strides. Hence, it is likely to present a significant speed up relative to 

the Dalal-Triggs and CPU-HC algorithms in the case where this assumption is not present. 

However, it is less advantageous to use CPU-II when d = r. 

 

The omission of Gaussian weighting and vote interpolation should make the CPU-HC and 

CPU-II methods inferior to the original one. In Figure 3-6 we quantify this point by comparing 

the ROC curves of our implementations of these two methods with the Dalal-Triggs algorithm. 

In the low FPPW region, the Dalal-Triggs approach has higher accuracy, but in the high FPPW 

region the other two methods catch up with the original algorithm. Table 3-1 presents detection 

time measurements of all three approaches, based on our implementations. We note that the 

CPU-HC method can run almost twice as fast as the Dalal-Triggs algorithm. 

 

 

 

 

 

 

 

 

 

 

Figure 3-6: ROC curves for the Dalal-Triggs algorithm and its modified version that omits 
trilinear interpolation and Gaussian weighting. 
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Method Scaling : 1.05 Scaling : 1.1 Scaling : 1.2 

Dalal & Triggs 24.24 s 13.07 s 7.61 s 

CPU-II 21.73 s 11.65 s 6.73 s 

CPU-HC 13.06 s 7.08 s 4.09 s 
 

Table 3-1: Comparing processing times of HoG based person detector based on our 
implementation using a 1280×960 input image. The CPU-HC method outperforms the other two, 
running almost twice as fast. 
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Chapter 4 

Histograms of Oriented Gradients on the 

GPU 

 
The object localization algorithm proposed by Dalal & Triggs [1] is one of the most popular 

detectors in the computer vision literature. Apart from being easy to implement, it is among the 

state of the art detectors in terms of detection rates at given false positive ratios [5]. 

Unfortunately, it suffers from the fact that it is very costly to evaluate dense HoG descriptors in a 

sliding window fashion, even when sharing blocks among detection windows is possible. This 

chapter discusses a method to decrease the detection times of this detector, by formulating the 

problem so as to expose the maximum amount of parallelism.  

Even though sliding-window type object hypothesis generation is costly, it is prone to be 

expressed as a parallel process. This is because the detection windows can be evaluated 

independently of each other. Additionally, image processing applications such as convolution, 

integral image generation, and subsampling are implicitly parallel operations, since they allow 

certain regions (e.g. rows and columns) in the input image to be processed independently of the 

others. Luckily, there is a hardware platform that enables the developers to exploit such 

parallelisms. 

Here, we investigate the possibility of implementing parallel algorithms on Graphics 

Processing Units (GPUs). In particular, we examine three different GPU implementations of the 

Dalal-Triggs algorithm we have compiled from the literature [3, 9, 36] and report on their 

performances. 
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4.1 The GPGPU Paradigm 

The term GPGPU (General Purpose computing on Graphics Processing Units) refers to using 

graphics processing units to accelerate non-graphics problems. The many-core architecture of the 

new generation GPUs enables them to execute thousands of threads in parallel. These threads are 

managed with zero scheduling overhead and are lightweight compared to CPU threads. To fully 

utilize the great computational horsepower of the GPUs, thousands of threads need to be 

launched within each parallel routine. The potential benefit of employing a graphics card can be 

quantified by the theoretical floating point performance of the device. Whereas modern CPUs 

have peak performances on the order of 10 GFLOPs, commercial GPUs can exceed the 1 TFLOP 

limit. The CUDA framework is a widely adopted by for programmers that develop GPGPU 

applications. 

CUDA (Compute Unified Device Architecture) is the computing platform in NVIDIA graphics 

processing units that enables the developers to code parallel algorithms thorough industry 

standard languages. The CUDA programming model acts as a software platform for massively 

parallel high-performance computing by providing a direct, general-purpose C language 

interface ‘C for CUDA’ to the programmable multiprocessors on the GPUs. According to this 

model, parallel portions of an application are executed as kernels.  CUDA allows these kernels to 

be executed multiple times by multiple threads simultaneously. A typical application would use 

thousands of threads to achieve efficiency. In the CUDA terminology, the GPU is referred to as 

the device while the CPU is called the host. 

At the core of the model lie three abstractions – a hierarchical ordering of thread groups, on-

chip shared memories, and a barrier instruction to synchronize the threads active on a GPU 

multiprocessor. In order to scale to future generation graphics processors, multiple threads are 

grouped in thread blocks and multiple blocks reside in a grid that has user specified dimensions. 

Thread blocks may contain up to 512 threads, and the threads inside a block can communicate 

via low latency, on-chip shared memory. To prevent read-after-write, write-after-read, and write-

after-write hazards, __syncthreads() command can be used to coordinate communication 

between the threads of the same block. A group of 32 threads that are executed physically 

simultaneously on a multiprocessor is called a warp.  
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There are six different memory types in the CUDA model that provide flexibility to the 

programmer. Apart from the shared memory (16kB) that is visible to all threads within a block, 

each thread has access to a private local memory and registers. Additionally, there are three types 

of off-chip memory that all threads may reach. The global memory (1792MB) has high latency 

and is not cached. The constant memory (64kB) is cached and particularly useful if all threads 

are accessing the same address. The texture memory is also cached and optimized for spatial 

locality, so threads of the same warp that read texture addresses that are close together will 

achieve best performance. Textures can be bound to either linear memory or CUDA arrays; 

hence their maximum sizes depend on the particular data structure they are used with. Textures 

also provide hardware interpolation, which has very small performance cost. 

The fact that shared memory resides on the multiprocessors where computations are performed 

whereas the global memory types are off-chip is reflected by the vast difference in their access 

speeds. It takes about 400 to 600 clock cycles to issue a memory instruction for the global 

memory, but the same operation occurs about 150 times faster in the shared memory. Therefore, 

if the same addresses need to be accessed multiple times, it would be beneficial to reach them via 

the shared memory. 

Apart from the flexibilities it offers, the CUDA model has also certain drawbacks that limits its 

usefulness. Among these, memory coalescence criterion for accessing global memory, bank 

conflicts that may arise when using shared memory, branch divergence that can be caused by 

using conditional statements and the large overhead required for memory transfer between the 

CPU and the GPU can be counted. We briefly touch upon these points, barrowing from [37]. 

Coalescence: Since the global memory is not cached, the way that it is accessed becomes 

important. There are two key points in accessing the memory in a coalesced manner. First, the 

GPU is capable of reading 4, 8, and 16-byte words from global memory into registers in a single 

instruction. Second, global memory bandwidth is used most efficiently when the memory 

accesses of the threads in a half-warp can be coalesced into a single memory transaction of 32, 

64, or 128 bytes. Thus, if threads of a half-warp access 4, 8, or 16-byte words, where all 16 

words lie in the same segment of the memory, and if the threads access the words in sequence, 

coalescence will be achieved regardless of the generation of the GPU that is used. 

