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ABSTRACT  

Quantitative Susceptibility Mapping (QSM) aims to estimate the tissue susceptibility distribution that gives rise to subtle 
changes in the main magnetic field, which are captured by the image phase in a gradient echo (GRE) experiment. The 
underlying susceptibility distribution is related to the acquired tissue phase through an ill-posed linear system. To 
facilitate its inversion, spatial regularization that imposes sparsity or smoothness assumptions can be employed. This 
paper focuses on efficient algorithms for regularized QSM reconstruction. Fast solvers that enforce sparsity under Total 
Variation (TV) and Total Generalized Variation (TGV) constraints are developed using Alternating Direction Method of 
Multipliers (ADMM). Through variable splitting that permits closed-form iterations, the computation efficiency of these 
solvers are dramatically improved. An alternative approach to improve the conditioning of the ill-posed inversion is to 
acquire multiple GRE volumes at different head orientations relative to the main magnetic field. The phase information 
from such multi-orientation acquisition can be combined to yield exquisite susceptibility maps and obviate the need for 
regularized reconstruction, albeit at the cost of increased data acquisition time. Matlab code and data implementing the 
presented results are available at martinos.org/~berkin/ADMM_QSM.zip  
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1. INTRODUCTION  
The ability to detect tissue anatomy using Magnetic Resonance Imaging (MRI) is limited by the contrast-to-noise ratio 
(CNR), which depends on the contrast mechanism and the spatial resolution. By exploiting the MRI signal phase as a 
source of contrast, large increases in CNR can be achieved over conventional magnitude-based MRI techniques (1). 
Despite the dramatic improvement in anatomic detail, phase images suffer from non-local effects that depend on the 
geometry and orientation of the tissue (2,3). Quantitative Susceptibility Mapping (QSM) estimates the underlying tissue 
magnetic susceptibility that gives rise to the phase signal, resolves such geometry dependence, and provides quantitative 
and exquisite contrast between or even within anatomical structures (4–11). Major sources of susceptibility contrast 
include tissue iron, calcium, lipid, protein and myelin content. Abnormally high iron deposition in deep gray matter 
structures is indicative of several neurological diseases as well as aging, and is readily quantified using QSM (12–14). 
Since deoxygenated blood becomes more paramagnetic, QSM also lends itself to estimation of vessel oxygenation, 
which can provide assessment of changes in physiology (15–17). For white matter structures, the microscopic 
composition of the tissue leads to anisotropic susceptibility, which can be characterized using Susceptibility Tensor 
Imaging (STI) (18–22). As such, magnetic susceptibility emerges as a powerful mechanism that provides quantitative, 
local and superb tissue contrast with the ability to reveal white matter connectivity of the brain. 

    The workhorse data acquisition protocol for QSM is the gradient recalled echo (GRE) sequence. The local differences 
in the magnetic susceptibility of the tissue lead to a subtle perturbation in the MRI magnetic field, which in turn causes 
the magnetic spins to rotate at different speeds. This subtle difference is captured in the phase of the complex GRE 
images. High-resolution phase images obtained from GRE acquisition have demonstrated strong contrast between and 
within gray and white matter. This contrast boost yields almost a 10-fold improvement over conventional magnitude 
imaging (1). Clinical use of phase images, however, is limited because phase information is not spatially localized, but 
results from the convolution of the underlying susceptibility distribution with a dipole kernel (23). This also causes 
phase contrast to be dependent on the head orientation relative to the scanner’s main magnetic field. The misleading 
contrast makes it difficult to relate features in the phase images to the underlying anatomical structures (3,24). 
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Nonetheless, the deconvolution of phase data using QSM overcomes the misleading non-local bias and yields a local 
tissue property. While QSM provides a quantitative measure of tissue susceptibility, it entails the solution of an ill-posed 
inverse problem, which requires whole-brain deconvolution of the phase signal and necessitates regularized 
reconstruction. Such regularization imposes prior assumption on the susceptibility distribution to improve conditioning 
of the inverse problem. A common prior in QSM is that, magnetic susceptibility is tied to the underlying tissue; hence it 
should vary smoothly within tissue boundaries. To reflect this assumption, ℓ𝓁!- or ℓ𝓁!- regularization is applied on the 
image gradients of the susceptibility map during reconstruction. While ℓ𝓁! penalty promotes a smooth image,  ℓ𝓁! penalty 
on the gradients (i.e. Total Variation (TV)), enforces a piecewise constant reconstruction. These regularized QSM 
techniques are commonly known as MEDI (Morphology Enabled Dipole Inversion) (5,6,11), and have proven to be 
effective for solution of the inverse problem. 

