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NeurotechniqueWhole Brain Segmentation:
Automated Labeling of Neuroanatomical
Structures in the Human Brain

structural changes in the brain. These changes can
cause alterations in the imaging properties of brain tis-
sue, as well as changes in morphometric properties of
brain structures. Morphometric changes may include
variations in the volume or shape of subcortical regions,
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Summary in Figure 1, which shows the intensity histograms of
nine different neuroanatomical structures defined by a

We present a technique for automatically assigning a manual segmentation procedure based on a typical T1-
neuroanatomical label to each voxel in an MRI volume weighted MRI image. Examining this figure, it is apparent
based on probabilistic information automatically esti- why no global classification scheme can successfully
mated from a manually labeled training set. In contrast distinguish structures from each other based only on
to existing segmentation procedures that only label a intensity information—there is far too much overlap be-
small number of tissue classes, the current method tween the class distributions (even cortical gray matter
assigns one of 37 labels to each voxel, including left and white matter overlap by more than 12%). While
and right caudate, putamen, pallidum, thalamus, lat- adding additional MRI sequences with differing contrast
eral ventricles, hippocampus, and amygdala. The clas- properties or different imaging modalities entirely can
sification technique employs a registration procedure help separate the class distributions, spatial informa-
that is robust to anatomical variability, including the tion is still required to disambiguate the classification
ventricular enlargement typically associated with neu- problem.
rological diseases and aging. The technique is shown The use of spatial information to aid in classification
to be comparable in accuracy to manual labeling, and is facilitated by the construction of a probabilistic atlas
of sufficient sensitivity to robustly detect changes in (Collins et al., 1994; Fox et al., 1994; Mazziotta et al.,
the volume of noncortical structures that presage the 1995; Thompson et al., 1997). In this type of atlas, infor-
onset of probable Alzheimer’s disease. mation regarding the statistical properties of anatomical

structures is stored in a space in which coordinates
Introduction have anatomical meaning as opposed to the somewhat

arbitrary coordinates in a raw image, which are depen-
Neurodegenerative disorders, psychiatric disorders, dent on the position, orientation, and shape of a sub-
and healthy aging are all frequently associated with ject’s head in the MR scanner. Spatial information can

aid in classification in several ways: (1) the number of
possible anatomical classes at a given global position in7 Correspondence: dale@nmr.mgh.harvard.edu
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Figure 1. Intensity Histograms for White Mat-
ter (WM), Cortical Gray Matter (GM), Lateral
Ventricle (lV), Thalamus (Th), Caudate (Ca),
Putamen (Pu), Pallidum (Pa), Hippocampus
(Hp), and Amygdala (Am)

the brain as specified by an atlas coordinate is typically posed to collapsing all gray matter and white matter into
two classes, prevents the broadening of the underlyingrelatively small (note that we will use tissue class to
distributions that would otherwise occur, and facilitatesmean the type of tissue within a voxel [e.g., gray matter]
a more accurate segmentation. Thus, the current proce-and anatomical class, or just class, to indicate the neuro-
dure obviates the need to pool information across struc-anatomical label assigned to a voxel [e.g., caudate]
tures or across space by maintaining class statisticsthroughout this manuscript); (2) neuroanatomical struc-
(e.g., means and variances of the MRI intensities of atures occur in a characteristic spatial pattern relative to
given neuroanatomical structure) on a per-location per-one another (e.g., the amygdala is anterior and superior
class basis throughout an atlas space.to the hippocampus); and (3) many tissue classes have

Local spatial relationships between labeled structuresspatially heterogeneous MRI imaging properties that
have been encoded by modeling the labeled image us-vary in a spatially predictable fashion. This latter result
ing Markov random fields (MRFs) in a variety of imagehas been quantified for some structures using MR relax-
processing contexts (Geman and Geman, 1984). In theometry, which reveals that different regions of white
MRF approach, the probability of a label at a given voxelmatter have significantly different T1 properties (Cho et
is computed not just in terms of the intensities and prioral., 1997). Furthermore, even within cortical gray matter,
probabilities at that voxel, but also as a function of thesignificant variations have been reported in the intrinsic
labels in a neighborhood around the voxel in question.tissue parameters. For example, frontal cortex has been
In the context of segmenting MR images, isotropic (allfound to have an average T1 that is 20% longer than
directions are equal) and stationary (the probabilitiesthat found in motor and somatosensory cortex (Steen
are the same for all spatial location) MRFs have beenet al., 2000). Thus, it is clear that information regarding
used to provide smoothness constraints on a given seg-global position in the brain could aid in the segmentation
mentation (Held et al., 1997; Kapur et al., 1998; Zhangprocess, to account for within-structure variability in
et al., 2001). In this way, the prior probability of a labelthe intrinsic tissue parameters, as well as to indicate
is computed by examining how likely the label is given

the prior probability (the probability before observing the
the labels of its neighbors, regardless of the direction

data) of a structure occurring at a given location inde- of the neighbor, or the position within the brain. While
pendent of intensity information. this type of approach can obviate the need for prefilter-

The problem of differentiating multiple gray matter ing of the images, it does not provide for the use of informa-
structures presents additional challenges beyond those tion regarding the spatial relationships of classes to one
encountered by classification schemes designed to la- another. For example, as can be seen from Figure 1, the
bel only gray, white, and CSF, as is typically done (Wells amygdala and the hippocampus are close to indistin-
et al., 1996; Held et al., 1997; Teo et al., 1997; Kapur et guishable using only intensity information. However,
al., 1998; Dale et al., 1999; Suckling et al., 1999; Ballester they occur in an anatomically stereotypical relationship
et al., 2000; Germond et al., 2000; H. Tang et al., 2000; to one another, with the amygdala residing anterior and
Zhang et al., 2001). However, accounting for the hetero- superior to the hippocampus. Encoding this type of in-
geneity of the tissue properties of cortical and subcorti- formation requires relaxing the spatial isotropy con-
cal gray matter structures can simplify the classification straint of the standard MRF, and tabulating statistics
procedure by reducing within-class variability, as sub- for each spatial direction separately. This allows the
cortical structures such as the thalamus, the putamen, separate calculation, for example, of the probability that
and the caudate and cortex all have significantly differ- a voxel labeled hippocampus will have its inferior neigh-
ent T1 properties (as implied by Figure 1). Compiling bor labeled as amygdala, providing a strong set of con-