Bank conflicts: To achieve high memory bandwidth, shared memory is arranged in 16 equally 

sized modules called banks, which can be accessed simultaneously. So, memory requests made 
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by half-warps to n different addresses that reside in n different banks suffer no conflicts. 

However, if more than one read or write requests are made for a single address, the accesses 

need to be serialized, and this situation is referred to as a bank conflict. To overcome this 

problem, padding the shared memory is a common method in practice. However, managing bank 

conflicts is an optimization step that is of secondary importance, since shared memory is already 

a very low latency structure. 

Branch divergence: At each instruction issue time, the instruction unit on a multiprocessor 

selects a warp that is ready to execute and issues the next instruction to this warp. Since a warp 

executes one common instruction at a time, full efficiency is reached when all threads agree on 

their paths. But if some of the threads diverge due to a data dependent conditional statement, this 

branch is serially executed. This increases the warp execution time and causes inefficiencies.  

Memory transfer: The data transfer bandwidth is significantly higher for device to device 

transactions compared to host to device ones. Therefore, it is advisable to reduce the data transfer 

between the host and the device. There are several ways to increase the CPU to GPU transfer 

bandwidth, which include using page locked memory or sending large chunks of data rather than 

using many smaller ones. 

 

4.2 HoG Algorithm on the GPU 

Here, we briefly consider three different implementations of the Dalal-Triggs algorithm on the 

GPU.  

Zhang and Nevatia’s implementation [9]: This method is based on realizing the CPU-HC 

algorithm (Ch. 3.4.1) on a graphics processor. It consists of four modules; scaling, feature 

extraction, classification and reduction. The scaling module is used for downsampling the input 

image, which resides on a texture in the GPU. The feature extraction step calculates the cell 

histograms over the whole image, then shares them among windows to build the window 

descriptors. In the classification part, inner products of the SVM weights and descriptors are 

computed along with normalization. The reduction step transfers classification results to the 

CPU. In terms of detection accuracy (miss rate versus false positive rate), they report similar 

results as the Dalal-Triggs method. Regarding detection performance, they note that an input of 
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size 384×288 takes 73 ms to evaluate, where the downsampling ration is taken as 1.05. This 

about an order of magnitude speed up relative to the CPU-HC implementation. 

 

Wojek et al.’s implementation [3]: This approach does not omit any of the steps proposed by 

Dalal & Triggs. After padding the sides of the input to be able to detect objects near the borders, 

they decompose it into 32-bit floating point color channels and apply gamma compression. Via 

convolution, color gradients are computed and gradient magnitude and orientations are obtained. 

For block histogram computation, they use both trilinear interpolation and Gaussian weighting. 

They let one thread block be responsible for a HoG block. In this setting, each thread works on 

one column of gradient orientation and magnitudes, and since there are 4 cells within each block, 

this calls for a thread block of size 16×4. Each of the block normalization and SVM evaluation 

steps are done by a separate kernel. Non-maxima suppression is done on the CPU side. In terms 

of accuracy, their ROC curve is very similar to the original HoG detection results. They report a 

speed up by a factor of 34 over the CPU implementation. For a 1280×960 image with 1.05 

downscaling ratio, processing time is 385 ms. 

 

Priscariu and Reid’s implementation [36]: Similar to Wojek et al.’s work, this approach 

includes all the steps in the original Dalal & Triggs algorithm. One difference between the two 

GPU implementations is the thread block configuration in histogram computation. Priscariu and 

Reid divide each thread block into 4, so that each logical division of threads is responsible for 

one histogram cell. They employ 8 threads per cell, thus have a 8×4 block configuration. They 

note that their implementation gives the same results as the original Dalal-Triggs binaries. In 

terms of speed, they do not differ much from Wojek et al.’s implementation. For a 1280×960 

image, reported processing time is 353 ms. The difference in detection time might also be 

stemming from using a different graphics card. 

 

We finalize our discussion with a table that summarizes the detection performances of these 

implementations. 
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Implementation 320×240 640×480 1280×960 

Zhang and Nevatia [9] ≈ 70 ms ≈ 250 – 300 ms ≈ 1 – 1.2 s 

Wojek et al. [3] 29 ms 80 ms 385 ms 

Priscariu and Reid [36] 22 ms 99 ms 353 ms 
 

Table 4-1: Detection times of three different HoG implementations. The downscaling ratio is 
1.05 and window strides are taken to be 8 pixels. The results of [9] are based on our 
extrapolations, as they report only for images of size 384×288. 
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Chapter 5 

Cascaded Ensembles with Histograms of 

Oriented Gradients Features 

 
We have noted that the Dalal-Triggs algorithm suffers from being computationally expansive, 

making it unfeasible to run in real-time. Chapter 4 discussed one way of alleviating this 

drawback. Here, we discuss another approach to this problem, originally proposed by Zhu et al. 

in [2].  

 

5.1 The Cascade-of-Rejectors Formulation 

The HoG algorithm suggested by Dalal and Triggs computes locally normalized gradient 

orientation histograms over blocks of size 16×16 to represent a detection window. The fact that 

the detection window slides over the image in all possible image scales makes this approach 

computationally expensive, and unfeasible for real-time applications such as surveillance, active 

driving assistance and tracking.  

One of the most important works in the object detection literature of the last decade is the 

cascade detector of Viola and Jones [4]. Apart from being reliable, it demonstrated more than an 

order of magnitude speed up relative to its competitors at the time it was proposed. Their work 

has three key contributions. The first one is the introduction of the data structure integral image 

which made the computation of features that involve summation of image regions extremely 

efficient. The second contribution is using AdaBoost [37] to build robust classifiers. The third 

key point is the method of combining classifiers trained by AdaBoost in a cascade which allows 
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background regions of the image to be quickly discarded while spending more time on promising 

object-like regions.  

We have noted that the Dalal-Triggs gives outstanding detection accuracy. The success of this 

algorithm depends on two key factors: a dense window descriptor based on small histogram 

blocks and local block normalization that emphasizes their relative behavior. Firstly, even though 

this dense formulization gives an excellent description power, it also results in redundant 

computations for image regions that clearly do not resemble a human. Using a coarser descriptor 

would prune these computations, and enable us to focus our resources on detection windows that 

are harder to classify. Secondly, these small histogram blocks of size 16×16 might miss the “big 

picture”, being unable to correspond to a semantic part of the human body. These mappings 

might be recovered if blocks of larger sizes and different aspect ratios could be employed. To 

address these points, Zhu et al. [2] proposed to form an attentional cascade consisting of stages 

that get progressively more complex (Figure 5-1). This suggested method brings together the key 

points of the Viola-Jones’ work that provides efficiency and Dalal-Triggs’ HoG features that 

give reliability. 