    A more advanced regularizer is the Total Generalized Variation (TGV), which is an extension of the TV model to 
higher order image gradients (25,26). TGV relaxes the piecewise constant image assumption of the TV model to 
promote a piecewise smooth reconstruction. This is a more natural prior for medical images that also mitigates the 
staircasing artifact TV suffers from. TGV has recently been extended to QSM (27,28), and provided a viable alternative 
to TV regularization.   

    An alternative way to improve conditioning of the dipole inversion is to acquire additional GRE images at different 
head orientations relative to the MRI magnetic field. As the patients move their head to a new position inside the 
scanner, the dipole kernel that explains the convolution operation is also rotated. As such, collecting phase data at 
multiple orientations and combining them during QSM reconstruction is an effective way of mitigating the ill-posedness 
of the inversion. Multi-orientation QSM obviates the need for additional regularization, and provides exquisite tissue 
contrast. This technique is known as Calculation Of Susceptibility through Multiple Orientation Sampling (COSMOS) 
(4,5,8,9,29). The disadvantage of COSMOS is the increased data sampling requirement, which leads to substantially 
lengthened acquisition times at less natural head positions.   

    In this paper, we review fast algorithms for ℓ𝓁!- and ℓ𝓁!- regularized QSM (30,31). In particular, we present a closed-
form solution for the ℓ𝓁!-constrained inversion, and employ Alternating Direction Method of Multipliers (ADMM) 
(32,33) to efficiently solve the TV-regularized problem. ADMM separates the TV optimization problem into simpler 
sub-problems, which can be solved efficiently in closed-form. For the first time, we also demonstrate closed-form 
iterations for TGV-regularized QSM with the ADMM formalism. We conclude with a comparison between regularized 
QSM from single-orientation and multi-orientation QSM.  

    Accompanying data and Matlab software can be downloaded from martinos.org/~berkin/ADMM_QSM.zip 

2. REGULARIZED QSM FROM SINGLE-ORIENTATION ACQUISITION 

2.1 Closed-form reconstruction for 𝓵𝟐-regularized QSM 

    The tissue phase 𝜙 obtained from the GRE experiment is related to the unknown susceptibility map 𝜒 via the linear 
relation 𝐅!𝐃𝐅𝜒 = 𝜙, where 𝐅 is the discrete Fourier transform (DFT) operator, and the diagonal matrix 𝐃 = (1/3 −
𝑘!!/𝑘!) is the dipole kernel. This kernel undersamples the frequency content of 𝜒 in the vicinity of the “magic angle”, 
given by the double-conical surface defined by 3𝑘!! = 𝑘!, where 𝑘 = (𝑘! , 𝑘! , 𝑘!) is the frequency index. The tissue 
phase 𝜙 is obtained by unwrapping the raw phase from the GRE data (2,34), followed by background phase removal 
(7,10). To mitigate the undersampling artifacts, the following ℓ𝓁!-regularized reconstruction can be considered: 

 𝑚𝑖𝑛!
!
!
𝐅!𝐃𝐅𝜒 − 𝜙 !

! + !
!
𝐆𝜒 !

