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Sequence-independent segmentation of magnetic resonance images
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We present a set of techniques for embedding the physics of the

imaging process that generates a class of magnetic resonance images

(MRIs) into a segmentation or registration algorithm. This results in

substantial invariance to acquisition parameters, as the effect of these

parameters on the contrast properties of various brain structures is

explicitly modeled in the segmentation. In addition, the integration of

image acquisition with tissue classification allows the derivation of

sequences that are optimal for segmentation purposes. Another benefit

of these procedures is the generation of probabilistic models of the

intrinsic tissue parameters that cause MR contrast (e.g., T1, proton

density, T2*), allowing access to these physiologically relevant

parameters that may change with disease or demographic, resulting

in nonmorphometric alterations in MR images that are otherwise

difficult to detect. Finally, we also present a high band width multiecho

FLASH pulse sequence that results in high signal-to-noise ratio with

minimal image distortion due to B0 effects. This sequence has the

added benefit of allowing the explicit estimation of T2* and of reducing

test–retest intensity variability.
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Introduction

Neurodegenerative disorders, psychiatric disorders, and healthy

aging are all frequently associated with structural changes in the

brain. These changes can cause alterations in the imaging properties

of brain tissue, as well as changes in morphometric properties of

brain structures. Morphometric changes may include variations in

the volume or shape of subcortical regions, as well as alterations in

the thickness, area, and folding pattern of the cortex. Surface-based

analyses can provide an accurate assessment of cortical variability,
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while volumetric techniques can detect changes in noncortical

structures. For example, changes in ventricular or hippocampal

volume are frequently associated with a variety of diseases (e.g.,

Killiany et al., 2000; Puri et al., 1999; Wolf et al., 2001).

Unfortunately, these changes are frequently difficult to detect

due to technical reasons. For example, combining scans from

different manufacturers would be an attractive option, as it would

allow large-scale studies to be carried out across different scan

sites, potentially resulting in significantly increased statistical

power to detect small changes. However, merging data across

scanners is problematic, as the contrast properties of the scans may

vary due to subtle differences in the way the images are acquired

(e.g., fat suppression, gradient and RF spoiling schemes, slab

selectivity, etc.). An additional problem is that distortions in the

imaging process can be scanner specific (Schmitt, 1985). Probably

the largest factor in preventing the combination of scans across

studies and/or sites is that no set of standard pulse parameters exists

for acquiring structural data. The variation in the imaging

parameters results in changes in the contrast properties of the

resulting images that are independent of the underlying tissue but

rather reflect the physics of the imaging process. These changes in

contrast properties can introduce variability in morphometric

measures that do not reflect biological effects but rather techno-

logical ones and thus should be minimized.

Here we present a set of techniques for embedding forward

models of the imaging process into a segmentation algorithm.

This has a number of substantial benefits. First, it allows the

explicit estimation of the intrinsic tissue properties that are the

main source of contrast in magnetic resonance images (MRIs),

including T1, T2*, and proton density (P). The segmentation is

then phrased in terms of these parameters, which are properties

of the brain and independent of scanner and pulse sequence,

rendering it insensitive to variation in the pulse parameters.1
1 Note that there is a field strength dependence for some of the

parameters such as T2* and T1, but they are not dependent on the

acquisition parameters.
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This invariance is accomplished by including the parameters and

their effect on image contrast into the segmentation, effectively

predicting the intensity distribution of each brain structure under

the set of parameters used in the acquisition.