 

The cascade approach is based on early rejection of detection windows which clearly do not 

contain a person by evaluating a small number of features, and focusing the computational 

resources on windows that are harder to classify. We would like to find out which combinations 

of blocks can be used together to capture the “big picture” and make fast rejections in the early 

stages of the cascade, as well as the combinations of blocks that can provide detail about a 

Figure 5-1: Cascade-of-rejectors. Detection window is passed to the stage 1 which decides true or 
false. A false determination stops further computation, and the window is classified to contain 
non-person. A true determination triggers the computation at the following stage. Only if the 
window passes through all the stages, it is classified to contain a person. 
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detection window in the later stages. A systematic way of finding complementary features out of 

a feature pool is using the AdaBoost algorithm [37]. 

By using HoG blocks of different sizes, locations and aspect ratios as features, it is possible to 

run the AdaBoost algorithm to determine which features to evaluate in each stage of the cascade. 

Thus, the complete detector is formed by a cascade of ensemble classifiers, each of which uses 

base learners that are linear SVMs based on the chosen HoG block features. In Zhu et al.’s 

approach [2], the pool of all possible features contains over 5000 HoG blocks, as opposed to the 

105 fixed size blocks that define a window in the Dalal-Triggs algorithm. As expected, they 

report that the first stages of the cascade employ large blocks that attempt to summarize the 

windows effortlessly, while the later stages also include smaller blocks that express the details. 

By this cascade formulation, the method in [2] was reported to yield 4 to 30 FPS performance 

on a 320×240 image, depending on the scanning density. Hence, it achieves the real-time 

performance we are looking for, albeit with small sized inputs. Although not reported in their 

work, it is conceivable that this would correspond to about 0.3 to 2 FPS for a 1280×960 image, 

not being able to run in real-time for such high resolution images. 

Zhu et al. also report ROC curves that are comparable with the original Dalal-Triggs 

algorithm, which makes their work even more significant. Using Haar-like wavelet features with 

the Viola-Jones style detector has been seen to give successful results rates for face detection [4]. 

However, this set of features was reported not to be able to perform as good as the HoG 

algorithm when applied to human detection, especially in a cluttered and complex dataset [5, 2]. 

But Viola and Jones demonstrate that it is possible to improve detection accuracy by employing 

motion information as well as wavelets in [8].  

As we have noted that the Viola-Jones detector has influenced the field thanks to its three key 

contributions. The method proposed by Zhu et al. also uses one of these, the integral image idea, 

to compute the orientation histograms efficiently. 

 

5.2 Integral Histograms of Oriented Gradients 

By setting the horizontal and vertical window strides to 8 pixels, which is equal to the strides of 

histogram blocks within the detection windows, the Dalal-Triggs algorithm eliminates the 

redundant computations. Computing and caching the block histograms over the whole image and 
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sharing them among the detection windows makes it possible to work around the problem of 

recomputing data for overlapping windows. However, in the case of the cascade algorithm, it is 

not possible to cache the histograms and share them among the windows since the relative 

locations of blocks have no order and a “block stride” cannot be defined. This leads us to using 

the integral image idea. 

The integral image, as detailed in Figure 5-2, enables us to compute the sum of the elements 

within a rectangular region by using 4 image access operations. In our CPU implementation of 

the cascaded HoG detector, we discretize each pixel’s gradient orientation into 9 bins, then 

compute and store an integral image for each histogram bin, as suggested in [2]. The HoG for 

any rectangular region then can be computed by 9 × 4 = 36 image access operations, 4 for each 

of the 9 bins. 

This histogram computation method differs from the Dalal-Triggs algorithm because of the 

omissions of the Gaussian mask used for weighting the votes of histogram blocks, and the 

trilinear interpolation (in space and orientation) used for histogramming. 

 

 

 

 

 

 

5.3 Histogram Cells and Blocks 

In our implementation of the cascaded HoG detector, we consider block sizes ranging from 

12×12 to 64×128, with the constraint that the block width and height must be divisible by two.  

Also, we consider block aspect ratios of (1 : 1), (1 : 2) and (2 : 1). Depending on the block size, 

we choose a step size which can take values {4, 6, 8}. This way, we can define a feature pool of 

5029 distinct blocks inside a detection window of size 64×128. Each of these blocks is further 

Figure 5-2: The value of the integral image Iint at point (x, y) is the sum of all the pixels above 
and to the left in the input image I; 
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divided into a grid of 2×2 histogram cells, over which the orientation histograms are computed. 

Each cell gives rise to a 9 dimensional histogram vector, and these are concatenated to form a 36 

dimensional block histogram. Computing a single block histogram thus requires 9 × 9 = 81 

integral histogram accesses (Figure 5-3). 
 Choosing the histogram blocks out of a large pool of features gives us the power to represent 

semantic parts in the human body in an explicit way (some parts may correspond to torso, legs, 

etc.). By placing these features in a cascade that progressively gets more complex, we also avoid 

making unnecessary computations for objects that do not resemble a person, since the blocks in 

the early stages are usually large, and they capture the “big picture” effortlessly. In the original 

Dalal-Triggs algorithm, we make the same amount of computation for each window, regardless 

of the complexity of the classification task we are trying to solve. 

 

5.4 Training the Cascade with AdaBoost 

Paralleling [2], we use 36 dimensional histogram blocks as base learners in constructing the 

cascade classifier. These learners are linear SVMs trained on the positive and negative training 

examples. Each stage of the cascade is a strong classifier formulated as an ensemble of these 

base learners, 

Figure 5-3: Computing the block histogram for a block with size W×H. Using the ith integral 
histogram, it is possible to compute the ith elements of the cell histograms using 4 image 
accesses. For instance, ith element of cell 1’s orientation histogram is computed as hi[5] + hi[1] − 
hi[2] − hi[4]. Overall, we need 9 accesses for the ith bin, and 81 for all 9 bins. 

hi[1] 

hi[7] hi[8] hi[9] 

hi[4] hi[5] hi[6] 

hi[2] hi[3] 
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(5.1) 

 

where si (.) is the strong classifier (ensemble) at stage i, fit (.) is the tth base learner of this stage 

with voting weight αit, ni is the number of  the base learners in this stage, and Ti is the detection 

threshold. Each base learner has the form 

 

 

 

 

(5.2) 

 

and the parameters θ and θ0 are learned with our modified version of the SVM package 

SVMLight [10].  

Since there are more than 5000 possible features in our pool to choose from, we randomly 

sample 125 blocks at each round of the AdaBoost algorithm and train linear SVMs. As noted in 

[2], choosing the best feature from about 59 random samples will guarantee nearly as good 

performance as if we used all the features. By settling for 125, we substantially decrease the 

training time meanwhile keeping feature quality reasonably high. 

For all stages, we use the 2416 positive images of size 64×128 from the INRIA database [11]. 

For the first stage, we randomly sample 2416 negative windows of size 64×128 from the 1654 

full-size (≥ 320×240) negative images from INRIA. Then, each next stage in the cascade uses the 

false positives obtained by running the current cascade classifier over these full-size negative 

images as the negative training set. We randomly subsample these false positives since they 

exceed 2416. Because each new stage is forced to classify examples that the current cascade fails 

to classify, stages tend to contain progressively more features, hence they become more complex. 

