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Target Audience: Clinicians/researchers interested in deep-learning reconstruction algorithms and quantitative MRI. 
Purpose: Low-rank subspace/shuffling methods have been powerful for reconstructing time-resolved MRI data and 
quantitative MRI (qMRI) since they incorporate subspace bases that are calculated from Bloch equations1-3. The 3D-
quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) has 
been developed and used for acquiring high-resolution T1, T2, and PD maps from five measurements within each 
repetition time (TR)4-6. However, when fitting the quantitative maps using a Bloch-simulated dictionary, it assumes 
that each k-space data is acquired instantly at the first echo of the lengthy echo train, thus neglecting T1 relaxation 
during the acquisition, which might cause blurring and biases in the reconstructed maps. Thus, in this study, we 
propose to reconstruct QALAS time-series data using a low-rank subspace method and enable more accurate T1 and 
T2 mapping with reduced blurring compared to conventional QALAS. The overall scheme is presented in Fig. 1. 
Furthermore, we propose a novel zero-shot deep-learning subspace method (Zero-DeepSub), which combines a scan-
specific deep-learning method7-9 with a low-rank subspace, to further improve the fidelity of multiparametric qMRI. 
Methods: We propose to use a zero-shot self-supervised learning scheme8 for subspace reconstruction with the deep-
learning-based regularization10 as follows: 
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where 𝐲 denotes the acquired multi-echo/multi-coil k-space data, 𝐱 denotes the desired subspace coefficient im-
ages, and 𝐀 = 𝐌𝓕𝐂𝚽 ∶ ℂ𝑵×𝑲 → ℂ𝑵×𝑪×𝑻 denotes the forward operator that has a k-space sampling matrix 𝐌, Fou-
rier transform 𝓕, coil sensitivity map 𝐂, and subspace bases 𝚽, which transforms the subspace coefficients (ℂ(×)) 
into multi-echo/multi-coil k-space data (ℂ(×*×+). 𝑁, 𝐾, 𝐶, and 𝑇 denote the matrix size of the image, number of 
bases, coils, and echoes. 𝒟 is the convolutional neural network (CNN)-based denoiser with trainable parameters 𝜽, 
which can be optimized by minimizing the training loss ℒ,-./0: 
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and optimal parameters 𝜽 can be determined by observing validation loss ℒ8.9: 
ℒ8.9 A𝐲:, 𝐀:ℋD𝐲;\:, 𝐀;\:; 𝜽5EB, 

where ℋD𝐲(∙), 𝐀(∙); 𝜽(∙)E is the function of the unrolled network using the k-space data 𝐲(∙), 
forward model 𝐀(∙), and trainable parameters 𝜽(∙), which outputs the regularized subspace 
coefficients. Here, a k-space sampling strategy is used, which splits the original k-space 
sampling mask into three different subsets without overlap (i.e., Ω = 	Θ ⊔ Λ ⊔ Γ) for model 
training Θ, training loss Λ, and validation loss Γ in each epoch 𝑝 (𝑝 = 1, … 𝑃). The de-
tailed architecture is presented in Fig. 2. 
Acquisition: We acquired data from a volunteer using 3D-QALAS sequence on a 3T Prisma 
scanner with a 32ch head array. The parameters are: FOV=240x240x202mm3, matrix 
size=206x206x176, BW=330Hz/pixel, echo-spacing=5.76ms, turbo factor=128, TR=4.5s, 
TE=2.29ms, acceleration R=2, and scan time=8m 24s. We retrospectively conducted un-
dersampling with R=2x5 for further validation. Experiments: We evaluated our proposed 
Zero-DeepSub by comparing it with 1) conventional QALAS that fits the T1 and T2 maps 
using original five measurements, 2) subspace reconstruction without regularization, and 
3) subspace reconstruction with l1-wavelet regularization. The dictionary was generated 
with the following T1, and T2 ranges: T1=[300–5000ms] and T2=[10–500ms]. We used 4 
bases that could generate the simulated signals within 1.25% errors. The sequence diagram 
of QALAS is presented in Fig. 1b. We used BART for estimating coil sensitivity maps and 
comparison subspace methods11. 

Results: Fig. 3 presents in vivo subspace coefficients and T1 and T2 maps reconstructed using three different subspace methods. The proposed method shows noise-
reduced and sharper coefficients, especially for the third and fourth ones, which result in better T1 and T2 maps. Conclusion: In this study, we demonstrated that accurate 
T1 and T2 maps with reduced blurring can be obtained using the proposed Zero-DeepSub, which combines scan-specific deep-learning reconstruction with low-rank 
subspace, from 3D-QALAS measurements. 
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Fig. 1. (a) Sequence diagram of 3D-QALAS and (b) 
overall scheme of the proposed subspace reconstruc-
tion method using subspace bases. 

 
Fig. 2. Detailed architecture of the proposed Zero-DeepSub method. 

 
Fig. 3. In vivo results of reconstructed (a) subspace coefficients and (b) T1 and T2 maps reconstructed 
using three different subspace reconstruction methods. 

 
Fig. 4. Retrospectively undersampled data with R=2x5, which 
requires 1m 41s scan for 1.15mm isotropic resolution. 


