

Joint Bayesian Compressed Sensing with Prior Estimate

Berkin Bilgic¹, Tobias Kober^{2,3}, Gunnar Krueger^{2,3}, Elfar Adalsteinsson^{1,4}

¹ Electrical Engineering and Computer Science, MIT

² Laboratory for Functional and Metabolic Imaging, EPFL

³ Siemens Schweiz AG

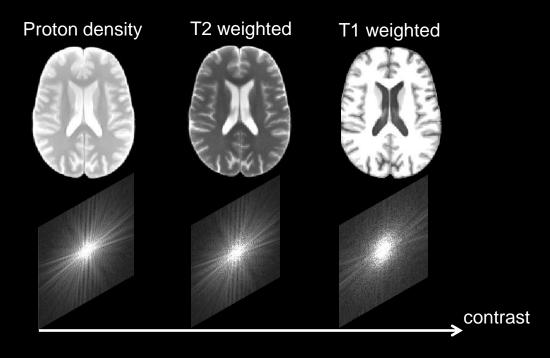
⁴ Harvard-MIT Division of Health Sciences and Technology

Declaration of Relevant Financial Interests or Relationships

Speaker Name: Berkin Bilgic

I have no relevant financial interest or relationship to disclose with regard to the subject matter of this presentation. Clinical MRI: acquiring multiple contrast preparations increases the diagnostic power, but also the total scan time

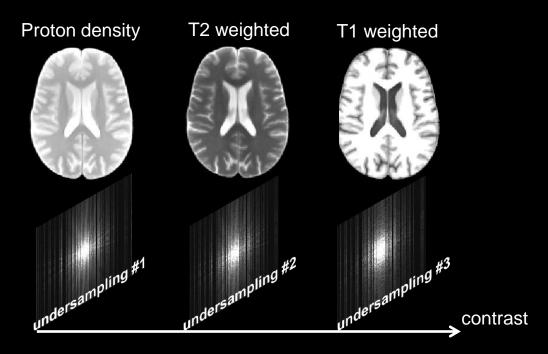
 Clinical MRI: acquiring multiple contrast preparations increases the diagnostic power, but also the total scan time



SRI24 atlas¹

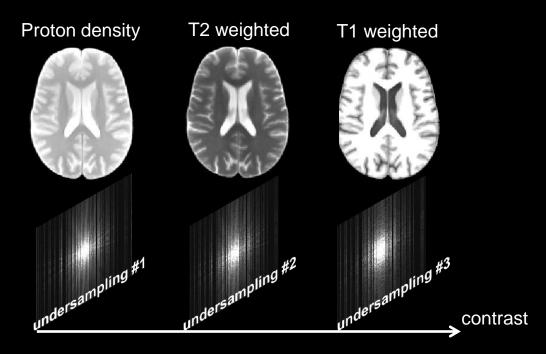
[1] Rohlfing et al. Hum Brain Map, 2010

 Clinical MRI: acquiring multiple contrast preparations increases the diagnostic power, but also the total scan time



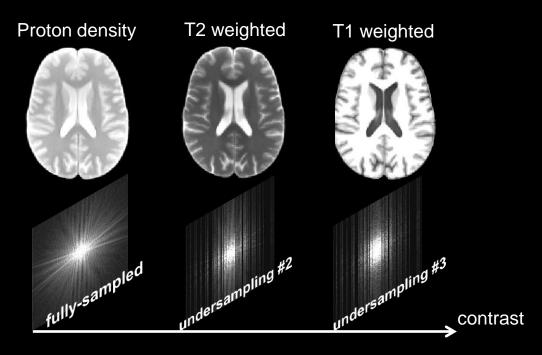
 Joint reconstruction from undersampled acquisitions substantially improves reconstruction quality¹

 Clinical MRI: acquiring multiple contrast preparations increases the diagnostic power, but also the total scan time



 Suppose that one of the contrasts can be acquired much faster than the others (e.g. AutoAlign)

 Clinical MRI: acquiring multiple contrast preparations increases the diagnostic power, but also the total scan time



- Suppose that one of the contrasts can be acquired much faster than the others (e.g. AutoAlign)
- If we fully-sample the fast contrast, can we use it to help reconstruct the others?