straints on the space of allowable segmentations.statistics separately for subcortical structures, as op-
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Thus, we resolve the inherent ambiguity of the class Note that greater values of D(L1,L2) lead directly to re-
duced statistical power to detect subtle volumetricintensity distributions in a number of ways. The first is

through the use of a space-varying classification proce- changes in subcortical structures.
The results of quantifying O(L1,L2) and D(L1,L2) for thedure. That is, class statistics (e.g., means and covari-

ance matrices) are tabulated regionally throughout an inter-rater reliability study as well as for the comparison
of manual with automated techniques are given in Figureatlas space, using an optimal linear alignment procedure

to register each brain with an average. Further, prior 2. In this study, magnetic resonance imaging (MRI)
scans from seven healthy young subjects were manuallyprobabilities are computed via a frequency histogram

in the atlas space, allowing the calculation of the proba- segmented, and a separate atlas was built for each vol-
ume, using a standard jackknifing procedure in whichbility that a given anatomical class occurs at a given

atlas location. Finally, the prior probability of a given the remaining 6 volumes were used to estimate the class
statistics and prior densities. Each volume was thenspatial arrangement of anatomical labels is incorporated

into the final segmentation procedure. These priors are registered and segmented using the atlas constructed
without it. The results of this labeling were then com-also computed from the training set for each point in the

atlas by modeling the segmentation as an anisotropic pared to the manual labeling of the same volume in order
to compute the volume overlap and volume differencenonstationary Markov random field, resulting in a proce-

dure that even using a low-dimensional linear transform between the automatic and manual labelings. The inter-
rater reliability of the manual labeling was computed in(i.e., a transformation of coordinates y into coordinates

x of the form x � M y�b where M is a 3 � 3 matrix a similar manner, with a single volume being segmented
by five separate experts, as described above. The re-and b is a vector of translations resulting in 12 total

parameters) is comparable in terms of accuracy to man- sults of these studies are given in Figure 2, which il-
lustrates volume overlap (top) and volume differenceual labeling.
(bottom) for the manual (light bars) and automated tech-
niques (dark bars). The error bars are standard errorsResults and Discussion
of the mean. As can be seen, the agreement between
the automated and manual labelings is comparable toComparison with Manual Segmentation
that obtained by comparing the labelings of differentIn order to validate the automated segmentation proce-
experts. Finally, for these same datasets, we computeddure, we compared the automated results with those of
the volume of the same set of structures as Figure 2 formanually labeling the same datasets. The test-retest
both the manual and automated labelings. As shown inreliability of the manual segmentation procedure itself
Figure 3, there is no discernable bias in the automatedwas assessed in a separate study, in which five users,
volume measurements, which are statistically indistin-experienced in manual segmentation, each labeled a
guishable from the manually computed volumes.single test image. Each of these labelings was then com-

pared to every other using two criteria for quantifying
Detection of Volumetric Changes in Mildinter-rater reliability, as suggested by Collins et al.
Alzheimer’s Disease(1995): percent overlap and percent volume difference
In order to assess the ability of the segmentation proce-(note that we normalize by the volume of the average
dure to reveal subtle structural differences associatedof the automatic and manually labeling, as opposed to
with disease, MRI scans from 134 subjects were regis-using the manual labeling).
tered and labeled using the automated methods outlinedGiven two different labelings of a structure, denoted
in this paper. The labeling was based on an atlas gener-by L1 and L2, and a function V(L), which takes a label
ated from 12 manually labeled datasets that had beenand returns its volume, the percent volume overlap is
acquired using the same MR protocol as the larger sub-given by:
ject group. Structure volumes were corrected for total
brain size by dividing each structure by the volume ofO(L1,L2) �

V(L1 �L2)
(V(L1) � V(L2))/2

� 100% (1)
all brain labels (note that this is a nonstandard means
for accounting for the variability of intra-cranial volume

For identical labelings, O(L1,L2) achieves its maximum
(ICV). However, for the current purposes, it renders the

value of 100, with decreasing values indicating less per-
procedure self-contained, as it does not depend on a

fect overlap. Note that the overlap between two different
separate tool for measuring ICV. For any detailed mor-

labelings will be reduced by slight shifts in the spatial
phometric study using these tools, we anticipate the

location of one label with respect to another. Given that
need to correct for ICV). Subjects in this study were

many neuroanatomical studies are only interested in
categorized into four groups based on Clinical Dementia

quantifying volumetric changes in structures, Collins et
Rating (CDR; Hughes et al., 1982) and follow up evalua-

al. (1995) also define another metric, which is insensitive
tions. Normal controls (n � 25, 9 men and 16 women,

to spatial shift, and only quantifies volume difference
mean age 72.1; Mini-Mental State Examination (MMSE)

between two labelings:
29.3) consisted of subjects with normal cognition
(CDR � 0.0) on first evaluation (baseline), and remained

D(L1,L2) �
|V(L1) � V(L2)|

(V(L1) � V(L2))/2
� 100% (2) cognitively intact for up to three years of annual follow

up evaluations. Another subpopulation of subjects (n �
92) met CDR criteria for questionable AD (CDR � 0.5)For labels with identical volume, D(L1,L2) achieves its

optimal value of 0, with increasing values indicating a at baseline. This group was further subdivided based on
follow up examinations into two categories. Convertersgreater volume difference between the two labelings.
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Figure 2. Comparison of Inter-Rater Reliabil-
ity for Manual Segmentation (White) with the
Reliability of the Automated with the Manual
Measures (Dark)

Top: percent volume overlap for various
structures using the two techniques. Bottom:
percent volume difference for the same struc-
tures. Key: lV—left lateral ventricle, lT—left
thalamus, lC—left caudate, lPu—left puta-
men, lPa—left pallidum, lH—left hippocam-
pus, lA—left amygdala, rV—right lateral ven-
tricle, rT—right thalamus, rC—right caudate,
rPu—right putamen, rPa—right pallidum,
rH—right hippocampus, rA—right amygdala,
BST—brainstem.