!  (1) 

Here, 𝐆 is the image gradient operator in 3-dimensions, and 𝛽 is a regularization parameter controlling the amount of 
prior information to be introduced. The gradient operator can be decomposed as 𝐆 = 𝐅!𝐄𝐅, where E is a diagonal matrix 
that represents a phase ramp in frequency space to implement the differencing operation. With this decomposition, the 
solution of Eq.1 is found by taking the derivative and setting it to zero: 

 𝐅! 𝐃!𝐃 + 𝛽𝐄!𝐄 𝐅𝜒 = 𝐅!𝐃!𝐅𝜙 (2) 

 The optimizer can then be computed in closed-form (30), 
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 𝜒 = 𝐅! 𝐃!𝐃 + 𝛽𝐄!𝐄 !!𝐃!𝐅𝜙 (3) 

Since the matrix inversion involves only diagonal matrices, it is trivial to compute. The computational requirement of 
closed-form ℓ𝓁! solution is just two DFT evaluations and element-wise multiplications.  

2.2 Closed-form iterations for TV-regularized QSM using ADMM 

For TV-regularized QSM, the optimization problem becomes 

 min
!

!
!
𝐅!𝐃𝐅𝜒 − 𝜙 !

! + 𝛼! 𝐆𝜒 !  (4) 

We adopt the ADMM formalism and introduce additional variables 𝑧! and 𝑠! (31), 

 min
!,!!

!
!
𝐅!𝐃𝐅𝜒 − 𝜙 !

! + 𝛼! 𝑧! ! +
!!
!

𝐆𝜒 − 𝑧! + 𝑠! !
!  (5) 

Here 𝑧! is an auxiliary variable representing the gradient of the susceptibility map and 𝑠! is the scaled Lagrange 
multiplier. We separate this optimization into subproblems and optimize with respect to each of the unknown variables 
sequentially while keeping the other two constant. The subproblem for 𝜒 is, 

 min
!

!
!
𝐅!𝐃𝐅𝜒 − 𝜙 !

! + !!
!

𝐆𝜒 − 𝑧! + 𝑠! !
!  (6) 

This expression is very similar to Eq.1 and can be similarly solved in closed-form, 

 𝜒 = 𝐅! 𝐃!𝐃 + 𝜇!𝐄!𝐄 !![𝐃!𝐅𝜙 + 𝜇!𝐄!𝐅 𝑧! − 𝑠! ] (7) 

The subproblem for 𝑧! update is, 

 min
!!
  𝛼! 𝑧! ! +

𝜇!
2

𝐆𝜒 − 𝑧! + 𝑠! !
! (8) 

This also admits a closed-form solution through the soft thresholding operation, 

 𝑧! = max  (|𝐆𝜒 + 𝑠!| − 𝛼!/𝜇!, 0) ∙ 𝑠𝑖𝑔𝑛(𝐆𝜒 + 𝑠!) (9) 

Finally, the update rule for the Lagrange multiplier is given by 

  𝑠! = 𝑠! +   𝐆𝜒 − 𝑧! (10) 

The TV ADMM algorithm is then the application of closed-form update rules Eqs.7, 9 and 10 until a convergence 
criterion is satisfied.  

2.3 Closed-form iterations for TGV-regularized QSM using ADMM 

The extension to the second order TGV regularization involves solving,  

 min
!,!

!
!
𝐅!𝐃𝐅𝜒 − 𝜙 !

! + 𝛼! 𝐆𝜒 − 𝑣 ! + 𝛼! 𝓔𝑣 !  (11) 

where 𝓔 is the symmetrized gradient operator (25,28). We introduce additional variables to revert to ADMM formalism,  

min
!,!,!!,!!

!
!
𝐅!𝐃𝐅𝜒 − 𝜙 !

! + 𝛼! 𝑧! ! +
!!
!

𝐆𝜒 − 𝑣 − 𝑧! + 𝑠! !
! + 𝛼! 𝑧! ! +

!!
!

