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Introduction

Figure 1: Schematic diagram of the inversion-
recovery multi-echo FLASH sequence and its
asymmetric radial sampling pattern.

Inversion-recovery (IR) Look-Locker and multi-echo gradient-echo are two commonly-used sequences for
T1 mapping, and water-fat, T ∗2 imaging, respectively [1-6]. Recently, these two sequences have been
combined in one single scan for simultaneous multi-parameter mapping [6-9], providing complementary
quantitative information for clinical studies. To obtain robust parameter estimation, most existing ap-
proaches usually consist of several steps, e.g., B0 calibration/estimation, linear image reconstruction, and
pixel-wise fitting. As each step utilizes a subset of acquired data, existing approaches may have not made
the best use of all available data.
In this work, we propose to jointly estimate T1, T ∗2 and B0 maps directly from the k-space data acquired
from a single-shot IR radial multi-echo FLASH by formulating parameter estimation as a nonlinear inverse
problem [10-11]. In this way, all acquired data can be exploited for a joint reconstruction. Furthermore,
prior knowledge such as joint sparsity and B0 smoothness can be applied directly to parameter maps to
improve the conditioning of the inverse problem.

Methods

Sequence Design and Model-based Reconstruction

The IR multi-echo sequence is shown in Fig.1. It starts with a non-selective inversion pulse, followed by
a continuous radial multi-echo spoiled gradient-echo (FLASH) using the small golden-angle readout. The
signal evolution for this process can be described as:

STIn,TEm =
[
Wss − (Wss +W0) · exp

(
− TIn ·R∗1,W

)
+
(
Fss − (Fss + F0) · exp

(
− TIn ·R∗1,F

))
· zm

]
· exp

(
TEm · i2πfB0

)
· exp

(
− TEm ·R∗2

)
. (1)

Figure 2: (A) Model-based reconstructed
quantitative water-T1, fat-T1, T ∗2 and fB0

maps from a single-shot IR multi-echo ra-
dial FLASH acquisition for a simulated phan-
tom. (B) Bland-Altman plots comparing
ROI-analyzed mean quantitative values to the
ground truth.

Where (Wss,W0, R∗1,W )T are the steady-state signal, the equilibrium-state signal and the effective T1

relaxation rate for water and (Fss, F0, R∗1,F )T represent the corresponding signal components for fat. zm
is the 6-peak fat spectrum, fB0

represents the field inhomogeneity and R∗2 is the T ∗2 relaxation rate. TIn
and TEm denote the n-th inversion time and m-th echo time, respectively. The unknowns optimized for
are x = (Wss,W0, R∗1,W , Fss, F0, R∗1,F , fB0

, R∗2)T . Their estimation is formulated as a nonlinear inverse
problem:

x = argminx∈D
∑
TI

∑
TE

‖PFC · STIn,,TEm (x)− YTIn,TEm‖
2
2 +R(x) . (2)

Here D is a convex set, ensuring non-negativity of all relaxation rates and R(x) is a regularization
term. We adopt a joint l1-Wavelet sparsity constraints [11] on all parameters of x except fB0

. The latter
is regularized with a smoothness enforcing Sobolev penalty [12] also added to the coil sensitivities. The
nonlinear inverse problem in Eq.2 is solved with a IRGNM-FISTA [11] using BART [13].

Experiments

All MRI studies were conducted on a 3T scanner (Magnetom Skyra, Siemens Healthineers, Erlangen,
Germany) with approval of the local ethics committee. The brain study was conducted using a 20-channel
head/neck coil. The acquisition parameters were: FOV=192 × 192 mm2, matrix size=256 × 256, slice
thickness = 5 mm, 7 echos with TR=15.6 ms TE1−7=2.36/4.26/6.16/8.06/9.96/11.90/13.80 ms, FA=6◦,
bandwidth=810 Hz/pixel and 450 excitations in total with 3350 radial acquired spokes. Nice spokes were
combined into one k-space frame for fast computation.

Results & Discussion

The proposed model-based reconstruction was first validated for a numerical phantom, which provides
ground truth in the presence of noise. Fig.2(A) presents the determined quantitative water T1, fat
T1, T ∗2 and fB0

maps from the model-based reconstruction. Fig.2(B) shows the corresponding Bland-
Altman plots comparing quantitative values estimated from ROIs to the known ground truth. The small
differences observed in the Bland-Altman plots confirm good accuracy for all parameter maps.

Figure 3: (Top). Model-based reconstructed
artifact-free brain water T1, fat T1, T ∗2 and
fB0 maps from a single-shot IR multi-echo ra-
dial FLASH acquisition. (Bottom). Steady-
state water and fat images (i.e., Wss and Fss

in Eq.1) from the model-based reconstruction.

Fig.3 further demonstrates model-based reconstructed brain water T1, fat T1, T ∗2 and fB0
maps. The

steady-state water and fat images (i.e., Wss and Fss in Eq.1) are additionally shown in the second row.
Although a reference method need to be performed for a pairwise comparison, visual inspection shows
artifact-free quantitative T1 and T ∗2 maps. The quantitative values estimated from ROIs (T1: white
matter: 800±8 ms gray matter: 1388±61 ms; T ∗2 : white matter: 46±2 ms gray matter: 61±3 ms)
correspond well to the literature values [4,10].

Summary

The presented work formulates the joint estimation of T1, T ∗2 and fB0 maps from a single-shot IR multi-echo acquisition as a single nonlinear inverse
problem. Initial results on a simulated phantom and a healthy subject demonstrate that high resolution and artifact-free quantitative maps can be
reconstructed simultaneously with the proposed method.
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