(n � 21, 9 men and 12 women; mean age 74.2; MMSE gress to meet clinical requirements for probable AD over
the 3 years of the study. Mild AD (n � 17, 7 men and28.7) consisted of subjects who met CDR criteria for

questionable AD (CDR � 0.5) at baseline, and pro- 10 women; mean age 67.1) consisted of patients who
met NINCDS/ADRDA criteria for probable AD at the timegressed to meet NINCDS/ADRDA (National Institute of

Neurological and Communicative Disorders and Stroke/ MR scans were collected. These patients were mildly
impaired (CDR � 1; MMSE � 24.3) and clinically exam-Alzheimer’s Disease and Related Disorders Association)

criteria for probable AD. Questionables (n � 71, 29 men ined to exclude medical causes known to produce de-
mentia. All subjects were free of significant underlyingand 42 women; mean age 72; MMSE 29.3) made up

the remainder of this group, and were defined as those medical, neurological, or psychiatric illness (based on
standard laboratory tests and a clinical evaluation).subjects with mild memory problems who did not pro-

Figure 3. Comparison of Structure Volumes
Computing Using Manual Labeling (White)
and Automated Segmentation (Dark)

The error bars are standard errors of the
mean. Key: lV—left lateral ventricle, lT—left
thalamus, lC—left caudate, lPu—left puta-
men, lPa—left pallidum, lH—left hippocam-
pus, lA—left amygdala, rV—right lateral ven-
tricle, rT—right thalamus, rC—right caudate,
rPu—right putamen, rPa—right pallidum,
rH—right hippocampus, rA—right amygdala,
BST—brainstem.
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Groups did not differ in years of education. Detailed the converters include the hippocampus, amygdala, and
descriptions of the recruitment procedures and criteria the third, fourth, and lateral ventricles. These findings
for subject recruitment have been published elsewhere support prior studies that show hippocampal volume
(Johnson et al., 1998; Daly et al., 2000; Killiany et al., reduction in confirmed preclinical AD (Kaye et al., 1997;
2000). Jack et al., 1999) but did not support a reduction in

A sample of the results of this study is shown below, hippocampal volume with questionable AD (De Toledo-
summarized as the volumetric difference between seven Morrell et al., 2000; Wolf et al., 2001), as there were no
different brain structures: the lateral ventricles, the third differences in hippocampal volume between the ques-
and fourth ventricles (Figure 4, top right), the temporal tionable group and healthy control subjects. Still, partici-
horn of the lateral ventricles (Figure 4, middle left), the pants with questionable AD in this study likely differed
hippocampus (Figure 4, middle right) the amygdala (Fig- from those examined in prior studies. This is because
ure 4, bottom left), and the thalamus (Figure 4, bottom participants with questionable AD who progressed to
right). Table 1 lists the statistical significances of the develop probable AD within three years of scanning
volumetric differences between the groups. The statisti- were a distinct group in this study (converters). Thus, it
cal significance of the volumetric differences between is possible that the questionable AD group included
the different groups was computed using a random ef- participants with disorders other than AD, contributing
fects model (using a two-tailed t test with unequal vari- to the lack of differences. Prior studies have shown
ance). Significances are given if they are below the 0.05 equivalent amygdala volume in healthy subjects and
level (comparisons below this threshold are listed as NS subjects with early AD (Killiany et al., 1993). Although it
for not significant). Note that no correction for multiple is clear that the amygdala degenerates with AD, there
comparisons has been performed. If no prior hypothesis is controversy over the temporal progression of this
existed, one would need to correct for the number of degeneration in the broader literature that is possibly
comparisons made, and the p values given in this sec- due to differential volumetric methods, subject selec-
tion would be overly liberal. While further work is re- tion, and statistical power. Importantly, the current study
quired in order to analyze these results (as well as a examined a large number of clinically screened subjects,
number of other affected brain structures), it is apparent supporting confidence in our findings of early involve-
that even the subtle structural changes that presage the ment of the amygdala. Thus, the results presented sug-
onset of Alzheimer’s disease are clearly distinguishable gest that these automated procedures could be useful
using these automated techniques. The great majority in the discrimination of healthy aging from prodromal
of these findings would be expected with a sufficiently AD as described in prior studies (Killiany et al., 2000).
sensitive measurement technique, given the literature The results presented here suggest a progression of
on AD, and therefore support the use of these automated degeneration in the brain with AD. There is an enlarge-
procedures in discriminating patients with specific dis- ment of all ventricular regions and a decline in amygdala
orders from a heterogeneous group of patients with and hippocampal volume in the early stages of the dis-
similar clinical presentations (e.g., discriminating con- ease. In addition, the results suggest that degenerative
verters from questionable AD in this study). changes in the hippocampus continue with disease pro-
Normal Controls versus AD gression as the AD group had significantly less hippo-
Significant dilation of the lateral (Murphy et al., 1993; campal volume than converters. Still, it is important to
Forstl et al., 1995; Pedersen et al., 1999) and third (Powell note that as with neuropathological staging of AD (Braak
et al., 1993; Forstl et al., 1995; Pedersen et al., 1999) and Braak, 1991), there is likely great intersubject varia-
ventricles has been reported in prior studies of AD. The tion in both anatomy and pathology that confounds the
lateral ventricles are expanded with mild AD (MMSE � use of these measures in the staging of disease progres-
20) (Murphy et al., 1993), supporting our findings that sion. Thus, these techniques represent a unique possi-
lateral ventricular volume is significantly increased early

bility to indirectly examine the neuropathological staging
in the disease process (converters in the present study).

of disease progression in a large number of clinically
The results are in agreement with numerous prior studies

characterized patients. Additionally, although the fourshowing hippocampal degeneration in imaging (Jack et
groups studied are useful for understanding the degen-al., 1992; Killiany et al., 1993) and histological (Ball et
erative progression of AD, it is possible that differencesal., 1985) studies of AD as well as with the finding that
observed in cross-sectional study do not represent aamygdala volume could be reduced to a greater extent
progression of the disease process but could be thethan hippocampal volume with early AD (Mizuno et al.,
result of a cohort effect among groups (e.g., the AD2000). Volumetric reduction of the thalamus has also
group had smaller hippocampal volumes prior to devel-been reported with AD (Jernigan et al., 1991). Still, no
opment of clinical symptoms). Thus, it is important toprior study has measured all of these structures in the
follow these studies with similar longitudinal studies tosame participants. Thus, the automated segmentation
track degenerative change across time in each individ-procedure allows a comprehensive analysis of the rela-
ual subject. Finally, the results described only representtive degeneration among numerous structures in the
a small number of labels assigned to the cortex in thisbrain.
study and must be considered within the larger contextConverters versus Questionable AD
of neural degeneration. Future work will model the pro-The results also agree with prior studies demonstrating
gression of the disease throughout the brain using allthat volumetric measurements are useful in distinguish-
labels assigned in the automated segmentation proce-ing converters from nonconverters in participants with
dure and sensitive clinical measures of disease progres-questionable AD (Killiany et al., 2000). Regions that dif-

fered in volume between the questionable group and sion and cognitive decline.
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Figure 4. Comparison of the Volume of Various Structures in Normal Controls (Blue), Questionables (Cyan), Converters (yellow), and Patients
with Mild AD (red)

Top left: lateral ventricles (LH � left hemisphere, RH � right hemisphere). Top right: third and fourth ventricles. Middle left: inferior lateral
ventricles. Middle right: hippocampus. Bottom left: amygdala. Bottom right: thalamus.