A further advantage of the integration of the imaging physics

into the segmentation process is that it allows the optimization of

the MR pulse parameters to be phrased directly in terms of

reducing the probability of misclassification. This allows one to

specify the imaging time available for a study, then to compute

the MR acquisition parameters that are optimal for the

segmentation. Further, if a subset of structures are of interest,

the optimization can be naturally constrained to those structures,

yielding sequences that are, for example, optimal for segmenting

the hippocampus. It is important to note in this context that this

is not equivalent to maximizing the SNR of a structure, but rather

to maximizing the Mahalanobis distance between each pair of

tissue classes that occurs in proximity to one another. This is in

contrast to the more standard technique of maximizing overall

gray/white contrast, which does not account for the spatial

distribution of heterogeneous tissue such as cortical gray matter,

nor the fact that the accuracy of the segmentation of the gray

matter is dependent on how much the intensity distribution of the

gray matter overlaps with other structures in the skull that can be

adjacent to gray matter, such as cerebrospinal fluid (CSF) and

dura.

The explicit estimation of the underlying tissue parameters has

other potential benefits as well. For example, changes in T1 and

proton density separately may not be reflected in the corresponding

T1-weighted images, as they may offset each other. In addition,

cell death or gliosis may entail changes in the parameters, but not

in morphometric properties such as volume. Variations of this

nature would thus be undetectable to a standard morphometric

analysis procedure but would be clearly revealed by cross-group

comparison of the tissue parameters.

Finally, it is clear that multispectral information (e.g., different

flip angles or different TRs) provides additional information that

is not present in a single T1-weighted image. This is due to the

highly correlated nature of T1 and proton density (their

correlation coefficient in brain is greater than 0.5) and the fact

that they influence contrast in opposite directions. For example,

cortical gray matter has a longer T1 and a higher proton density

than the underlying white matter. The longer T1 tends to darken

the gray matter, while the higher PD brightens it, resulting of

course in the reversal of contrast seen in T1-weighted versus PD-

weighted images. Thus, it is clear separating the effects of

different tissue properties can significantly enhance class

separation.
Methods

In previous work (Fischl et al., 2002), we developed a

procedure for automatically and accurately labeling each voxel in

the brain as one of 40 structures (e.g., thalamus, hippocampus,

amygdala, etc.), building on the work of many researchers

(Geman and Geman, 1984; Kapur et al., 1998; Pham et al.,

1997; Wells et al., 1996; Zhang et al., 2001). Briefly, this

procedure is based on modeling the segmentation as a nonsta-

tionary anisotropic Markov Random Field (MRF), in which the

probability of a label is modulated by the probability of its

neighbors, with the probabilities computed separately at each
position in an atlas, for each pair of tissue classes and for each

of the six cardinal directions. This results in a maximum a

posteriori (MAP) estimation problem, in which the segmentation

W is given by:

W rð Þ ¼ arg max
c

p W rð Þ ¼ cW rið Þ; I r Vð Þ; ri½ �

¼ p I r Vð ÞW rð Þ ¼ c½ � p W rð Þ ¼ c½ �

�
YK
i ¼ 1

p W rið ÞW rð Þ ¼ c; ri½ � ð1Þ

where r V = f (r) is the image coordinate corresponding to the

atlas coordinate r, as given by the atlas function f.

In this paper, we present a number of enhancements to this

procedure. First, the likelihood term p(I|W) is modified to include

a forward model of image formation, yielding a segmentation

procedure that can model changes in acquisition parameters and

hence be insensitive to them. Second, the explicit modeling of the

image formation process into the segmentation allows the

derivation of MR acquisition parameters that are optimal for the

purposes of segmentation. Third, we derive a nonlinear atlas

function f that increases the anatomical accuracy of the atlas

coordinate system. Finally, the intrinsic tissue parameters that are

the source of contrast in MR imaging are themselves estimated as

part of the procedure, giving access to biologically relevant

parameters that are independent of the acquisition details and

may vary with a variety of conditions and disorders.

Intrinsic tissue parameter estimation

MRI is an amazingly versatile technology that allows one to

probe various properties of the brain through the manipulation of

magnetic and radio frequency (RF) fields. Standard structural

imaging is typically based on some combination of three time

constants that vary by tissue type (T1, T2, and T2*), as well as the

density of protons (P) that are being imaged. Here, we focus on a

class of acquisition protocols known as either fast low-angle shot

(FLASH) or spoiled gradient recalled echo (SPGR). These steady-

state saturation recovery gradient echo sequences have a number of

advantages:

1. They are easily modeled with a well-known equation for

image formation.