Below, we detail the cascade training steps with the AdaBoost algorithm. 
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Algorithm: Training the cascade with AdaBoost 
 

User selects values for fmax, the maximum acceptable false positive rate per stage, dmin, the 

minimum acceptable detection rate per stage and Ftarget, target overall false positive rate. 

Pos: set of positive samples (INRIA training positives)   

Neg: set of negative samples (sampled from INRIA training full-size negatives) 
 

initialization: i = 0, Di = 1.0, Fi = 1.0 

while Fi > Ftarget 

          i = i + 1, fi = 1.0 

          while fi > fmax 

 Train 125 randomly sampled linear SVMs using Pos and Neg 

 Add the best SVM into the ensemble with the appropriate vote determined by 

AdaBoost 

 Update weights of the examples in AdaBoost manner 

 Evaluate Pos and Neg with the current ensemble 

 Decrease the threshold Ti until dmin holds 

 Compute fi under this threshold 

           Fi+1 = Fi × fi 

           Di+1 = Di × dmin 

           Empty set Neg 

           if Fi > Ftarget 

 Evaluate the current cascaded detector on the set of full-size negatives and add any 

false positives into Neg, subsample if necessary.  

 
 

At each stage of the cascade, we keep adding base learners until the predefined quality 

requirements are met. In our case, we require the minimum detection rate of each stage to be 

99%, and the maximum false positive rate to be 0.65. We trained 23 stages to reach about 0.6523 

≈ 5∙10-5 FPPW on the training set, which corresponds to about 8 false positives in a 1280×960 

image with dense scanning. The training took several days running on a PC with 2.5GHz CPU 

and 3GB memory. 
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5.5 CPU Implementation Considerations 

For the training part of the algorithm, we integrated the SVM training package SVMLight [10] 

into our code, and modified it so that it can admit binary inputs, rather than reading from text 

files. Since no ready-for-use software function is available for AdaBoost training with SVM 

features, we provided the code for the algorithm.  

The implementation for the cascaded detector consists of several parts (Figure 5-4). After 

acquiring the image and converting it to grayscale, gradient magnitude and orientations are 

computed for each pixel. Because the arctangent function is costly to evaluate, we use a look-up 

table to efficiently calculate the orientation bins. Next, we form the integral histogram images for 

each of the 9 bins, and generate the 36-D block histograms by accessing the histogram images 

according to Figure 5-3. After L2-norm normalization, we take the inner product of the block 

histogram with a linear SVM describing the current base learner. We evaluate all the features 

until rejection (negative window), or completion (positive window). After downsampling the 

image, we repeat this process until all scales are accounted for. 

Scanning the classifier across all positions and scales in the image returns multiple detections 

for the same object at similar scales and positions. Hence, neighboring detections need to be 

fused together (non-maximum suppression). As in Section 3.3, we follow [13] and achieve this 

using a mean shift algorithm in 3D position/scale space. Since this time the detections are binary 

without the discriminant information, we take the detection weights as t(w) = 1, as opposed to the 

formulation in Eq. 3.3. For a 1280×960 image with 8 pixel horizontal and vertical window 

strides and a scale ratio of 1.05, the whole algorithm takes 5.4 seconds on the CPU. 

 

Our implementation utilizes OpenCV libraries [12] for image acquisition, gradient 

computation and forming the integral histogram images. 
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Figure 5-4: Steps of object localization using the cascaded HoG detector on the CPU. 

 

5.6 Experiments and Evaluation 

The cascaded classifier in our experiments consists of 23 stages and it reaches about 5 ∙ 10-5 

FPPW false positive, and 0.9923 ≈ 0.8 detection rates on the training set. However, due to the fact 

that we generate many hypotheses for each object by searching densely in space and scale, the 

detection rate is about 4% higher in the test set. Figure 5-5 provides details about our cascade. To 

assess the depicted rejection rates at given stage numbers, we scanned a test set of negative 

images that contains over 1 million detection windows with the cascaded classifier. We note that 

the method achieves to reject more than 90% of the detection windows at the end of 4 stages, 

which contain only 16 features in total. More complex stages are needed for only the hardest 

windows, and this early rejection strategy is what gives the method a significant speed up over 

Acquire image 
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the Dalal-Triggs algorithm. Since each stage of the detector is trained on the false positives of 

the current cascaded detector, it takes more involved ensembles with larger number of base 

learners to attain the same false positive rates as the number of stages increases (Figure 5-5a). 

                  (a)                                                                     (b) 

Figure 5-5: Cascaded classifier that uses variable-size HoG blocks as features in detail. The 
cascade consists of 23 stages where the base learners are linear SVMs with 36-D features of 
block histograms, chosen out of a feature pool of 5029 blocks with the AdaBoost algorithm. (a) 
The number of base learners at each stage. (b) The rejection rate as a cumulative sum over the 
cascade stages. We note that 4 stages are enough to reject more than 90% of the detection 
windows, providing significant speed up to the algorithm.  
 
In Table 5-1 we compare three techniques running on the CPU: Dalal and Triggs, the cascaded 

detector implementation of Zhu et al. in [2] with L2-normalization, and our approach. We note 

that the detector of Zhu et al. has 30 stages and attains about 10-5 FPPW. However, our detector 

has 23 stages, and we would expect it run slower if we had trained an equal number of stages as 

[2].  

On the average, 6.7 block evaluations are needed to classify a detection window in our method. 

Compared to the 105 block evaluations made in the Dalal-Triggs approach, we require 15.7 

times less block evaluations, as evidenced by the 14.7 speed up our implementation achieves. 

Nevertheless, Zhu et al.’s method is about two times faster than ours, evaluating 4.6 blocks on 

the average. We present the miss-rate/FPPW curves of our cascade, Zhu et al.’s and Dalal-

Triggs’ approaches in Figure 5-6, and note that our results are comparable with the other two, 

especially when FPPW goes up. We think that the difference between the two cascades arises 

from using different sets of parameters fmax, dmin in training. 
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CPU detectors Sparse scan (800 

windows / image)  

Dense scan (12800 

windows / image)  

Dalal & Triggs [1] 500 ms 7 sec 

Zhu et al.[2] 30 ms 250 ms 

Our cascade 82 ms 475 ms 
 

Table 5-1: Time required to evaluate a 240×320 image with the three different methods. Sparse 
scan corresponds to using 8×8 spatial stride and 1.2 downsampling ratio. Dense scan generates 
more hypotheses by using 4×4 spatial stride with 1.05 scaling ratio.  
 