Limitations and Future Improvements 2000; Kaye et al., 1997; Killiany et al., 2000; Small et
al., 2000), Huntington’s disease (Halliday et al., 1998;The morphological properties of subcortical structures

are potentially valuable markers of a variety of disorders, Vonsattel and DiFiglia, 1998), and other conditions (Cavi-
ness et al., 1992, 1996a; Breiter et al., 1994; Double etincluding schizophrenia (Goldstein et al., 1999; Puri et

al., 1999; Seidman et al., 1999), Alzheimer’s disease al., 1996; Jenike et al., 1996; Kaye et al., 1997; Makris
et al., 1997; O’Sullivan et al., 1997; Wolf et al., 2001).(Luxenberg et al., 1987; Laakso et al., 1995; Lehtovirta

et al., 1995; Albert, 1996; Double et al., 1996; Frisoni et While manual methods exist for assessing this type of
change, the process of manually labeling an entire high-al., 1996; Convit et al., 1997; Jack et al., 1997, 1999,
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Table 1. Statistical Significances of Structure Volume Differences

Significance
Significance Significance (Inferior Lateral Significance Significance Significance

Comparison (Lateral Ventricle) (3rd and 4th Ventricle) Ventricle) (Hippocampus) (Amygdala) (Thalamus)

Control versus AD p � 3.3 � 10�4 p � 5.0 � 10�3 p � 8.5 � 10�8 p � 3.2 � 10�5 p � 4.6e�2 p � 3.5 � 10�2

(left hemisphere) (3rd ventricle)

Control versus AD p � 4.3 � 10�4 p � 1.2 � 10�2 7.1 � 10�4 p � 5.1 � 10�4 p � 1.3 � 10�3 NS
(right hemisphere) (4th ventricle)

Control versus converter p � 3.0 � 10�3 p � 3.2 � 10�2 p � 1.6 � 10�2 NS p � 3.1 � 10�2 p � 4.0 � 10�2

(left hemisphere) (3rd ventricle)

Control versus converter p � 3.4 � 10�4 4.0 � 10�2 p � 3.1 � 10�3 p � 1.8 � 10�2 p � 1.4 � 10�3 p � 3.9 � 10�2

(right hemisphere) (4th ventricle)

Converter versus AD NS NS p � 4.9 � 10�4 p � 2.1 � 10�2 NS NS
(left hemisphere) (3rd ventricle)

Converter versus AD NS NS NS NS NS NS
(right hemisphere) (4th ventricle)

Converter versus questionable 1.6 � 10�2 5.9 � 10�3 p � 4.6 � 10�2 NS 1.8 � 10�2 p � 9.3 � 10�3

(left hemisphere) (3rd ventricle)

Converter versus questionable 3.0 � 10�2 1.7 � 10�2 NS p � 1.9 � 10�2 7.0 � 10�4 NS
(right hemisphere) (4th ventricle)

Shown are statistical comparisons of the volumes fo the lateral ventricles (column 2), the 3rd and 4th ventricles (column 3), the inferior lateral
ventricles (column 4), the hippocampus (column 5), the amygdala (column 6), and the thalamus (column 7) in normal controls versus AD (rows
1 and 2), controls versus converters (rows 3 and 4), converters versus AD (rows 5 and 6), and converters versus questionables (rows 7 and
8). The table entries are p values for a t-test of the significance of the volumetric differences. Alternate rows are the left and right hemisphere
except in column 3, in which alternate rows represent comparisons for the 3rd and the 4th ventricle.

resolution structural MR volume requires on the order The automatic labeling procedure can also be used
to automatically define regions of interest (ROIs) for useof a week for a trained neuroanatomist or technician.

This makes the routine analysis of large patient and in functional imaging studies. Specifically, this will allow
one to generate average time courses by structure, orcontrol populations untenable. Further, manual labeling

procedures typically generate a labeling that is more even parts of structures, facilitating, for example, the
comparison of the response of the caudate to that ofconsistent when viewed in one slice direction than in

others, or in noncardinal directions. Finally, manual la- the putamen, or anterior hippocampus to posterior hip-
pocampus. Furthermore, having access to voxel labelsbeling procedures do not generalize well to the use of

multi-spectral inputs. should help MR relaxometry analysis, in which intrinsic
tissue parameters are inferred from a set of MR images,The automated method described in this paper for

assigning a neuroanatomical label to every voxel in the a procedure that is extremely sensitive to partial volume
effects, as the models of image formation used in thebrain has been shown to be comparable in terms of

accuracy to a previously validated method of manual parameter estimation rarely allow more than one tissue
type to occur in a voxel. Explicit models of the anatomi-segmentation. The accurate labeling of a large number

of structures is enabled through the use of both global cal classes would permit the parameter estimates to be
computed using voxels that do not border a differentand local spatial information. The global information is

encoded by distributing classifiers throughout an atlas tissue type, avoiding partial voluming.
Although the results presented in this paper only makevolume and maintaining class statistics on a per-class,

per-location basis, allowing the classifiers to be robust use of single-valued (T1-weighted) images, the deriva-
tions of the algorithms are vector based, and hence theto variations in the contrast properties of an anatomical

class over space. Local information is incorporated into incorporation of multi-spectral data is straightforward.
Basing the classification on images acquired with multi-the classification procedure by modeling the segmenta-

tion as a nonstationary anisotropic Markov random field. ple types of scan sequences (e.g., T1, T2, proton density,
diffusion) should increase the accuracy of the segmenta-In contrast to earlier work, in which isotropic Markov

random fields have been employed in order to yield a tion. Such multi-spectral features could also include de-
rived variables such as image gradients or Laplacians.smoother segmentation, the introduction of anisotropy

and nonstationarity into the segmentation model allows The incorporation of an explicit forward model for
MRI signal intensities as a function of intrinsic tissuethe spatial relationships of anatomical classes to one

another to be incorporated into the segmentation proce- parameters as well as pulse sequence parameters, as
described in section 0, potentially makes the segmenta-dure in a principled fashion. The incorporation of high-

dimensional registration techniques (Bajcsy et al., 1983; tion largely invariant to details of the image acquisition
procedure. This includes invariance to factors such asBookstein, 1989; Miller et al., 1993; Gee et al., 1994;

