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 Joint reconstruction from undersampled acquisitions 

substantially improves reconstruction quality1  

 

 

 
[1] Bilgic et al. MRM, 2011 
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 Suppose that one of the contrasts can be acquired much 

faster than the others (e.g. AutoAlign) 
 

 If we fully-sample the fast contrast, can we use it to help 

reconstruct the others? 
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Observation model 

𝐅  𝒙 =  𝒚 

𝐅: partial Fourier transform 

𝒙: image to be estimated 

𝒚: undersampled k-space data 



Observation model – sparse representation 
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Data likelihood 

 Assuming that the k-space data is corrupted by complex-

valued Gaussian noise with 𝜎2 variance, 

p 𝒚  | 𝜹, 𝜎2 ∼ 𝓝(𝐅𝜹 − 𝒚 , 𝜎2) 

Gaussian 

likelihood 



Prior distribution on gradient coefficients 
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 So that ith pixel is a zero-mean Gaussian with variance 𝛾𝑖 
 

 Multiplicative combination of all pixels give the full prior 

distribution, 

 

p 𝛿𝑖 | 𝛾𝑖 ∼ 𝓝(0, 𝛾𝑖 ) 

Gaussian prior 

p 𝜹 | 𝜸 ∼       𝓝(0, 𝛾𝑖 )  

𝑖
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𝚺 = 𝚪 − 𝚪𝐅𝐻𝐀−1𝐅𝚪 

𝚪 = 𝑑𝑖𝑎𝑔(𝜸) 

𝐀−1 = (𝜎2𝐈 + 𝐅𝚪𝐅𝐻)−1 Inversion using Lanczos algorithm1 

[1] Seeger et al. MRM, 2010 

Posterior distribution for gradient coefficients 



EM algorithm for optimization 

 Expectation-maximization algorithm1 is used to estimate the 

hyperparameters and the posterior iteratively, 

Expectation step: 

𝝁 = 𝚪𝐅𝐻𝐀−1 𝒚  

𝚺 = 𝚪 − 𝚪𝐅𝐻𝐀−1𝐅𝚪 

Maximization step: 

𝛾𝑖 = |𝜇𝑖|
2/(1 − Σ𝑖𝑖/𝛾𝑖) 

[1] Wipf et al. IEEE Trans Signal Process, 2007 
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Using fully-sampled prior image 

 If we run EM iterations on the fully sampled image 𝜹𝑝𝑟𝑖𝑜𝑟  
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fully-sampled prior image 

Use 𝛾𝑝𝑟𝑖𝑜𝑟 to initialize       

the EM iterations for 

undersampled images 
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Bayesian CS w/ prior 

3.0% RMSE 

fully-sampled prior 

error: scaled 10× 

sparseMRI: 20.1% RMSE 

BCS w/ prior: 3.0% RMSE 



Turbo Spin Echo  

Late Echo 

fully-sampled prior 

Early Echo 

undersampled 

R = 4  

sampling pattern 



Turbo Spin Echo  

sparseMRI1: Total Variation 

9.3% RMSE 

error: scaled 10× 
[1] Lustig et al. MRM, 2007 
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BCS w/ prior: 

Turbo Spin Echo  

Late Echo 

fully-sampled prior 

5.8% RMSE 

error: scaled 10× 
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SRI24 atlas 

proton density 

fully-sampled prior 

T2 weighted 

undersampled 
T1 weighted 

undersampled 

R = 4  

sampling pattern 



SRI24 atlas 

sparseMRI1: Total Variation 

9.5% RMSE 

error: scaled 10× 

[1] Lustig et al. MRM, 2007 

sparseMRI: 9.5% RMSE 



SRI24 atlas 

Joint Bayesian CS1 

[1] Bilgic et al. MRM, 2011 

4.9% RMSE 

error: scaled 10× 

Joint BCS: 

sparseMRI: 9.5% RMSE 

4.9% RMSE 



SRI24 atlas 

Joint Bayesian CS w/ prior 
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proton density 
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Conclusion 

 In a multi-contrast scan, one of the acquisitions may be much 

faster than the others (e.g. AutoAlign) 

 

 When the fast contrast is fully-sampled, we use it as prior 

information to help recover the undersampled contrasts  

 

 Our method uses the prior image only to initialize Bayesian 

CS iterations, hence imposes the prior in a soft manner 



Conclusion 

 In a multi-contrast scan, one of the acquisitions may be much 

faster than the others (e.g. AutoAlign) 

 

 When the fast contrast is fully-sampled, we use it as prior 

information to help recover the undersampled contrasts  

 

 Our method uses the prior image only to initialize Bayesian 

CS iterations, hence imposes the prior in a soft manner 

 

 Acknowledgements:  

Siemens Healthcare, Siemens-MIT Alliance, 

CIMIT-MIT Medical Engineering Fellowship, R01 EB 007942 