2. They can be manipulated to generate contrast differences

arising from different intrinsic tissue parameters.

3. They are commonly available on the vast majority of MR

scanners.

Specifically, for these sequences, the measured signal S can be

modeled as a function of the intrinsic tissue parameters b = [T1, P,

T2*]T by solving the steady state Bloch equation via:

S m; bð Þ ¼ P sin a
1� e�TR=T 1

1� cosae�TR=T 1

�
e�TE= T4

2

�
ð2Þ

where m = [TR,TE,a]T are the acquisition parameters that the user

is free to modify. Estimation of the tissue parameters B is a well-

posed problem assuming at least as many FLASH images have

been collected as there are parameters to be solved for. In general,



2 Note that transmit inhomogeneities can also affect P via the principle

of reciprocity. If the transmit and receive coils are the same, then this

completely defines the bias field. Transmit inhomogeneities also introduce a

space-varying gain factor on the flip angle, which is much more difficult to

deal with than standard bias fields as it changes image contrast. Fortunately,

at 1.5 T with a body transmit coil, this effect is minimal.
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though, making the problem overdetermined by collecting addi-

tional measurements will result in less noise in the parameter

estimates. Specifically, we estimate the parameters by maximizing

the likelihood of the observed signals I given our estimated

parameters b:

b rð Þ ¼ arg max p I rð Þb rð Þ½ � ð3Þ

Assuming Gaussian noise in the image intensities, we have:

p I rð Þb rð Þ½ �ae�0:5 I rð Þ�S b rð Þð Þ½ �TC�1 I rð Þ�S b rð Þð Þ½ � ð4Þ
Further assuming independent identically distributed unit-

variance noise and taking the log of Eq. (4), results in a standard

least mean squared (LMS) estimate of b:

b rð Þ ¼ arg min D b; r;mið Þ ¼ 1

2

X
i

Ii rð Þ � S mi; b rð Þð Þ½ �2 ð5Þ

Subject motion between FLASH scans acquired with different

pulse parameters is a potential source of error in the parameter

estimation procedure. Standard motion-correction algorithms

(Woods et al., 1992) have difficulty accurately coregistering the

images in this domain as the images have variable contrast

properties. While other techniques can be employed that are less

sensitive to direction of contrast (Jenkinson et al., 2002; Viola and

Wells, 1995), some accuracy may be sacrificed. Here, we directly

solve for the rigid alignment parameters that minimize the

parameter estimation error. The parameters are then reestimated

using the new alignment, and this procedure is iterated until it

converges. Again, denoting the observed images by Ii and the

forward model given by Eq. (2), relating the tissue parameters b
and the pulse parameters mi to a predicted image by S(mi,b), we
minimize the following energy functional to solve for the rigid

alignment parameters Ri:

D b;mð Þ ¼ 1

2

X
i

ZZZ
Ii Rirð Þ � S mi; b rð Þð Þ½ �2dr ð6Þ

We minimize Eqs. (5) and (6) using a multiscale global search

of the six-dimensional rigid alignment parameter space, starting

with angles in the interval [�138,138] and translations in [�10,10

mm] after aligning centroids. The estimation of the intrinsic tissue

parameters in Eq. (5) is simplified by noting that the proton density

is a scale factor that can be removed by normalizing the length of

b. The T1 can then be estimated using a precomputed table that

maps T1 values discretized in 1-ms intervals from 10 ms to 10 s

into normalized signal intensities in O[log(n)] time with a binary

search. The proton density can then be computed as the ratio of the

norm of the image intensities at the voxel to the norm of the signal

table at the appropriate T1 for unit proton density.