Observation model

$$\mathbf{F} \ \mathbf{x} = \mathbf{y}$$

- F: partial Fourier transform
- \boldsymbol{x} : image to be estimated
- y: undersampled k-space data

Observation model – sparse representation

$$\mathbf{V} \mathbf{F} \ \mathbf{x} = \mathbf{V} \mathbf{y}$$

$$\mathbf{V} = (\mathbf{1} - e^{-2\pi j \omega/n})$$

Observation model – sparse representation

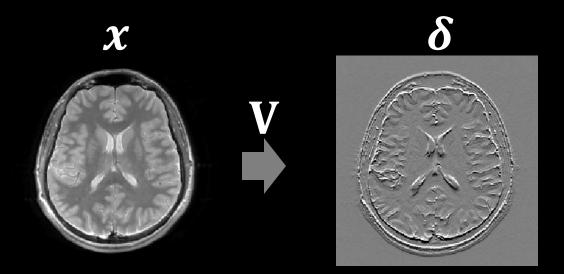
$\mathbf{F} \ \boldsymbol{\delta} = \widetilde{\boldsymbol{y}}$

 δ : image gradient to be estimated \widetilde{y} : modified k-space data

Observation model – sparse representation

$\mathbf{F} \ \boldsymbol{\delta} = \widetilde{\mathbf{y}}$

$\boldsymbol{\delta}$: image gradient to be estimated $\widetilde{\boldsymbol{y}}$: modified k-space data



- Assuming that the k-space data is corrupted by complex-valued Gaussian noise with σ^2 variance,

$$p(\tilde{y} \mid \delta, \sigma^2) \sim \mathcal{N}(F\delta - \tilde{y}, \sigma^2)$$

Gaussian
likelihood

Bayesian CS places hyperparameters γ on each pixel,

$$\underbrace{\mathbf{p}(\delta_i \mid \gamma_i)}_{\text{Gaussian prior}} \sim \mathcal{N}(0, \gamma_i)$$

So that ith pixel is a zero-mean Gaussian with variance γ_i

Bayesian CS places hyperparameters γ on each pixel,

$$\underbrace{\mathbf{p}(\delta_i \mid \gamma_i)}_{\text{Gaussian prior}} \sim \mathcal{N}(0, \gamma_i)$$

- So that ith pixel is a zero-mean Gaussian with variance γ_i
- Multiplicative combination of all pixels give the full prior distribution,

$$p(\boldsymbol{\delta} \mid \boldsymbol{\gamma}) \sim \prod_{i} \mathcal{N}(0, \gamma_{i})$$

 Using the likelihood and the prior, we invoke Bayes' Rule to arrive at the posterior,

$p(\boldsymbol{\delta} \mid \tilde{\boldsymbol{y}}, \boldsymbol{\gamma}) \propto p(\boldsymbol{\delta} \mid \boldsymbol{\gamma}) \cdot p(\tilde{\boldsymbol{y}} \mid \boldsymbol{\delta})$

 Using the likelihood and the prior, we invoke Bayes' Rule to arrive at the posterior,

$$p(\boldsymbol{\delta} \mid \boldsymbol{\tilde{y}}, \boldsymbol{\gamma}) \propto p(\boldsymbol{\delta} \mid \boldsymbol{\gamma}) \cdot p(\boldsymbol{\tilde{y}} \mid \boldsymbol{\delta})$$

Gaussian Gaussian Gaussian bosterior prior likelihood

 Using the likelihood and the prior, we invoke Bayes' Rule to arrive at the posterior,

 $p(\boldsymbol{\delta} \mid \boldsymbol{\widetilde{y}}, \boldsymbol{\gamma}) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ $\boldsymbol{\mu} = \boldsymbol{\Gamma} \mathbf{F}^{H} \mathbf{A}^{-1} \, \boldsymbol{\widetilde{y}}$ $\boldsymbol{\Sigma} = \boldsymbol{\Gamma} - \boldsymbol{\Gamma} \mathbf{F}^{H} \mathbf{A}^{-1} \mathbf{F} \boldsymbol{\Gamma}$