𝓔𝑣 − 𝑧! + 𝑠! !
!  (12) 

The subproblem that needs to be solved for the (𝜒, 𝑣) pair is 

min
!,!

!
!
𝐅!𝐃𝐅𝜒 − 𝜙 !

! + !!
!

𝐆𝜒 − 𝑣 − 𝑧! + 𝑠! !
! + !!

!
𝓔𝑣 − 𝑧! + 𝑠! !

!  (13) 

Taking the gradient of Eq.13 with respect to both 𝜒 and 𝑣 yields the following system of linear equations  

 𝐅!𝐃!𝐃𝐅 + 𝜇!𝐆!𝐆 −𝜇!𝐆!

−𝜇!𝐆 𝜇!𝐈 + 𝜇!𝓔!𝓔
𝜒
𝑣 =

𝐅!𝐃!𝐅𝜙 + 𝜇!𝐆!(𝑧! − 𝑠!)
𝜇!𝓔!(𝑧! − 𝑠!)−𝜇!(𝑧! − 𝑠!)

 
(14) 

which can be diagonalized by DFT and yield 
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 𝐃!𝐃 + 𝜇!𝐄!𝐄 −𝜇!𝐄!

−𝜇!𝐄 𝜇!𝐈 + 𝜇!𝚺!𝚺
𝐅𝜒
𝐅𝑣 =

𝐃!𝐅𝜙 + 𝜇!𝐄!𝐅(𝑧! − 𝑠!)
𝜇!𝚺!𝐅(𝑧! − 𝑠!)−𝜇!𝐅(𝑧! − 𝑠!)

 
(15) 

with 𝓔 = 𝐅!𝚺𝐅. Moreover, a simple reordering of the resulting system of equations results in a block-diagonal structure 
with each block being a 4 × 4 Hermitian positive-definite matrix. As a result, we can easily update each voxel of 
(𝐅𝜒, 𝐅𝑣)  using a direct inversion of these 4 × 4 blocks. Please refer to the accompanying Matlab code for implementation 
details of this closed-form inversion.  	  
𝑧! and 𝑧! are updated using soft thresholding operations, 

 𝑧! = max  (|𝐆𝜒 − 𝑣 + 𝑠!| − 𝛼!/𝜇!, 0) ∙ 𝑠𝑖𝑔𝑛(𝐆𝜒 − 𝑣 + 𝑠!)      
𝑧! = max  (|𝓔𝑣 + 𝑠!| − 𝛼!/𝜇!, 0) ∙ 𝑠𝑖𝑔𝑛(𝓔𝑣 + 𝑠!) 

(16) 
(17) 

Finally, the update rules for the Lagrange multipliers are, 

 𝑠! = 𝑠! +   𝐆𝜒 − 𝑣 − 𝑧!   
𝑠! = 𝑠! + 𝓔𝑣 − 𝑧! 

(18) 
(19) 

The overall TGV ADMM algorithm is then the iterative application of the solution of Eq.15 and Eqs.16-19. 

3. COSMOS QSM FROM MULTI-ORIENTATION ACQUISITION 

As the imaged object is rotated with respect to the main MRI magnetic field, the dipole convolution relating the acquired 
phase 𝜙! to the susceptibility distribution 𝜒 becomes  𝜙! = 𝐅!𝐃!𝐅𝜒, where 𝑖 is the orientation index and 𝐃! denotes the 
dipole kernel in the 𝑖th frame due to 𝐃! = 1/3 − 𝑘!"! /𝑘!. The index 𝑘!" is the projection of the k-space vector in the 𝑖th 
frame onto the main MRI field direction. The collection of phase images at 𝑁 orientations can be formatted to yield the 
over-determined system,  

 𝐃!
⋮
𝐃!

𝐅𝜒 =
𝐅𝜙!
⋮

𝐅𝜙!
 

(20) 

This set of equations can be solved in the least-squares sense by considering the problem 
 min

!
∑!!!! 𝐃!𝐅𝜒 − 𝐅𝜙! !