To inspect the most informative blocks selected by the AdaBoost algorithm, we visualize the 

blocks in cascade stages 1, 3 and 5 in Figure 5-7. These blocks are the ones with the lowest 

weighted error at that round out of 125 randomly sampled blocks from the feature pool. Since the 

pool contains more than 5000 blocks, the sample size is about 2.5% of the total, hence the 

selected blocks may not be the best ones globally. We observe that the depicted blocks are 

located in certain positions such as torso, legs, and head, so the AdaBoost algorithm manages to  

 
Figure 5-6: Comparing Zhu et al., Dalal & Triggs and our cascade. Our implementation is 
comparable with the other two, especially when FPPW goes up. 

select the histogram blocks that have semantic meanings in the human body. We also observed 

that the features in the early stages generally have sizes much larger than the 16×16 blocks used 

in the Dalal-Triggs approach. This fact gives us the power to rapidly summarize the contents 

within windows and reject them if they do not contain a person. 
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(a)                       (b)                       (c) 
Figure 5-7: Visualizing the selected blocks by the AdaBoost algorithm. (a) Blocks in the first 
stage, (b) blocks in stage 3, and (c) blocks in stage 5 of the cascade. The blocks in (a)-(c) are the 
blocks with lowest weighted error out of 125 features sampled randomly from a feature pool of 
5029 blocks. 
 

 

We finish with some examples of detections obtained on the INRIA test set with our cascaded 

HoG detector. 
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Figure 5-8: Detection results obtained with the 23 stage cascade detector that reaches about 10−4 
FPPW on the test set and 5∙10−5 FPPW on the training set. The window strides are 8×8 and the 
downsampling ratio is 1.2. 
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Chapter 6 

Efficient Integral Image Computation on the 

GPU 

 
The integral image is a data structure that has been significantly useful in object detectors that 

employ features depending on sums of rectangular pixel regions. As we have discussed in 

Chapter 5, it also plays a central role in the cascade detector with HoG features, this time in the 

context of integral histograms. Here, we investigate an efficient parallel implementation of this 

important image representation, so that this implementation can be employed as a subroutine to 

speed up computer vision algorithms that rely on features with pixel sums.  

 

6.1 Background on the Integral Image 

The use of integral images for rapid feature evaluation became popular with the seminal face 

detection algorithm proposed by Viola and Jones [4]. The features employed in the detector are 

reminiscent of Haar basis functions and form an overcomplete set for image representation. 

Obtaining the proposed features involves computing sums of pixel values over rectangular 

regions. Since these sums can be calculated by using only 4 array references with the integral 

image, evaluating this set of Haar-like features is very cheap, once the integral image is 

computed.  

An alternative motivation for the integral image arises from the signal processing literature. In 

the “boxlets” work of Simard et al. [38], authors point out that in the case of linear operators  
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(e.g. the inner product f ∙ h), any invertible linear operation can be applied to either f or h if the 

inverse operation is applied to the other operand. From this point of view, the integral image can 

be expressed as a dot product, i ∙ r, where i is the input image and r is the box car function that 

takes the value 1 inside the rectangle of interest and 0 outside. This summation can be written as 

  riri    

where the double integral of the image, obtained by summation first along the rows and then 

along the columns, is in fact the integral image and the second derivative of the boxcar function 

gives rise to four delta functions at the corners of the image. This is exactly the same idea as 

using 4 array references to compute the integral image.  

This integral image formulation has allowed the Viola-Jones face detector to run in real-time, 

and influenced the development of several other computer vision algorithms. Among these, [2, 

39] apply the integral image to histograms, thus extending its usage from Haar-like wavelets to 

more complex features such as the Histograms of Oriented Gradients [1] descriptors.  

Even though the systems that incorporate the integral image approach as an intermediate 

component have been reported [2, 8, 40] to have training times in the order of days, they 

experience significant performance benefits. It is possible to build on this boost in speed by 

realizing such methods on general purpose GPUs, and obtain real-time performances [40]. 

A sequential implementation for integral image computation would require 2∙w∙h operations 

for an image of size w×h. As the size gets larger, this cost represents a significant overhead for 

the overall algorithm. Messom and Barczak [41] adopt a parallel processing approach to reduce 

this overhead. Their realization is based on the Brook stream processing language and 

demonstrates that employing the GPGPU paradigm results in significant performance benefits. 

 

6.2 The Sequential Implementation 

For an image of size w×h, we form the integral image on the CPU using the algorithm given 

below.  
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Algorithm: Sequential integral image formulation 

I : input image with size w×h 

Iint : integral image with size w×h 

Array elements are accessed in row major order. 
 

for x = 0 to w−1 do 

      Iint [x] ← 0 

for y = 1 to h−1 do 

      Iint [y∙w] ← 0 

      s ← 0 

for x = 0 to w−1 do 

      s ← s + I [x + (y−1)∙w] 

      Iint [x + y∙w + 1] ← s + Iint [x + (y−1)∙w + 1] 
 
 
 

We note that the output of this algorithm is an exclusive integral image, which is padded on the 

first row and the column by zeros and has the same size as the input. For instance, the image 
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6.3 Parallel Algorithms for Integral Image Computation 

We start by explaining the parallel prefix sum (scan) algorithm [42] which constitutes the 

foundation of our method. Next, we relate how this algorithm can be used as a building block by 

applying it first on the rows of the image, then taking the transpose, and again applying parallel 

scan on the rows of the transposed array to obtain the integral image. 

 

6.3.1 Parallel Fix Sum (Scan) 
The all-prefix-sums operation takes a binary associative operator ⊕, and an array of n elements 

],...,,[ 110 naaa  

and returns  
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)]...(),...,(,[ 110100  naaaaaa  

If we let the operator ⊕ be summation, we obtain the inclusive scan operation. If we shift the 

resulting array to the right by one element and insert the identity in the beginning, we end up 

with the exclusive scan operation, which returns 

 

In the rest of this work, we will be focusing on the exclusive version of the operation, and 

simply refer to it as scan. 

For an input array with size n, the scan algorithm has computational complexity of O(n), and it 

consists of two phases: the reduce phase (or the up-sweep phase) and the down-sweep phase. We 

can visualize the reduce phase as building a binary tree (Figure 6-1), at each level reducing the 

number of nodes by half, and making one addition per node. Since the operations are performed 

in place using shared memory, the tree we build is not an actual data structure, but helps 

explaining the algorithm. 

 

)]...(),...,(,,0[ 210100  naaaaaa

(a) (b) 

x0 x1 x2 x3 

  

root

+ + 

+ 

Figure 6-1: (a) The reduce phase applied on an array of four elements. (b) Binary tree view of 
the algorithm. Scanning is performed from the leaves to the root, where the root contains the sum 
of all four elements. 

    x0            x0 + x1       x2          Σ(x0…x3) 

+ + 

    x0             x1     x2    x3 

+ 

    x0           x0 + x1      x2          x2 + x3 
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In the down-sweep phase, we traverse the tree from the root to the leaves, and use the partial 

sums we computed in the reduce phase to obtain the scanned array. We note that the last element 

is set to zero in the beginning and it propagates to reach the beginning of the array, thus resulting 

in an exclusive computation (Figure 6-2). 