Vannier et al., 1994; Christensen et al., 1996; Ashburner scanner model, software version, and scan protocol.
This is particularly important when comparing dataet al., 1997; Collins and Evans, 1997; Woods et al., 1998;

Thompson et al., 2000) should further improve the accu- across sites, as in multi-center clinical trials, or within
a site across time in longitudinal studies, where it isracy of the labeling.
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Figure 5. Manual Segmentation Results in
the Temporal Lobe

Left: coronal view, right: sagittal view.

MR coordinates into atlas coordinates, the number of classes at aimpractical or undesirable to maintain the same acquisi-
given location is rarely greater than 4, and in fact averages less thantion protocol for the duration of the study. The invariance
3 within the brain. In this way, the intractable problem of classifyingto the details of the image acquisition results from ba-
each voxel into one of 40 or so labels with similar intensity distribu-

sing the classification on intrinsic properties of the un- tions is decomposed into a set of tractable problems of classifying
derlying tissue, as opposed to the somewhat arbitrary the voxels in each region of the image into only a small number of

labels.image intensities obtained using a particular scan proto-
The definition of the atlas requires the calculation of a functioncol. Ultimately, such an approach would greatly enhance

f(r), which takes native image coordinate as input, and returns thethe value and feasibility of constructing large-scale,
coordinate of the corresponding point in the atlas. For f to be usefulmulti-site medical imaging databases.
in this context, the coordinates it returns should be related to the

The automated nature of the methods described here, anatomical location of r. This type of mapping therefore provides
in contrast with existing manual or semi-automated the ability to meaningfully relate coordinates across subjects. In the

most general case, we wish to maximize the joint probability of bothtechniques, allows for their routine application in large-
the segmentation W and the atlas function f:scale studies. Having access to this type of detailed

morphometric information for large populations includ- p(W, f|I) � p(I|W, f ) p(W | f ) p(f ) (4)
ing various disorders as well as a spectrum of normal

The terms p(I|W,f ) and p(W | f ) in Equation 4 provide a natural meanscontrols should facilitate the characterization of the ana-
for incorporating atlas information into the segmentation procedure.tomical signatures associated with specific disorders.
The first term encodes the relationship between the class label at

Ultimately, this may provide a more accurate and sensi- each atlas location and the predicted image intensities. Using the
tive tool for early diagnosis of brain disorders. atlas space, we can allow the class statistics to vary as a function

of location, allowing the within-class variations in tissue properties
Experimental Procedures that are known to exist in the human brain (Cho et al., 1997; Steen

et al., 2000) to be captured in a natural manner. The second term
Problem Statement allows the expression of prior information regarding the spatial
The problem of automatically labeling brain structures from neuro- structure of the anatomical classes. Finally, the term p(f) provides
imaging data can be naturally phrased within the framework of a means for constraining the space of allowable atlas functions
Bayesian parameter estimation theory. In this approach, one can (e.g., continuity, differentiability, and invertibility).
relate the probability of a segmentation W given the observed (po- Note that the atlas information expressed by p(I|W,f) depends on
tentially multispectral) image I to the probability p(I|W) of the image the details of the image acquisition protocol or scanner type. In
occurring given a certain segmentation, together with the prior prob- order to reduce this dependence, information about the relationship
ability of the segmentation p(W): between the image intensities and the acquisition parameters � and

tissue properties � can be explicitly incorporated into this term.
p(W|I) � p(I|W) p(W) (3) That is, p(I|W,f) can be factored as follows:

The primary advantage of the Bayesian approach is that it allows p(I|W,f ) � p(I(�)|�) p(�|W,f ) (5)
for the explicit incorporation of prior information via the p(W) term in
Equation 3. In order to render the problem more tractable in the face The intrinsic tissue parameters � (e.g., T1, T2, proton density) can
of the large degree of overlap in the class distributions shown in Figure be estimated using MR relaxometry techniques (e.g., Rosen et al.,
1, both the priors on W and the conditional probability of observing 1984; Jackson et al., 1993; Cho et al., 1997; Ogg and Steen, 1998;
the image given the classification p(I|W) can be expressed within an Steen et al., 2000). The probability of observing the image given the
atlas space, allowing them to vary as a function of position within the tissue parameters (p(I(�)|�) in Equation 5) can then be estimated
brain (hence making them nonstationary). The advantage of using an using a forward model for image formation based on the Bloch
atlas space is that coordinates in the atlas have more anatomical equations (Bloch, 1946). The term p(�|W,f ) can be computed from
meaning than the native coordinate system of the image (Bajcsy et al., the manual labeling if the tissue parameters have been estimated
1983; Bookstein, 1989; Miller et al., 1993; Gee et al., 1994; Vannier et on the manually labeled subjects. The conjunction of these two
al., 1994; Christensen et al., 1996; Ashburner et al., 1997; Collins and techniques—that of storing class conditional densities in terms of
Evans, 1997; Woods et al., 1998; Fischl et al., 1999; Thompson et intrinsic tissue parameters as opposed to the somewhat arbitrary
al., 2000). Classifiers can then be distributed throughout the atlas, image intensities, together with a physics-based forward model of
allowing each one to focus on only the small number of classes that image formation—should allow for the construction of a segmenta-
may occur within the region for which the classifier is responsible. tion procedure that is applicable across a wide variety of acquisition
The number of classes that occur within a region of space is then types. In the following, we will treat the more specific case in which
directly related to the accuracy of the atlas coordinate system. That class statistics are computed in terms of image intensities.
is, P(W(r) � c) will be 0 for all but a few values of c at each atlas
location r. In practice, if the classifiers are reasonably dense in the Atlas Construction
atlas space, then the number of classes at each location is typically In general, two different approaches have been taken to the con-