 Using the likelihood and the prior, we invoke Bayes' Rule to arrive at the posterior,

```
p(\boldsymbol{\delta} \mid \widetilde{\boldsymbol{y}}, \boldsymbol{\gamma}) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
   \boldsymbol{\mu} = \boldsymbol{\Gamma} \mathbf{F}^H \mathbf{A}^{-1} \, \widetilde{\boldsymbol{\gamma}}
   \Sigma = \Gamma - \Gamma F^H A^{-1} F \Gamma
        \Gamma = diag(\gamma)
\mathbf{A}^{-1} = (\sigma^2 \mathbf{I} + \mathbf{F} \mathbf{\Gamma} \mathbf{F}^H)^{-1}
```

Inversion using Lanczos algorithm¹

[1] Seeger et al. MRM, 2010

EM algorithm for optimization

 Expectation-maximization algorithm¹ is used to estimate the hyperparameters and the posterior iteratively,

> Expectation step: $\mu = \Gamma F^{H} A^{-1} \widetilde{y}$ $\Sigma = \Gamma - \Gamma F^{H} A^{-1} F \Gamma$

Maximization step:

 $\gamma_i = |\mu_i|^2 / (1 - \Sigma_{ii} / \gamma_i)$

[1] Wipf et al. IEEE Trans Signal Process, 2007

EM algorithm for optimization

 Expectation-maximization algorithm¹ is used to estimate the hyperparameters and the posterior iteratively,

$$\begin{split} \underline{\mathsf{Expectation step:}} \\ \boldsymbol{\mu} = \mathbf{\Gamma} \mathbf{F}^{H} \mathbf{A}^{-1} \, \mathbf{\tilde{y}} \\ \mathbf{\Sigma} = \mathbf{\Gamma} - \mathbf{\Gamma} \mathbf{F}^{H} \mathbf{A}^{-1} \mathbf{F} \mathbf{\Gamma} \end{split}$$

Maximization step:

$$\overline{\gamma_i} = |\mu_i|^2 / (1 - \Sigma_{ii} / \gamma_i)$$

[1] Wipf et al. IEEE Trans Signal Process, 2007

EM algorithm for optimization

 Expectation-maximization algorithm¹ is used to estimate the hyperparameters and the posterior iteratively,

> Expectation step: $\boldsymbol{\mu} = \boldsymbol{\Gamma} \boldsymbol{F}^{H} \boldsymbol{A}^{-1} \, \boldsymbol{\tilde{y}}$ $\boldsymbol{\Sigma} = \boldsymbol{\Gamma} - \boldsymbol{\Gamma} \boldsymbol{F}^{H} \boldsymbol{A}^{-1} \boldsymbol{F} \boldsymbol{\Gamma}$

$$\frac{\text{Maximization step:}}{\gamma_i = |\mu_i|^2 / (1 - \sum_{ii} / \gamma_i)}$$

Using fully-sampled prior image

- If we run EM iterations on the fully sampled image $oldsymbol{\delta}_{prior}$

Expectation step: $\mu_{prior} = \delta_{prior}$ $\Sigma_{prior} = 0$ Maximization step: $\gamma_{prior} = |\mu_{prior}|^2$

Using fully-sampled prior image

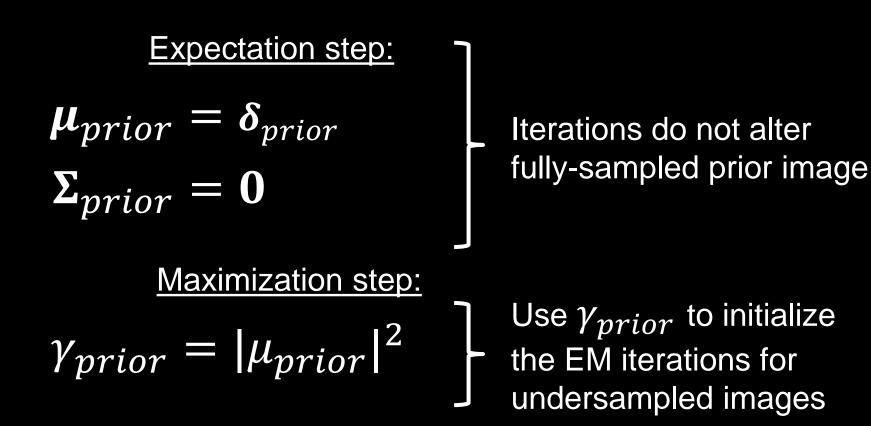
If we run EM iterations on the fully sampled image δ_{prior}