 

The overall cost of these phases is 2(n−1) summations and (n−1) swaps, which is in O(n) time, 

same as the sequential algorithm. Following [42], we provide the CUDA kernel that implements 

the scan algorithm below. 

Even though this kernel is work efficient, it suffers from bank conflicts in the shared memory. 

In our implementation, we try to avoid these conflicts by adding a variable amount of padding to 

each shared memory index we use, again as suggested in [42]. The amount we add is equal to the 

value of the index divided by the number of memory banks, which is equal to 16 for our graphics 

card. 

As it is, this kernel is unable to scan arrays with sizes larger than 1024, since the maximum 

number of threads per block is 512 and a single thread loads and processes two data elements. 

Influenced by [10], we solve this problem by employing several thread blocks and making them 

responsible for a certain part of the input. If we let the input array contain n elements and if each 

block processes b of the entries, we need to launch n/b thread blocks and b/2 threads in each  

Figure 6-2: The down-sweep phase. At each level of the tree, there are as many swapping 
operations as summations. 

zero 

+ 

+ + 

    x0           x0 + x1        x2         Σ(x0…x3) 

    x0           x0 + x1        x2                0  

    x0          0         x2           x0 + x1 

     0          x0      x0 + x1    Σ(x0…x2) 
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CUDA Code: Scan kernel for the GPU 

 
__global__ void scan(float *input, float *output, int n) 
{ 
  extern __shared__ float temp[]; 
  int tdx = threadIdx.x; int offset = 1; 
 
  temp[2*tdx]   = input[2*tdx]; 
  temp[2*tdx+1] = input[2*tdx+1]; 
 
  for(int d = n>>1; d > 0; d >>= 1) 
  { 
    __syncthreads(); 
       if(tdx < d)  
    { 
      int ai = offset*(2*tdx+1)-1;  
      int bi = offset*(2*tdx+2)-1; 
      temp[bi] += temp[ai]; 
    } 
    offset *= 2; 
  } 
 
  if(tdx == 0) temp[n - 1] = 0; 
 
  for(int d = 1; d < n; d *= 2) 
  {  
    offset >>= 1; __syncthreads(); 
    if(tdx < d) 
    { 
      int ai = offset*(2*tdx+1)-1;  
      int bi = offset*(2*tdx+2)-1; 
 
      float t  = temp[ai]; 
      temp[ai] = temp[bi]; 
      temp[bi] += t; 
    } 
  } 
  __syncthreads(); 
  output[2*tdx]   = temp[2*tdx];  
  output[2*tdx+1] = temp[2*tdx+1]; 
} 

 

block. With the usual scan algorithm, each thread block scans its part of the array, but before 

zeroing the last element that contains the sum of all the elements in that segment, we register it to 

an auxiliary array Isum. We then scan this array in place and add Isum[i] to all elements of the 

segment that (i+1)st thread block is responsible for. Figure 6-3 tries to further illustrate this. To 

handle inputs with a size that is not a power of two, we pad the last segment of the array before 

scanning. 
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6.3.2 Scanning the Image Rows 
We treat each row of the image as an independent array and scan the rows in parallel. In our 

implementation, each row is divided into segments of 512 pixels, and each segment is processed 

by a thread block consisting of 256 threads. Hence, we launch a scan kernel using a grid with 

dimensions nseg×h, where nseg is the number of segments in each row, and h is the height of the 

image.  

 

6.3.3 Computing the Transpose 
After scanning the rows of the image, we take the transpose of the resultant array, so that we 

can use the same scanning kernel twice in order to compute the integral image. Taking the 

transpose is the cheapest routine in our method, because we utilize the shared memory to provide 

coalescence, and apply padding to the shared memory in order to avoid bank conflicts, as 

suggested in [43]. We present the transpose kernel next, where we take BLOCK_DIM as 16. 

 

 

Input array 

Store sums to aux. array Isum 

Scan blocks 

Scan Isum 

+ + + Add Isum[i] to all 
elements in (i+1)st 
block 

Scan 

 Block1    Block 2   Block 3   Block4 

 Block1    Block 2   Block 3   Block4 

   

   

Figure 6-3: Scanning arrays of arbitrary size. 
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CUDA Code: Transpose kernel for the GPU 

__global__ void transpose(float *input, float *output, int width, int height) 
{ 
 
 __shared__ float temp[BLOCK_DIM][BLOCK_DIM+1];  
 int xIndex = blockIdx.x*BLOCK_DIM + threadIdx.x; 
 int yIndex = blockIdx.y*BLOCK_DIM + threadIdx.y; 
 
 if((xIndex < width) && (yIndex < height)) 
 { 
  int id_in = yIndex * width + xIndex; 
   temp[threadIdx.y][threadIdx.x] = input[id_in]; 
 } 
 
 __syncthreads(); 
 
 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x; 
 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y; 
 
 if((xIndex < height) && (yIndex < width)) 
 { 
 int id_out = yIndex * height + xIndex; 
 output[id_out] = temp[threadIdx.x][threadIdx.y]; 
 } 
 
} 

 

After transposing, we scan the rows of the transposed array to obtain the integral image. We 

launch a scan kernel with grid dimensions n͂seg×w, where n͂seg is the number of thread blocks, and 

w is the width of the image. We note that the resulting integral image is in transposed form, but 

this poses no difficulties since the pixel at position (x, y) can be accessed by the index (y+x∙h). 

 

6.4 Experiments and Evaluation 

Here, we report integral image building times as a function of the input image size for single and 

double precision floating point arithmetic, and for vector type data. We compare our GPU 

processing times with our sequential implementation, as well as the GPU implementation in [41]. 

In all of our results, we exclude the time spent for data transfer and report only the GPU 

computation times, which are obtained on an NVIDIA GeForce GTX 295 graphics card. We use 

a PC with 2.5 GHz CPU and 3GB memory.  
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6.4.1 Single Precision Floating Point Computation 
A multiprocessor consists of eight single precision thread processors, two special function units, 

on-chip shared memory, an instruction unit, and a single double precision unit. Therefore, GPUs 

are optimized for single precision computations, and there is an order of magnitude difference in 

the theoretical performance bandwidth between single and double precision operations. Figure 6-

4 compares the results obtained with the sequential algorithm running on the CPU and the two 

single precision GPU implementations. For a 4 megapixel input, our system works about 3 times 

faster than the proposed method in [41], which is implemented with the Brook language and runs 

on a ATI graphics card. 

 

 

 

 

 
Figure 6-4: Performance comparison of single precision integral image computation on the CPU 
and the GPU. Results for [41] are replicated from their work.  
 