! (21) 

Taking the gradient of Eq.21 and setting it to zero yields a closed-form solution, 
 𝜒!"#$"# = 𝐅! ∑!!!! 𝐃!!𝐃! !!∑!!!! 𝐃!!𝐅𝜙! (22) 

This solution requires only DFT evaluations, point-wise multiplications, and the inversion of a diagonal matrix. It is thus 
extremely efficient, usually requiring several seconds of computation.   

4. EXPERIMENTAL EVALUATION 
4.1 Numerically simulated phantom 

A numerical susceptibility phantom was adapted from (22,28) to compare QSM reconstruction performance of closed-
form ℓ𝓁!, TV ADMM and TGV ADMM algorithms (Fig.1). This phantom was created by segmentation of a brain into 
white matter, gray matter and cerebrospinal fluid (CSF). Susceptibilities were set to similar values observed in vivo: CSF 
= 0 ppm, globus pallidus = 0.19 ppm, putamen = 0.09 ppm, thalamus = 0.07 ppm, red nucleus = 0.07 ppm, substantia 
nigra = 0.09 ppm, dentate nucleus = 0.09 ppm, caudate nucleus = 0.09 ppm, and cortical gray matter = 0.05 ppm. 
Susceptibilities of white matter structures ranged from −0.03 to −0.01 ppm. Geometric properties were, matrix size = 
256 × 256 × 98, and resolution = 0.94 × 0.94 × 1.5 mm3. A smoothly varying susceptibility ramp was added inside the 
thalamus to better emulate in vivo susceptibility distribution. This phantom was convolved with the dipole kernel to 
simulate the phase data and white Gaussian noise was added to incur 25.2% root mean square error (RMSE) relative to 
the noiseless phase.   
    Regularization parameters for closed-form ℓ𝓁! and TV ADMM that minimized RMSE were 𝛽 = 3 ∙ 10!! and 
(𝛼! = 2 ∙ 10!!, 𝜇! = 10!!). To simplify parameter selection, the same 𝛼! and 𝜇! values were used for TGV ADMM, 

Proc. of SPIE Vol. 9597  959711-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/14/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



PowerPoint File Edit View Insert Format Mange Tools Slide Show Window Help

uHome [ m.m.,
I

table. cum a.ru I ,twwo ...bons o. I e....., I

rom P.mm.Pn

ti
Q urout

P.ewiae ë , a

M2015081P figsresippet
S0 yr1J 10055 ® Wed 5:59 PM Q :-

CQ-

Numerical Phantom
Noisy Phase TV ADMM

RMSE from added noise: 25.2 % 19.6% RMSE 10 sec recon
Closed -Form L2 TGV ADMM

33.5% RMSE 0.3 sec recon

Closed -Form L2 TV ADMM
19.9% RMSE 25 sec recon

TGV ADMM Gold Standard

i!u ,

 
 

 
 

 

and 𝜇! was set equal to 𝜇!. The best RMSE was obtained using 𝛼! = 2𝛼!. The convergence criterion to stop TV and 
TGV iterations was achieving less than 1% change in the susceptibility estimates between successive iterations. With 
this setting, the reconstruction errors were 33.5%, 19.6% and 19.9% for ℓ𝓁!-, TV- and TGV-regularized QSM (Fig.1). 
Despite similar RMSE performance, TGV reconstruction was able to mitigate the staircasing artifact present in the TV 
solution of the thalamus (Fig.1 lower panel). The processing times were 0.3 sec for closed-form ℓ𝓁!, 10 sec for TV 
ADMM and 25 sec for TGV ADMM on a workstation with 32 processors and 192 GB memory. 

 
Figure 1. QSM reconstruction results for the numerically simulated phantom. TV and TGV priors were more successful than 
the closed-form solution in mitigating the reconstruction artifacts, while TGV had also the ability of preserving the smooth 
variation inside the thalamus.  