Expectation step: $\mu_{prior} = \delta_{prior}$ $\Sigma_{prior} = 0$ Maximization step:

 $\gamma_{prior} = |\mu_{prior}|^2$

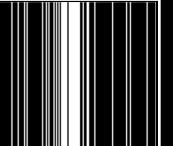
Iterations do not alter fully-sampled prior image **Using fully-sampled prior image**

If we run EM iterations on the fully sampled image δ_{prior}



Extended Shepp-Logan Phantoms

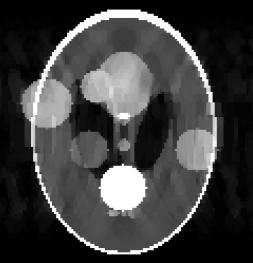
undersampled



sampling pattern

Extended Shepp-Logan Phantoms

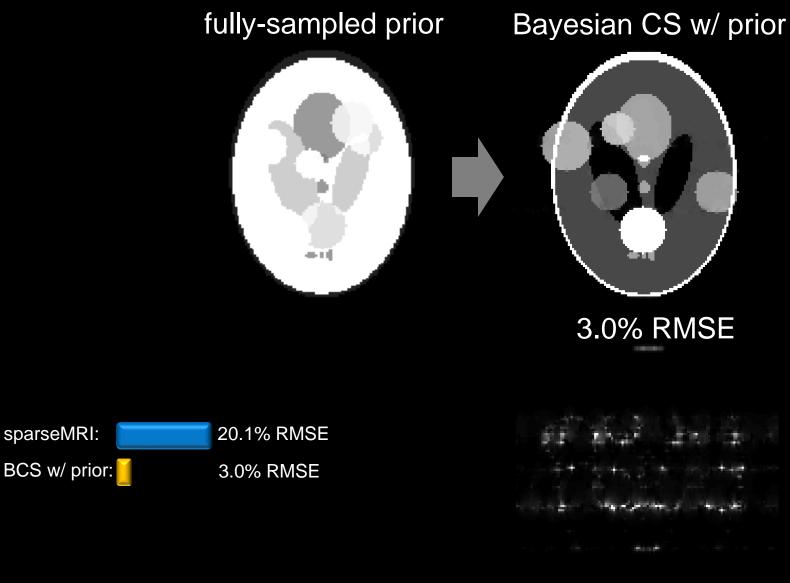
sparseMRI¹: Total Variation



20.1% RMSE

error: scaled 10×

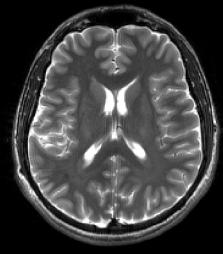
Extended Shepp-Logan Phantoms



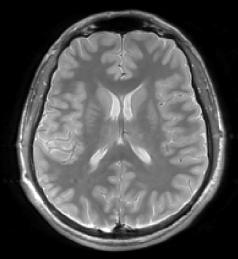
error: scaled 10×

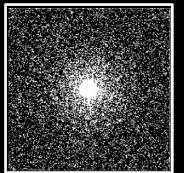
Turbo Spin Echo

Late Echo fully-sampled prior



Early Echo undersampled

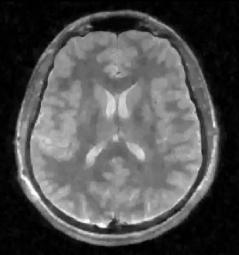




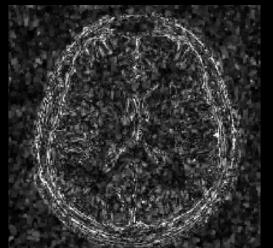
sampling pattern

Turbo Spin Echo

sparseMRI¹: Total Variation



9.3% RMSE



error: scaled 10×

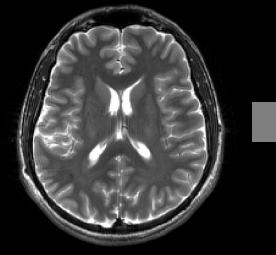
[1] Lustig et al. MRM, 2007

sparseMRI:

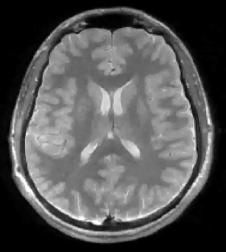
9.3% RMSE

Turbo Spin Echo

Late Echo fully-sampled prior



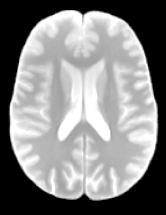
Bayesian CS w/ prior



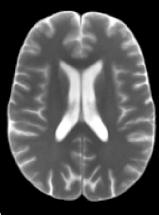
5.8% RMSE

error: scaled 10×

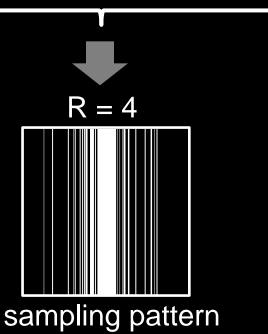
proton density fully-sampled prior



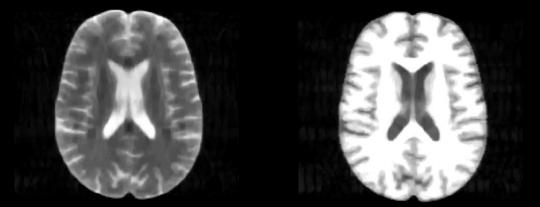
T2 weighted undersampled



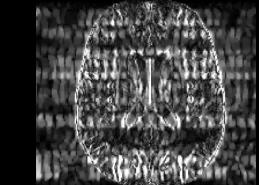
T1 weighted undersampled



sparseMRI¹: Total Variation



9.5% RMSE

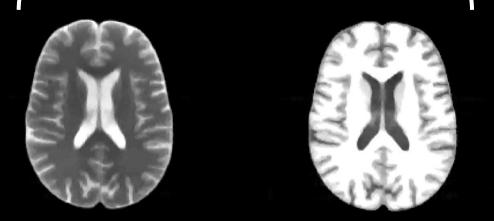


sparseMRI: 9.5% RMSE

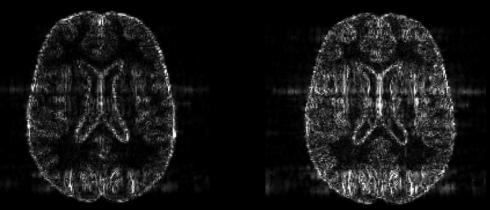
error: scaled 10×

[1] Lustig et al. MRM, 2007

Joint Bayesian CS¹

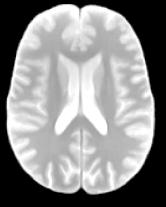


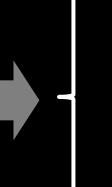
4.9% RMSE

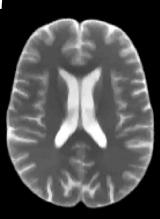


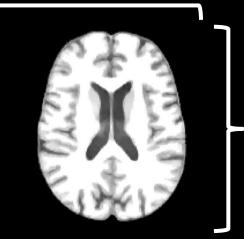
error: scaled 10×

proton density fully-sampled prior



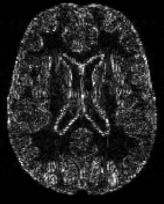






4.3% RMSE

Joint Bayesian CS w/ prior



sparseMRI:9.5% RMSEJoint BCS:4.9% RMSEBCS w/ prior:4.3% RMSE

error: scaled 10×

Conclusion

- In a multi-contrast scan, one of the acquisitions may be much faster than the others (e.g. AutoAlign)
- When the fast contrast is fully-sampled, we use it as prior information to help recover the undersampled contrasts
- Our method uses the prior image only to initialize Bayesian CS iterations, hence imposes the prior in a soft manner

Conclusion

- In a multi-contrast scan, one of the acquisitions may be much faster than the others (e.g. AutoAlign)
- When the fast contrast is fully-sampled, we use it as prior information to help recover the undersampled contrasts
- Our method uses the prior image only to initialize Bayesian CS iterations, hence imposes the prior in a soft manner
- Acknowledgements:

Siemens Healthcare, Siemens-MIT Alliance, CIMIT-MIT Medical Engineering Fellowship, R01 EB 007942