6.4.2 Single Precision Vector Processing 
In addition to standard data types, CUDA also provides packed data structures to ease access to 

multi-dimensional inputs. The vector type formed by a bundle of four floating point numbers is 

called float4. Since the size of this structure is 16 bytes, it satisfies two important properties 

that increase the maximum memory bandwidth. First, the GPU is capable of reading 16-byte 

words from global memory into registers in a single instruction. Second, global memory 

bandwidth is used most efficiently when the memory accesses of the threads in a half-warp can 

be coalesced into a single memory transaction of 32, 64, or 128 bytes. In the case of float4 data, 

this results in only two 128 byte transactions per half-warp, given that the threads access the 
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words in sequence. Therefore, it is possible to process four times more data with a smaller 

impact on the memory bandwidth. This point is illustrated in Figure 6-5. 

 

 

 

 

 

 
Figure 6-5: Comparing the GPU processing times of our float4 implementation with four times 
the processing time of our float integral image. We are able to process four times more data 
using float4 vector type, with a smaller impact on the memory bandwidth.  
 

6.4.3 Double Precision Floating Point Computation 
As GPUs are optimized for single precision arithmetic, double precision implementation results 

in a lower performance as depicted in Figure 6-6. For large image sizes, this performance 

degradation may be traded-off for higher accuracy computation. We note that our results are 

about 4 times faster than the implementation by [41] for a 2048×2048 size image. 

 

 

 

 

 
Figure 6-6: Performance comparison of double and single precision GPU implementations. 
Results for [41] are replicated from their work. 
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We finalize our discussion by noting that even though using double precision arithmetic 

reduces the GPU performance, it is still 9 times faster than the double precision CPU 

implementation, for a 4 megapixel input (Figure 6-7). As the input size gets smaller, we see that 

the performance difference is reduced. This is mainly because the CPU implementation makes 

use of its large cache and it is not possible to utilize all GPU processors at small image sizes.    

 

 

 

 

 

 

 

 

 
Figure 6-7: Integral image computation times with double precision on the CPU and the GPU. 
We report a speed up by a factor of 9 with the GPU implementation. 
 

 

6.4.4 Kernel Occupancy and Performance 
Maximum occupancy per kernel is a way of measuring CUDA code performance by quantifying 

how efficiently a multiprocessor is being used. Occupancy is defined as the ratio of the active 

warps to the maximum number of warps supported on a multiprocessor and determined by the 

shared memory and register usage and the thread block configuration of a kernel. 

Table 6-1 presents occupancies as well as the processing times related with each kernel in our 

method. We note that all the kernels involved in integral image computation works with full 

occupancy. 
 

Kernel Occupancy Mem. Throughput Shared Mem. Registers Threads/Blk 
Scan array 100 % 17 GB/s 2224  11 256 
Increment block 100 % 50 GB/s 48 5 256 
Transpose 100 % 49 GB/s 1120 8 16×16 

 

Table 6-1: Shared memory and register usage, as well as the thread block configuration affects 
the kernel occupancies. The kernels in our implementation work at full occupancy, which is an 
indicator of good performance. The overall memory throughput reflects how fast the kernels 
access data from the global memory.  
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Chapter 7 

Fast Human Detection with Cascaded 

Ensembles on the GPU 

 
We investigate the feasibility of realizing the cascaded HoG detector introduced in Chapter 5 on 

a data parallel basis. Since the integral image idea is a key point in accelerating this detector, we 

make use of our parallel algorithms detailed in Chapter 6 for integral histogram computation. We 

report a speed up by a factor of 13 relative to our CPU implementation by carrying the detector 

over to our graphics processor.   

 

7.1 GPU Implementation of the Cascaded Detector 
Figure 7-1 shows the steps of our implementation, which starts with transferring the image from 

the CPU to the GPU’s global memory. At each scale integral histograms for the discretized 

gradient orientations are computed, and these are then evaluated by the ensemble classifiers for 

object localization. When all scales are accounted for, the part of the GPU’s global memory that 

contains the detection results are copied to CPU’s main memory. Visualization of the detected 

objects is presented in the form of bounding boxes, and (optionally) mode estimation can be 

applied to fuse the neighboring positives. In what follows, we detail the steps of our detector. 
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Downscale image 

Compute gradient images 

Compute row sums 

Transpose, compute column 

Evaluate cascade stages 

Non-maxima suppression, 
display results 

    CPU 

     CPU 

GPU 

Acquire image, convert to 

Figure 7-1: Steps of localization on the GPU 
 

 

 

 

 

 

 

 
 

 

7.1.1 Image Acquisition and Preprocessing 
The input is loaded to CPU memory and converted to grayscale with OpenCV routines. Next, it 

is copied to a CUDA array residing in the GPU’s global memory and bound a 2 dimensional 

texture. By setting the ReadMode attribute of the texture appropriately, it is possible to get 32 bit 

floating point image values scaled to [0, 1] from the integer valued image pixels directly. 

 

7.1.2 Downscaling and Gradient Computation 
We evaluate these steps inside a single kernel. Each thread in this kernel corresponds to a single 

pixel, and they are grouped in 8×8 thread blocks for optimum efficiency. For downscaling, we 

take advantage of the texturing unit to efficiently subsample the target image by bilinear 

interpolation using the tex2D function. At each pixel, horizontal and vertical gradients are 

computed using centered convolution kernels [-1, 0, 1]; which we implement by simply taking 

the difference of the neighboring pixels around the pixel of interest. In this step, we also compute 

the gradient magnitude and the histogram bin that it corresponds to. To register the magnitudes, 

we use two float4 arrays I1-4 and I5-8, and one float array I9. Hence, at a given pixel, we store 
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its magnitude in the appropriate field of I1-4 if its orientation is between 0° and 80°, in I5-8 if the 

orientation is between 80° and 160°, and in I9 if it is larger than 160°. 

 

7.1.3 Computing the Integral Histograms 
This step is largely based on our discussion in Chapter 6. To compute the integral histograms for 

bins 1-4 and 5-8, we simply compute the integral images for the float4 vector type using the 

inputs I1-4 and I5-8. For the ninth bin, we compute the single precision floating point integral 

image for the input I9. 

 

7.1.4 Evaluating the Cascade Stages 
This stage contains the random memory access operations that do not fit well in the CUDA 

memory model. In order to evaluate a single HoG feature, we need to access 9 different positions 

within 9 integral histogram images I1-4, I5-8, and I9 (Figure 5-3). Since the relative positions of the 

accessed points are determined by boosting, they are not continuous; hence memory coalescence 

becomes a problem while reading data from the global memory. There are two possible ways to 

overcome this problem, we can either employ shared memory or use textures. Let us explain why 

either method is not viable in our case. 

Using shared memory for feature evaluation: We let each thread block be responsible for a 

detection window. Shared memory allowance of each thread block is 16kB, which corresponds 

to 4096 floating point numbers. Since our detection windows have size 64×128, we need 213 ∙ 9 ∙ 

4 = 288kB of space to hold each window in the shared memory for efficient random access. This 

is clearly not possible. 