 

4.2 Simulated phantom from in vivo COSMOS acquisition 

To obtain an in vivo gold standard susceptibility map, a healthy volunteer was scanned at 3T to sample 12 different head 
orientations. Highly accelerated (R=15) 3D-GRE with Wave-CAIPI sequence was utilized to facilitate data acquisition, 
which took 90 sec per head orientation (29,35). The voxel size was 1.1 mm isotropic at repetition time (TR) / echo time 
(TE) = 35/25 msec. Following brain masking using FSL BET (36) and registration onto the neutral head position using 
FSL FLIRT (37), the phase image from each orientation was unwrapped and the background field was removed (2,10). 
Using the orientation information from the registration step, COSMOS solution was obtained from Eq.22. 

    Tissue phase was simulated by convolving this gold standard COSMOS susceptibility with the dipole kernel and 
white Gaussian noise was added to incur 19.7% RMSE relative to the noiseless phase. The optimal parameter setting that 
minimized the QSM reconstruction error was 𝛽 = 2 ∙ 10!!, (𝛼! = 5 ∙ 10!!, 𝜇! = 2 ∙ 10!!) and 𝛼! = 𝛼!/3. To simplify 
parameter selection for TGV ADMM, the same 𝛼! and 𝜇! values as TV ADMM were used, and 𝜇! was set equal to 𝜇!. 
The reconstruction errors were 30.1%, 26.3%, and 25.1% for the ℓ𝓁!-, TV- and TGV-regularized QSM (Fig.2). The 
computation times were 0.2, 5 and 14 sec for the three algorithms. TGV reconstruction was able to obtain the lowest 

Proc. of SPIE Vol. 9597  959711-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/14/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



9 PowerPoint File Edit Mew Insert Format Arrange Tools Slide Show Window Help

- -

M2015081_ spie _figureappm

IL-

RMSE from added noise: 19.7%

9 ? >I0 NI,) IOTA ® Wad 8:01 PM Q :-

old Standard @ 1 mm iso resolution
TV ADMM

I 16+111-.

26.3% RMSE 5 sec recon

TGV ADMM

-`k

30.1% RMSE 0.2 sec recon

Closed -Form L2
mI

i#

TV ADMM
' -ti

1#

i
f x

25.1% RMSE 14 sec recon

TGV ADMM
-16

4

'11144

Gold Standard
r -

#
ti

R R

 
 

 
 

 

reconstruction error, while also mitigating subtle staircasing artifacts that were present in the TV solution (white arrow 
in Fig.2 lower panel).  

 

 
Figure 2. QSM reconstructions using phase data simulated from gold standard in vivo COSMOS susceptibility. TGV 
ADMM achieves the best performance as measured by RMSE, and mitigates subtle staircasing artifacts present in the TV 
reconstruction (white arrow in lower panel).  

 

4.3 In vivo GRE acquisition at 0.6 mm isotropic resolution at single-orientation 

High resolution 3D-GRE data acquired on a healthy volunteer at 3T (31) were used to provide in vivo comparison 
between the three QSM algorithms.  Imaging parameters were as follows: 0.6 mm isotropic resolution, TR/TE = 26/8.1 
msec, matrix size = 384×336×224, GRAPPA acceleration factor = 2, phase partial Fourier = 75%, and acquisition time = 
15 min 42 sec. Tissue phase was obtained using a processing pipeline consisting of brain extraction with FSL BET (36), 
Laplacian phase unwrapping (2,34), and SHARP background removal (7). Parameter selection was guided by L-curve 
analysis, and the selected parameters were 𝛽 = 𝜇! = 3 ∙ 10!!, and 𝛼! = 6 ∙ 10!!. The second order regularization 
parameter 𝛼! was set to 𝛼! = 2𝛼!.  