struction of anatomical atlases from neuroimaging data. The first isrelatively small. For example, using a linear transform to map native
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to use an individual as a template, and either manually or automati- each one that aligns anatomically corresponding locations across
subjects. That is, one wishes in general to align hippocampus withcally estimate a transformation that aligns each new dataset with

the individual template (e.g., Talairach et al., 1967; Talairach and hippocampus, amygdala with amygdala, etc. Unfortunately, direct
information regarding the anatomical label of voxels in the inputTournoux, 1988; Van Essen and Drury, 1997). The alternative is to

compile a probabilistic atlas based on the anatomy of a large number volumes is in general unavailable to the registration procedure. Thus,
procedures have been developed in order to align the intensityof subjects (e.g., Collins et al., 1994; Fox et al., 1994; Mazziotta et

al., 1995; Thompson et al., 1997). Each of these approaches has images with the assumption that if locations with similar intensities
are aligned everywhere in the brain, then anatomical correspon-strengths and weaknesses. The former allows one to represent ana-

tomical structures at as fine a scale as the neuroimaging technology dence will follow. The standard atlas used for registration purposes
in the neuroimaging community is that of Talairach and Tournouxallows, but the atlas is then biased by the idiosyncrasies of the

individual anatomy chosen as the template. The latter technique (Talairach et al., 1967; Talairach and Tournoux, 1988). The means
for computing the alignment parameters necessary in order to asso-resolves this problem by averaging across anatomies, thus only

retaining that which is common in the majority of subjects. Neverthe- ciate atlas coordinates with those of each individual are varied and
range from low-dimensional linear transforms to fluid deformationsless, the cross-subject averaging removes potentially useful infor-

mation in the atlas. Here, we preserve the advantages of each tech- with tens of millions of degrees of freedom (Fox et al., 1984; Woods
et al., 1992; Collins et al., 1994; Ashburner et al., 1997). The mostnique by using a group of subjects to construct an atlas that retains

information about each anatomical class at each point in space. common of these finds the linear transformation L (usually between
9 and 12 parameters) that minimizes the mean squared differenceGiven the atlas function f, and a group of N manually segmented

subjects using the technique described in Kennedy et al. (1989), between a template image T, typically constructed by averaging
multiple brains that have been manually aligned with the TalairachRademacher et al. (1992), Filipek et al. (1994), and Caviness et al.

(1996b), we first estimate the prior probability of anatomical class atlas (Collins et al., 1994), and an individual image I:
c occurring at each atlas location, independent of all other locations:

L � arg min
L�

���(T(r) � I(L�r))2dr (10)
p(W(r) � c) �

# of times class c occurred at location f(r)
# of voxels that map to r in the training set

(6)

This formulation assumes that the predicted image value at each
Next, at each atlas location r, we model the intensity distribution of location in the atlas can be well represented by a single mean. This
each class as a Gaussian, the parameters of which are again com- assumption is clearly inaccurate; each image is made up of a variety
puted from the manually labeled training set: of tissue types (e.g., gray matter, white matter, CSF, fat, etc.). Due to

the large degree of variability in individual anatomy, most locations in
the brain, as defined by a linear transform, may contain different�c(r) �

1
M �

M

i�1

Ii(f(r)), (7)
tissue types in different subjects. This problem can be mitigated
using high-dimensional nonlinear warps, which can achieve better

where Ii are the set of M (again potentially multi-spectral) images
alignment of like anatomical classes across subjects. Nevertheless,

for which label c occurs at location f(r) in the corresponding manually
some residual variability is inevitable, in particular in cases in which

labeled image Si (i.e., Si(f(r))�c). The covariance matrix for class c
lesions change the topology of the underlying anatomical structures.

at location r in the atlas is then given by:
For example, substantial ventricular enlargement is common in

AD. Attempting to align an image from an AD patient with an atlas
	c(r) �

1
M � 1 �

M

i�1

(Ii(f(r)) � �c(r))(Ii(f(r)) � �c(r))T (8) generated from a population of healthy subjects can result in large
misalignments due to this neuroanatomical variability. One means
of addressing this problem would be to include examples of subjectsThus, image intensity information is maintained separately for each
with various pathologies into the atlas. However, such an approachanatomical class at every location in the atlas, obviating the need
fails to resolve the underlying problem, as the resulting averageto average intensity information across classes. Finally, we also
would be representative of neither case. For example, ventricularestimate the pairwise probability that anatomical class c2 is the
locations in the AD patient containing CSF, which is quite dark on T1-neighbor at ri when anatomical class c1 is the label at r, for ri 
 N(r),
weighted MRI images, align with white matter regions in the normalwhere N(r) is a neighborhood function of r.
subjects. Averaging the dark CSF with the bright white matter would

p(W(r) � c1 |W(ri) � c2m,ri) � result in an average tissue intensity in the target T(r) that is closer
to gray matter than either white matter or CSF—a tissue class that
never occurs in these regions.�# of times class c2 occured at location ri

when class c1 occured at location r
# of times class c1 occured at location r� (9) Since the ultimate goal of the registration procedure is to bring

structures into alignment across subjects, it seems reasonable to
seek a transformation that maximizes the probability of the segmen-

As before, this information is stored separately for each atlas loca- tation, given the observed image. However, since both the segmen-
tion. It is important to note that the probabilities are stored sepa- tation and the alignment function are unknown, this would necessi-
rately for each pair of classes as well as for each neighborhood tate the maximization of the joint probability of f (or L) and W, as
location ri. While it may seem that this would lead to combinatorial given by Equation 4, resulting in the maximum a posteriori (MAP)
explosion and intractable memory requirements, in practice the estimate of W and L. Techniques for simultaneously solving for two
space is sparse as relatively few configurations of anatomical labels such parameters are well known in the machine vision and numerical
actually occur. An example of the manual labeling that is the basis optimization literature (Dempster et al., 1977; Wells et al., 1996;
for the atlas is given in Figure 5, which displays coronal (left) and Zhang et al., 2001). Standard computer vision techniques frequently
sagittal (right) views of an individual subject. The atlas information employ structures such as Gaussian pyramids (Burt and Adelson,
is currently stored at a spatial scale of 4 mm, a limit that is essentially 1983) in order to reduce execution time as well minimize sensitivity
imposed by available memory. While this is significantly less than to local maxima in error functionals of this type. In this approach,
the resolution of standard structural MRI images (on the order of 1 the image is smoothed with successively narrower Gaussian blurring
mm3), it is sufficient to represent the information required for low- kernels, with the minimization (or maximization) of the error func-
dimensional transforms such as the optimal linear transformation tional at each level being initialized with the final results from the
presented in the next section. Typical memory requirements for this previous (more blurred) level. However, averaging across anatomical
resolution are on the order of 200 MB of RAM. classes that inevitably results from substantial spatial blurring is

precisely what we are setting out to avoid. Thus, instead of using
these techniques, we take a somewhat different approach to con-Optimal Linear Transform