Using texture memory: Cache working set for texture memory is 6 to 8kB for each 

multiprocessor. Even if we assume that a multiprocessor executes one block at a time, the texture 

cache is far smaller than our needs. Also, each time we subsample the image we need to rebind 

the global memory that holds the integral histograms to the texture memory, but the 

programming model does not support writes to textures bound to CUDA arrays. Hence we 

directly access the global memory for feature evaluation. 

We launch kernels sequentially for each ensemble. The number of features in the early stages is 

much lower than it is for the late stages. To make better use of the CUDA memory model, we 

exploit this property by evaluating early and late stages with different kernels: 
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Feature evaluation, early stages: Each thread block works on a single detection window, and 

consists of 3×3×ni threads, where ni is the number of base learners in the stage. Thus, a group of 

9 threads is responsible for a feature, and all features are processed in parallel within a window. 

Each thread in a group accesses a single address in the integral histograms, reading all 9 bin 

values and recording them to shared memory. When the 81 required elements for a base learner 

are written to shared memory, threads go on to form the 36 dimensional histogram descriptor. In 

order not to use any additional shared memory, we make the necessary computations to form the 

descriptors in place. We store the linear SVM classifiers in a 1 dimensional texture, and compute 

the dot product between the descriptor and the classifier to get the vote of each base learner. 

After all evaluations within the block are completed, we compare the sum of the votes against 

the stage threshold Ti, and reject the window if it falls below it. In this kernel formulation, a 

thread block requires 9×9×4×ni bytes, which becomes larger than 8kB when ni > 25. Hence, for 

stages with more than 25 learners, we utilize the following kernel: 

Feature evaluation, late stages: When the number of base learners is so high that it is not 

possible to launch more than one thread block due to shared memory pressure, we resort to a 

different kernel formulation. Now we employ two dimensional blocks with size 3×ni, where a 

group of 3 threads are responsible for a single base learner. Each of these 3 threads operate on 

one of I1-4, I5-8, or I9, compute all 4 cell histograms using the corresponding integral histogram 

image, and write it to the shared memory. We note that by sacrificing some parallelism, we are 

able to accommodate more than 50 base learners in parallel within a single thread block, before 

reaching a shared memory requirement of 8kB. This is because we consume only 36×4×ni bytes 

of shared memory per block now. Normalization and taking the dot product with the linear SVM 

features is again carried out in this kernel, and each detection window is evaluated to either 

rejection or completion. We note that by utilizing two different types of kernels for feature 

evaluation, we observed an improvement of 15ms for a 1280×960 image, with 1.05 subsampling 

ratio. 

 

7.1.5 Mode Estimation and Displaying the Results 
After processing all scales, we copy the array that contains the binary detection results belonging 

to each window to CPU’s main memory. We can optionally apply non-maxima suppression 

before visualizing the detection results.  
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7.2 Experiments and Evaluation 

The cascaded classifier used in our GPU experiments is the same detector with 23 stages and 

reaches about 5 ∙ 10-5 FPPW false positive, and 0.9923 ≈ 0.8 detection rates on the training set. 

Due to single precision computations of integral histograms, detection results show slight 

differences between the CPU and the GPU realizations. Since the average difference between 

integral histogram bins computed on the two architectures is less than 10−3 per pixel, we believe 

the parallel implementation represents the sequential one faithfully. 

Table 7-1 presents a performance comparison between two GPU implementations, Wojek et al.’s 

realization of the Dalal-Triggs method [3] and our GPU approach for the cascaded detector. We 

note that our implementation is slower by 10% when the subsampling factor is 1.05, but has 

about the same speed when it is 1.2. This difference should be caused from our CPU dependent 

steps, whose number increase as the number of scales increases. We also observe a 13× speed up 

when our method runs on the GPU. 

 

Detectors Scaling: 1.05 Scaling: 1.1 Scaling: 1.2 

Wojek et al.[3] 385 ms 216 ms 133 ms 

Our GPU 422 ms 228 ms 131 ms 

Our CPU 5470 ms 2963 ms 1710 ms 
 

Table 7-1: Processing times for a 1280×960 image. Presented results are for three different 
downscaling factors using 8×8 spatial strides. We note that our results exclude mode estimation 
and [3] uses a different GPU card than ours.  
 

The HoG detector in the experiments of [34] reaches a speed of 353 ms per 1280×960 image 

which is further faster than our cascade, however they do not report results for downscaling 

ratios other than 1.05. We believe that our detector has comparable speed performance as these 

two suggested implementations, demonstrating real-time performance. 

We conclude our discussion about the parallel implementation of the cascade detector with an 

inspection of occupancies and processing times for each part in our method: 
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Processing step Occupancy Memory 

throughput 

Processing 

time 

Data transfers − − 18 ms 

Gradient kernel 50% 56 GB/s 6 ms 

Integral hist. 100% 17 – 50 GB/s 50 ms 

Early cascade st. 25 – 50% 18 GB/s 16 ms 

Late cascade st. 19 – 31% 7 GB/s 41 ms 
 

Table 7-2: Average performance results for a 1280×960 image with 1.2 subsampling ratio. 
Values for kernels used in integral histograms are reported in Chapter 5. Occupancies of 
classification kernels depend on the number of features at a given stage. 
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Chapter 8 

Conclusion 

 
In this thesis, we investigated the Histograms of Oriented Gradient (HoG) algorithm for person 

detection, as well as two different variations of this method and presented a study on the effect of 

these modifications on the detection speed and accuracy.  

By formulating the detection algorithm in terms of a cascade of strong classifiers, we 

demonstrated that it is possible obtain a significant speed up. This is achieved by rapidly 

rejecting trivial detection windows and spending more time and resources on the more complex 

ones. The features employed in the ensembles are automatically chosen by the AdaBoost 

algorithm, so that they complement each other to satisfy rejection and detection rates at each 

stage of the attentional cascade. We reported a similar ROC curve and more than order of 

magnitude acceleration relative to the original Dalal & Triggs method. 

The integral image is a powerful alternative image representation that has opened the path to 

real time performance for cascade-of-rejectors type detectors. By providing parallel algorithms to 

efficiently compute this data structure, we observed a speed up of about an order of magnitude 

compared to the sequential image. We also presented a study on the effect of using double 

precision floating point arithmetic and vector type data on the computation performance. 

We also investigated the feasibility of a data parallel realization of the cascade detector with 

HoG features on the GPU. Even though the evaluation of these features requires random memory 

accesses which do not fit well in the GPU memory model, we obtained a significant performance 

boost compared to our sequential implementation. This is thanks to the efficient integral image 

algorithms we introduced and using two different kernels to better suit the complexity of the 

cascade stages. For a 1280×960 image, we observed a 13× speed up relative our CPU realization, 
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and noted comparable detection times with the proposed GPU implementations of the Dalal-

Triggs algorithm. 
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