    For this high resolution dataset, the reconstruction times were 1, 48 and 180 sec for the ℓ𝓁!-, TV- and TGV-regularized 
algorithms (Fig.3). TV and TGV ADMM solutions had similar quality, and were able to mitigate the frequency 
undersampling effect along the magic angle more effectively than the closed-form ℓ𝓁! solution (Fig.3 lower panel). 
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Figure 3. In vivo susceptibility mapping with 0.6 mm isotropic resolution at 3T. TV and TGV reconstructions are more 
successful than the ℓ𝓁! penalty at mitigating the frequency undersampling along the magic angle (dashed triangles).  

 

4.4 In vivo GRE acquisition at 1 mm isotropic resolution at multi-orientation 

Finally, to provide comparison between multi-orientation COSMOS and single-orientation TV ADMM solutions, in vivo 
3D-GRE data were acquired at 3 different head positions at 3T. The acquisition parameters were, FOV=240×240×192 
mm3, TR/TE = 40/30 msec, 1 mm3 resolution, R=9 fold acceleration with Wave-CAIPI, total scan time = 10.3 min. 
Phase data from each orientation went through BET brain masking, Laplacian unwrapping and SHARP filtering, 
followed by FLIRT registration onto the neutral head position frame. Multi-orientation data were combined using Eq.22 
to create COSMOS susceptibility maps, while TV ADMM reconstruction was applied on the single-orientation phase 
data at the neutral head position (Fig.4).  

    Compared to the COSMOS reconstruction that provides exquisite data quality, TV ADMM solution introduces some 
smoothing while mitigating the streaking artifacts due to undersampling (Fig.4). Compared to the single-orientation 
acquisition that was completed in 3.5 min, multi-orientation sampling at three positions required 10.3 min. As such, the 
improvement in image quality of the COSMOS maps comes at the cost of substantially increased scan time and is also 
hardly feasible in less compliant patients. 

5. CONCLUSION 

We have reviewed existing efficient algorithms for ℓ𝓁!- and TV-regularized QSM, and introduced a novel algorithm for 
TGV-regularized dipole inversion based on ADMM formalism. This variable splitting approach divides the ℓ𝓁!-
regularized optimization problem into subproblems that can be solved efficiently in closed-form, leading to dramatic 
computational savings. In numerical and in vivo experiments, TV and TGV penalties were shown to yield more accurate 
reconstructions than the ℓ𝓁! solution, with the ability to compensate the undersampled frequency content of the 
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susceptibility distribution. While TGV had comparable performance to TV in terms of reconstruction error, it allowed 
mitigation of staircasing artifacts present in the TV reconstructions. Despite improved image modeling, single-
orientation techniques are unable to match the high data quality provided by multi-orientation sampling (8). Regularized 
QSM at single-orientation relies on prior information to mitigate the streaking artifacts due to undersampling in 
frequency space, but this in turn introduces a certain amount of smoothing to the final reconstruction. Regularization 
parameter selection is another drawback of the single-orientation techniques, which is usually performed based on 
discrepancy principle (38) or L-curve (39) heuristics. A further drawback of the TGV technique is the introduction of 
two additional parameters, 𝜇! and 𝛼!, that control the fidelity and sparsity of the second order gradients. To simplify 
parameter selection (potentially at the cost of suboptimality), we have chosen to set 𝜇! = 𝜇!, and used a fixed scaling 
relation between 𝛼! and 𝛼! as suggested in (25,28). Multi-orientation QSM, on the other hand, obviates the need for 
regularization parameter selection and provides higher quality susceptibility maps without streaking or smoothing 
artifacts. This comes at the cost of increased scan time, which can be mitigated using efficient acquisition techniques 
(28,29).  
 

 

Figure 4. Compared to the TV-regularized QSM from single head orientation, COSMOS reconstruction from 3 orientations 
yield higher data quality without smoothing or streaking artifacts. This, however, comes at the cost of substantially 
increased scan time, which can be mitigated using efficient acquisition techniques. 
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