The problem of computing the atlas function f in Equation 4 is known struct a means for finding the globally optimal L.
The difficulty in finding a good solution for Equation 7 stemsas the registration or correspondence problem. The goal of this

procedure is to take a set of images and determine a function for from the dual ambiguity of trying to solve for two sets of mutually
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Figure 6. Atlas Samples before (Left) and
after (Right) Optimization

Note that the sample size has been scaled
up for visualization purposes.

dependent parameters. If a good alignment function were available, assigning class labels to each voxel. Segmentation of MR images
into labeled regions is a rich area of research in the image processingthen the segmentation could be estimated. Conversely, if the seg-

mentation were known, then an optimal atlas function could be and biomedical engineering communities. Approaches to this diffi-
cult problem include fuzzy clustering (Suckling et al., 1999; Xu etobtained using it. In order to resolve this dilemma, we note two

important points. The first is that there are many atlas regions in al., 1999), deformable surfaces (Davatzikos and Bryan, 1996; Ghanei
et al., 1998; Germond et al., 2000; MacDonald et al., 2000), regionwhich the prior probability of an anatomical class occurring (given

by Equation 6) approaches one. Thus, in these regions, the segmen- growing (H. Tang et al., 2000), model-based segmentation (Dale et
al., 1999), level sets (Zeng et al., 1999), atlas-based segmentationtation problem is eliminated, as only one anatomical class ever

occurs there across normal and pathological populations. The sec- (Collins and Evans, 1997; Sandor and Leahy, 1997), Gaussian mix-
ture modeling (Wells et al., 1996; Teo et al., 1997; Kapur et al., 1998),ond observation is that Equation 10 is dramatically overdetermined

for linear or even nonlinear transforms with hundreds or thousands nonparametric (Warfield, 1996; Held et al., 1997) and neural network
classifiers (Wang et al., 1998; Magnotta et al., 1999). The vast major-of parameters. These two facts suggest a solution to the alignment

problem: instead of using the millions of voxels in an input image ity of this work labels only a few classes, such as gray matter, white
matter, non-brain, and CSF (Wells et al., 1996; Held et al., 1997; Teoand attempting to find a MAP estimate of their classes together

with an alignment transformation L, we select a much smaller subset et al., 1997; Kapur et al., 1998; Dale et al., 1999; Suckling et al.,
1999; Ballester et al., 2000; Germond et al., 2000; H. Tang et al.,of atlas location and find the alignment that maximizes the likelihood

of these samples. Specifically, we choose a set of samples that 2000; Zhang et al., 2001). Partial-volume effects have been modeled
by extending the number of classes to include voxels that containfulfill two criteria. The first is that each sample must be the most

probable class at that atlas location. Second, the prior probability more than one label (Wang et al., 1998; Ruan et al., 2000). In addition,
low spatial frequency artifacts that frequently occur in magneticfor the sample must be close to the maximum prior probability for

that class across the entire atlas (p(W(r) � c) � k max(p(W(r�) � resonance imaging have been detected and removed as part of the
segmentation process using the expectation maximization algo-c)), ″r�, where k * .9) Automatically selecting these points typically

reduces the atlas size from several hundred thousand to several rithm (Wells et al., 1996; Held et al., 1997; Kapur et al., 1998; Ballester
et al., 2000; Zhang et al., 2001). Prior use of Markov random fieldsthousand. This then makes a global search of the parameter space

for L tractable, obviating the problem of local maxima. Formally, we has been limited to the stationary, spatially isotropic case, which
essentially acts as a smoothness constraint on the segmentationassume a classification W and find the 12 parameter affine transform

L that maximizes: (Leahy and Yan, 1991; Held et al., 1997; Kapur et al., 1998; Zhang
et al., 2001). Some research has extended the small number of
classes by applying atlas-based information to the output of theL � arg max

L�
� p(L�|W,I) � p(I|L�,W) p(L�) (11)

classification in order to label a few subcortical structures (Collins
and Evans, 1997; Magnotta et al., 1999).Equation 11 is maximized assuming p(I|L�,W) is normally distributed

In the current work, we take a Bayesian approach, as this allowswith parameters computed using the atlas Equations 7 and 8, using
us to incorporate prior information that is necessary for the segmen-an iterative global search along each of the rotation, scale, and
tation procedure. The prior information takes two forms. The firsttranslation axes, followed by a Davidson-Fletcher-Powell (DFP) nu-

merical maximization using the gradient of (11) (Press et al., 1994).
After this procedure has converged, we then remove the second
constraint above and use the highest prior class at all locations in
the atlas to guide a final DFP minimization. This final step is helpful
in aligning the borders of the brain where priors are typically low.
An example of this procedure is given in Figure 6, which shows a
coronal slice through a T1-weighted volume, with the atlas samples
before (left) and after (right) maximization of (11). Note that the global
search of the parameter space obviates the need to estimate the
prior density p(L�), which has been shown to help registration proce-
dures avoid local minima (Ashburner et al., 1997).

The accuracy of the registration procedure can be assessed by
examining the number of anatomical classes that occur at each atlas
location. In the limit of perfect registration, assuming the source and
destination have the same topology (which may not be the case),
all voxels would have only a single anatomical class ever occur at
that atlas location. As the registration become less accurate, the
number of anatomical classes occurring within an atlas voxel grows.
A histogram showing the distribution of number of anatomical
classes per voxel for an atlas generated from 7 manually labeled
and linearly aligned volumes is given in Figure 7. As can be seen,
the mean and mode are both approximately 3 classes per voxel.

