

Regularized QSM in Seconds

Berkin Bilgic¹, Itthi Chatnuntawech², Audrey P. Fan², Elfar Adalsteinsson^{2,3}

¹Martinos Center for Biomedical Imaging, Charlestown, MA, USA ²MIT, Cambridge, MA USA ³Harvard-MIT Health Sciences and Technology, Cambridge, MA USA

Declaration of Relevant Financial Interests or Relationships

Speaker Name: Berkin Bilgic

I have no relevant financial interest or relationship to disclose with regard to the subject matter of this presentation.

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility χ
- Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures [1,2]

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility χ
- Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures [1,2]
- Susceptibility mapping requires the solution of an inverse problem,

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility χ
- Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures [1,2]
- Susceptibility mapping requires the solution of an inverse problem,

$$\mathbf{F}^H \mathbf{D} \mathbf{F} (\boldsymbol{\chi}) = \boldsymbol{\phi}$$

to be estimated

measured

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility χ
- Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures
- Susceptibility mapping requires the solution of an inverse problem,

 $\mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\chi} = \boldsymbol{\phi}$

$$\mathbf{D} = \frac{1}{3} - \frac{k_z^2}{k^2} \quad \bigcirc \quad \text{Undersamples k-space} \\ \text{on a conical surface} \quad \text{on a conical surface}$$

 Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

 Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

$$\mathbf{G} = \begin{bmatrix} \mathbf{G}_x \\ \mathbf{G}_y \\ \mathbf{G}_z \end{bmatrix}$$

gradient in 3D

 Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

Prior: underlying susceptibility map is smooth

[1] de Rochefort et al., Magn Reson Med 2010

 Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

- Existing methods work iteratively [1,2], requiring
 ~30 minutes for a 3D volume → not feasible
- We address this with fast recon in ~1 second

[1] de Rochefort *et al.*, Magn Reson Med 2010[2] Bilgic *et al.*, NeuroImage 2012

 Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

Solution can be evaluated in closed-form

$$\boldsymbol{\chi} = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$$

 The minimizer can be computed efficiently given that the matrix inversion is rapidly performed

Solution can be evaluated in closed-form $\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$

- Solution can be evaluated in closed-form $\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$
- Gradient along x-axis can be represented in k-space by multiplication with a diagonal matrix \mathbf{E}_{x}

$$\mathbf{G}_{\boldsymbol{\chi}} = \mathbf{F}^{H} \mathbf{E}_{\boldsymbol{\chi}} \mathbf{F}$$
 where $\mathbf{E}_{\boldsymbol{\chi}}(i, i) = 1 - e^{(-2\pi\sqrt{-1}k_{\boldsymbol{\chi}}(i, i)/N_{\boldsymbol{\chi}})}$

- Solution can be evaluated in closed-form $\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$
- Gradient along x-axis can be represented in k-space by multiplication with a diagonal matrix \mathbf{E}_x

$$\mathbf{G}_{\boldsymbol{\chi}} = \mathbf{F}^{H} \mathbf{E}_{\boldsymbol{\chi}} \mathbf{F}$$
 where $\mathbf{E}_{\boldsymbol{\chi}}(i, i) = 1 - e^{(-2\pi\sqrt{-1}k_{\boldsymbol{\chi}}(i, i)/N_{\boldsymbol{\chi}})}$

E_{*x*} is simply the k-space representation of the difference operator $\delta_x - \delta_{x-1}$

- Solution can be evaluated in closed-form $\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$
- Gradient along x-axis can be represented in k-space by multiplication with a diagonal matrix \mathbf{E}_x

$$\mathbf{G}_{\boldsymbol{\chi}} = \mathbf{F}^{H} \mathbf{E}_{\boldsymbol{\chi}} \mathbf{F}$$
 where $\mathbf{E}_{\boldsymbol{\chi}}(i, i) = 1 - e^{(-2\pi\sqrt{-1}k_{\boldsymbol{\chi}}(i, i)/N_{\boldsymbol{\chi}})}$

With this formulation, closed-form solution becomes

$$\boldsymbol{\chi} = \mathbf{F}^{H} \mathbf{D} \left[\mathbf{D}^{2} + \lambda \cdot (\mathbf{E}_{\boldsymbol{\chi}}^{2} + \mathbf{E}_{\boldsymbol{y}}^{2} + \mathbf{E}_{\boldsymbol{z}}^{2}) \right]^{-1} \mathbf{F} \boldsymbol{\phi}$$

all matrices diagonal

- Solution can be evaluated in closed-form $\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$
- Gradient along x-axis can be represented in k-space by multiplication with a diagonal matrix \mathbf{E}_x

$$\mathbf{G}_{\boldsymbol{\chi}} = \mathbf{F}^{H} \mathbf{E}_{\boldsymbol{\chi}} \mathbf{F}$$
 where $\mathbf{E}_{\boldsymbol{\chi}}(i, i) = 1 - e^{(-2\pi\sqrt{-1}k_{\boldsymbol{\chi}}(i, i)/N_{\boldsymbol{\chi}})}$