Cross-sequence prediction of means and covariance matrices

The estimation of the intrinsic tissue parameters b solves part

of the problem of attaining the desired invariance to modifications

in pulse parameters. However, in order to segment a novel image

with an arbitrary set of acquisition parameters, we must be able to

predict the intensity distribution of each tissue class c under the

new set of MR parameters m [that is, p(Ijm,c)]. With the

assumption that the noise is Gaussian distributed, this amounts to

being able to predict the mean vector and covariance matrix of

each class at each atlas location in the new signal space. Given

the tissue parameters b, the means are easily predicted by using
them as input to the forward model of Eq. (2), where the MR

parameters m are typically contained in most current image

headers:

l̂c m; rð Þ ¼ S mpredicted; b mtraining; lc rÞ�ð
��

ð7Þ

where mtraining is the MR parameters used in the construction of the

atlas, and mpredicted is the MR parameters of the image to be

segmented.2 Global gain factors are accounted for by normalizing

the mean overall proton density to a predefined constant. Bias

fields caused by the sensitivity profile of the receive coil also

corrupt the estimates of the proton density P. These are accounted

for by automatically selecting a set of points whose posterior

probability of being white matter is high, then using these as fixed

points in a soap bubble interpolation algorithm to fix the white

matter intensity to a desired value (Dale et al., 1999).

For predicting the covariance structure, we decompose the

noise into two parts. The first is anatomical variability in the

intrinsic tissue properties of the various brain structures. The

second is white noise inherent in the imaging process. This results

in the predicted covariance structure given by:

Ŝc mð Þ ¼ Jpredicted JþtrainingcRc J
þT
training

� 	
JTpredicted þ kId ð8Þ

where J is the Jacobian matrix of S, J+ denotes the pseudo-inverse

of matrix J, Id is the identity matrix of the same dimensionality as

predicted covariance matrix, and k is a constant that reflects the

component of the noise that is scan dependent. The scan-

dependent part of the noise encapsulated in k reflects factors

such as averaging multiple acquisitions and the band width of the

scan.

Sequence optimization

Much effort has been devoted in the MRI community towards

finding pulse parameters that are optimal for various tasks (Baker,

1991; Constable and Henkelman, 1991; Constable et al., 1995;

Edelstein et al., 1986; Epstein et al., 1994; Grief et al., 1985;

Venkatesan and Haacke, 1997), including optimization for

segmentation (Prince et al., 1995). An advantage of phrasing the

segmentation procedure in terms of models of image acquisition is

that it provides a natural framework for formulating an energy

functional for sequence optimization specifically for segmentation.

In particular, we can compute the probability of mistakenly

labeling a voxel as class c1 when the true class was c2 as a

function of the MR parameters m:

p c1 rð Þc2 rð Þ;m½ � ¼
Z

p ci rð ÞI mð Þ½ �p I mð Þc2 rð Þ½ �dI

¼ p c1 rð Þ½ �
Z

p I mð Þci rð Þ½ �p I mð Þc2 rð Þ½ �dI ð9Þ



Fig. 1. Multiecho FLASH sequence timing diagram with eight echoes, non-

selective RF excitation and 3-D encoding.

Fig. 2. One-dimensional sample image.
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The total probability of misclassification at a voxel r is then

given by:

p r;m½ � ¼
X

c1 p c2

X
c2

p c1 rð Þc2 rð Þ;m½ � ð10Þ

By writing the synthesized images Ii = S(mi) as functions of the

MR parameters mi = [TRi,TEi, ai]
T using Eq. (2), we can integrate

Eq. (10) over space to yield an overall measure of the ambiguity

associated with a certain combination of MR parameters:

A mð Þ ¼
Z Z Z

r

p r;m½ �dr ð11Þ

We then seek the combination of MR parameters m that

minimize this ambiguity over all pairs of tissue classes that occur

together anywhere in the brain:

m̂m ¼ arg min
m

A mð Þ ¼
Z Z Z

r

X
c2 p c1

X
c1

p c1c2;m; r½ �dr ð12Þ

The likelihood terms p[Ijci(r)] are assumed to be normally

distributed with means and covariances given by Eqs. (7) and (8).

p Ic rð Þ½ �N m̂c; Ŝc

� 

ð13Þ

Eq. (9) is integrated over the region of intensity that is nonzero

for both classes c1 and c2, typically F5 SD from the mean.

