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Target Audience Audiences interested in novel reconstruction methods and fast quantitative imaging
Purpose This work proposes a novel multi-echo/contrast MRI reconstruction using a zero-shot spatio-temporal deep
generative neural network. Unlike conventional subspace methods employing linear representations of temporal signal
evolutions, the proposed work exploits a nonlinear representation of the spatio-temporal MR signals using artificial neural
networks and enables improved reconstruction quality. Unlike many existing deep learning-based techniques for
multi-echo/contrast reconstruction, the proposed work takes advantage of an untrained network that does not require an
external dataset for its training. As a result, the proposed method can provide robust multi-echo/contrast reconstruction
with improved parameter estimation.
Theory and Methods The proposed method assumes the prior that the spatio-temporal multi-echo/contrast MRI can be
nonlinearly generated from a generative neural network (GNN). The corresponding objective function follows

with the undersampled k-space data , the
forward model (Fourier, coil sensitivity, and
undersampling), the underlying
multi-echo/contrast MR images (to be
reconstructed), a random representation vector
and the generative neural network
(parameterized by ) for the nonlinear
spatio-temporal prior. The multi-echo MR images

and the GNN parameters are jointly
optimized using the alternating minimization,

,
where the second step suggests the proposed

zero-shot training of the GNN, which is trained and iteratively refined using the intermediate MR images instead of
requiring an external training dataset.
Results The proposed method was evaluated using a 3D-QALAS (3D-quantification using an interleaved look–locker
acquisition sequence with a T2 preparation pulse) dataset with five contrasts and an EPTI (echo-planar time-resolved
imaging) dataset with 120 echoes. The following figures display the experiment results with the reconstructed images and
the estimated parameter maps.

Discussion and Conclusion We introduced a novel zero-shot prior learning for spatio-temporal multi-echo/contrast
MRI reconstruction. The experiment results indicate the advantages of the proposed method against conventional
techniques for fast and robust multi-echo/contrast MR imaging and quantitative parameter mapping.
Data/Code:https://anonymous.4open.science/r/Multiecho_Recon_Deep_Generative_Prior-8403/
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