• With this formulation, closed-form solution becomes $\chi = \mathbf{F}^H \mathbf{D} \left[\mathbf{D}^2 + \lambda \cdot (\mathbf{E}_x^2 + \mathbf{E}_y^2 + \mathbf{E}_z^2) \right]^{-1} \mathbf{F} \boldsymbol{\phi}$

Total cost: Two FFTs and multiplication of diagonal matrices

Proposed closed-form method is 1000-times faster than iterative Conjugate Gradient solver in [1,2]

- Proposed closed-form method is 1000-times faster than iterative Conjugate Gradient solver in [1,2]
- Proposed method yields exact minimizer while iterative methods converge to it

- Proposed closed-form method is 1000-times faster than iterative Conjugate Gradient solver in [1,2]
- Proposed method yields exact minimizer while iterative methods converge to it
- Automatic selection of regularization parameter λ is possible:
 Trace L-curve with closed-form method in a minute

- Proposed closed-form method is 1000-times faster than iterative Conjugate Gradient solver in [1,2]
- Proposed method yields exact minimizer while iterative methods converge to it
- Automatic selection of regularization parameter λ is possible:
 Trace L-curve with closed-form method in a minute
- Combined with fast background removal methods like SHARP [3], enables real-time QSM

[1] de Rochefort *et al.*, MRM 2010
 [2] Bilgic *et al.*, Neuroimage 2012
 [3] Schweser *et al.*, MRM 2012

Proposed method:

Closed form QSM

Previous method:

Iterative QSM with Conjugate Gradient [1,2] converges to closed-form solution

[1] de Rochefort *et al.*, MRM 2010[2] Bilgic *et al.*, Neuroimage 2012[3] Shmueli *et al.*, MRM 2009

Proposed method:

Closed form QSM

Previous method:

Iterative QSM with Conjugate Gradient [1,2] converges to closed-form solution

Initialize with Thresholded K-space Division map [3]

Terminate when change in susceptibility is less than 1%

[1] de Rochefort *et al.*, MRM 2010[2] Bilgic *et al.*, Neuroimage 2012[3] Shmueli *et al.*, MRM 2009

Regularized QSM Methods

Numerical Phantom

- \Box Three compartments (gray, white, CSF) with constant χ
- \Box Phase ϕ computed from true χ , and Gaussian noise added
- \Box Regularization param λ chosen to minimize RMSE in χ recon

Regularized QSM Methods

Numerical Phantom

 \Box Three compartments (gray, white, CSF) with constant χ

 \Box Phase ϕ computed from true χ , and Gaussian noise added

 \Box Regularization param λ chosen to minimize RMSE in χ recon

In Vivo 3D SPGR

Healthy subject at 1.5T with resolution 0.94×0.94×2.5mm³

 \Box Regularization parameter λ chosen based on L-curve

Background phase removal with dipole fitting [1]

 Computations done on workstation with 32 CPU processors and 128 GB memory

Numerical Phantom

Noisy phase ϕ

error due to noise: 5.0% RMSE

0.01 ppm

-0.01 ppm

Closed-form QSM in 1.1 seconds

0.03 ppm

True χ known

Closed-form QSM error relative to True χ

0.03 ppm

-0.03 ppm

Numerical Phantom

Noisy phase ϕ

error due to noise: 5.0% RMSE

0.01 ppm -0.01 ppm

Closed-form QSM in 1.1 seconds

QSM Method	Recon Time	Error relative to True χ
Proposed Closed-Form	1.1 seconds	16.1 % RMSE
Conjugate Grad, 80 iters	33 minutes	16.8 % RMSE

In Vivo QSM

Tissue phase ϕ

Closed-form QSM in 0.6 seconds

0.13 ppm

Closed-form and Iterative QSM difference: 0.6%

1.3·10⁻³ ppm

-1.3·10⁻³ ppm

In Vivo QSM

Tissue phase ϕ

Closed-form QSM in 0.6 seconds

QSM Method	Recon Time
Proposed Closed-Form	0.6 seconds
Conjugate Gradient, 80 iters	18 minutes

Tracing the L-curve

• Computing χ for 25 different values of λ : 50 seconds

Tracing the L-curve

• Computing χ for 25 different values of λ : 50 seconds

• Find optimal λ by computing the curvature of L-curve

Conclusion

- Proposed closed form recon for L2-regularized QSM
- 1000-times faster recon compared to Conjugate Gradient solver [1,2]
- Automatic selection for λ feasible with L-curve in a minute
- Software Download:

http://web.mit.edu/berkin/www/software.html

[1] de Rochefort *et al.*, MRM 2010[2] Bilgic *et al.*, Neuroimage 2012

Sponsors:

MIT-CIMIT Medical Engineering Fellowship

Siemens Healthcare

Siemens-MIT Alliance

Grants:

♦ K99EB012107, U01MH093765,

✤ R01EB006847, R01EB007942,

R01EB000790, P41RR14075