Figure 7. Histogram of the Number of Anatomical Classes That Oc-
cur at Each Voxel in an Atlas Made up of Seven Manually LabeledSegmentation

Given the atlas and a linear alignment function L mapping an individ- Volumes Aligned Using the Optimal Linear Transform Described
Aboveual set of images I into the atlas, we now turn to the problem of
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Figure 8. Relabeling Using the ICM Algorithm

From left to right: 0, 2, 4, 5, and 6 iterations.

makes use of the global spatial information provided by L and the where Z is a normalizing constant and will be dropped in the follow-
ing, and U(W) is an energy function that can be written in the form:atlas in order to express the probability that a given anatomical

class occurs at a particular location in the atlas, independent of
U(W) � �

c
Vc(W ) (17)other information. The second encodes the local spatial relationship

between anatomical classes, allowing information such “posterior
The clique potentials Vc(W) encode the energy associated with aamygdala is frequently superior to anterior hippocampus, but never
certain configuration of labels within the cth clique. Choosing Vc(W)inferior to it” to be automatically detected and incorporated into the
to be –log(p(W(r)|W(r1),W(r2)…W(rK)), where r is the central voxelsegmentation.
of the cth clique, allows us to write the probability of the entireFormally, we compute the maximum a posteriori (MAP) estimate of
segmentation as the product of the probability of the label at eachthe segmentation W given an input image I, and the linear transform L
voxel, given its neighborhood:computed as described above. The MAP estimate can be expressed

as maximizing p(W|I,L), the probability distribution of the segmenta-
p(W) � �

r�R
p(W(r)|W(r1),W(r2), . . . ,W(rK)),ri � N(r) (18)

tion given the observed image intensities. Using Bayes rule, we can
relate this to the product of the probability of observing the image

Using Bayes rule, we can rewrite this as:with the prior probability of a given spatial configuration of labels
p(W): p(W) � �

r�R
p(W(r)) p(W(r1),W(r2), . . . , W(rK)|W(r)),ri � N(r) (19)

p(W|I,L) � p(I|W,L) p(W ) (12)
Equation 19 allows the probability of a given label to be modulated

Assuming the noise at each voxel is independent from all other by any configuration of neighboring labels. While this would be
voxels in the image, we can rewrite p(I|W,L) as the product of the extremely useful, it is unfortunately not computationally tractable
distribution at each voxel over the image domain R: to implement, as one would need to compute separate prior proba-

bilities for every combination of neighboring labels that occur. In-
p(I|W,L) � �

r�R
p(I(Lr)|W(r)) (13) stead, we make the simplifying assumption that only the first order

conditional dependence is important. That is, that the dependence
Note that in the more general case in which the spatial correlation of a label on its neighbors can be expressed as the product of the
structure of the noise is constant across space, the equality in probability given each of the neighbors:
(13) should be replaced by proportionality (Worsley et al., 1992;

p(W(r)|W(r1),W(r2), . . . ,W(rK)) � �
ri�N(r)

p(W(r)|W(ri),ri), (20)Thompson et al., 1996), which does not affect any of the subsequent
derivations. The intensity distribution of each class at each location
in the atlas is modeled as a Gaussian, the mean vector �c(r) and where again we have explicitly included the dependence on the
covariance matrix 	c(r) of which are computed using Equations 7 neighbor location ri to emphasize that the probability densities are
and 8. The probability of observing the image intensity at I(Lr) is maintained separately for each neighbor position in N(r). Using this
then expressed as: assumption, we arrive at an expression for the prior probability of

the full segmentation:
p(I(Lr)|W(r) � c) �

1

|	c(r)|1/2√2� p(W) � �
r�N

p(W(r))�
K

i�1

p(W(ri)|W(r),ri) (21)

� exp(�0.5(I(Lr) � �c(r))T 	c(r)�1(I(Lr) � �c(r)) (14)
Equation 21 allows two types of prior information to be incorporated

All that remains is to find an expression for the prior probability of into the segmentation procedure. The approximate location a neuro-
a given classification W. Here we assume that the spatial distribution anatomical structure may occupy within the brain is given by p(W(r)),
of labels can be well approximated by an anisotropic nonstationary which is computed and stored in the atlas using Equation 6. The
Markov random field. This allows one to encode prior information local relationship between anatomical classes is encoded in
about the relationship between labels as a function of location within p(W(ri)|W(r),ri) using Equation 9. We currently let the neighborhood
the brain (i.e., nonstationary), as well as with local direction (i.e., function N(r) include the 6 voxels in the positive and negative
anisotropic). Formally, the Markov assumption can be expressed as: cardinal directions at each location in the atlas space. This allows

the segmentation procedure to automatically extract and apply in-
p(W(r)|W(R � {r})) � p(W(r)|W(r1),W(r2), . . . ,W(rK)),ri � N(r) (15)

formation such as “if a voxel is labeled hippocampus then the proba-
bility of the voxel inferior to it being labeled amygdala is low.”That is, the prior probability of a label at a given voxel r is only

Directly computing the global MAP estimate of W in Equation 12influenced by the labels within some neighborhood of r. The locality
using the Markov model of Equation 21 is computationally intracta-restriction imposed by the Markov model permits the probability of
ble. Instead, we employ the iterated conditional modes (ICM) algo-the entire segmentation to be written in terms of neighborhood or
rithm proposed by Besag (1986). In this approach, the segmentationclique potentials Vc(W) via the Hammersley-Clifford theorem (Besag,
is initialized with the MAP estimate assuming p(W(ri)|W(r),ri) is uni-1974). That is, the probability p(W) can be equivalently characterized
form, as no label has yet been assigned to each voxel. The segmen-by a Gibbs distribution:
tation is then sequentially updated at each location by computing
the label W(r) that maximizes the conditional posterior probabilityp(W) �

1
Z

e�U(W), (16)
p(W(r)|W(ri),I,ri):
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Fourth Ventricle
W(r) � arg max

c
p(W(r) � c|W(ri),I(Lr),ri) �

Brain Stem
Cerebrospinal Fluidp(I(Lr)|W(r) � c) p(W(r) � c)�

K

i�1

p(W(ri)|W(r) � c,ri) (22)
Unknown (not brain)

Equation 22 is then iteratively applied until no voxels are changed.
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