Minimizing Eq. (12) thus amounts to reducing the amount of

overlap of the distributions for tissue classes that are likely to occur

at the same location.

It is important to note that the ambiguity measure captures the

difficulty of segmentation in several crucial ways. First, it allows

the intrinsic properties of the tissue classes to vary over space, as

the ambiguity is computed separately for each atlas location. This

is important, as the tissue characteristics do show considerable

spatial variability, as will be shown in the Intrinsic tissue parameter

distributions section. Second, only tissue classes that co-occur in a

given atlas voxel contribute to the ambiguity. Thus, the difficulty

of segmenting for example cortical gray matter from dura would

effect the sequence optimization, but not cortical gray matter from

the caudate, as these structures never occur in the same region of

atlas space.
Developing multiecho FLASH acquisitions

The FLASH protocol used above is available on the vast

majority of clinical scanners. As such, this sequence is limited in

that it does not take advantage of recent advances in imaging

hardware and acquisition techniques. In particular, it is typically a

relatively low band width sequence, implying that distortions due

to magnetic field inhomogeneities and susceptibility artifacts can

be substantial. The low band width is of course used to increase

SNR. In general, there is a trade-off between high band width, low

distortion, low SNR images, and low band width, high distortion,

and high SNR images. That is, SNR and distortion both go down

with bandwidth.

In order to avoid this trade-off, we have developed a high

band width multiecho FLASH (MEF) sequence that minimizes

distortions while maximizing SNR. In a single 8-min scan, the

same amount of time required for a 1.3 � 1 � 1-mm single-echo

FLASH scan, this sequence provides eight high band width

images at different echo times. While the individual scans can be

quite noisy, the information in the ensemble is significantly

greater than the low band width FLASH scans. In addition, the

higher band width of the multiecho FLASH sequence, coupled

with the fact that alternating echoes are collected with opposite

read-out directions, results in less distortion in the images due to

B0 effects (chemical shift and susceptibility distortion) (Haacke

and Lenz, 1987). This is particularly important for longitudinal

studies in which different shim settings can result in substantial

differential distortions between scan sessions for low band width

sequences. Physiologic and bulk motion during the readout also

result in fewer artifacts due both to the shorter readouts of the

multiecho sequence and to the averaging of the readouts with

alternating directions. Finally, image reconstruction techniques

can exploit the alternating readout direction to recover parts of

the image previously lost due to susceptibility artifacts (Chen

and Wyrwicz, 1999; Kadah and Hu, 1998; Schmithorst et al.,

2001). While these reconstruction techniques are usually applied

to EPI, they can also be adapted for use with multiecho FLASH

images.

The MEF sequence was generated by modifying the standard

Siemens gradient echo sequence to allow up to 1024 echoes

following a single excitation pulse (although all results in this

paper use eight echoes). The sequence can be run in 2-D or 3-D

mode and maintains the standard features of the Siemens sequence,

such as the option to include preparation pulses commonly used to

generate magnetization transfer contrast. We increased the amount

of gradient spoiling to eliminate artifacts in the images and

developed a modified image reconstruction program to conven-

iently stream the raw k-space data to additional storage on the

image reconstruction computer. A nonselective 100-As rectangular
pulse provides the excitation. Prephasing pulses on all three

gradients select the starting point in k-space for the particular set of

lines as usual for a 3-D sequence. The same line is read back and

forth during the train of pulses on the readout gradient and the

integral of the gradients determines the position in k-space. Since

the readout gradients for adjacent readouts have opposite polarities,



Fig. 3. Example of errors induced by interpolating I instead of p(I |f).
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the direction of the k-space traversal alternates direction, and errors

in the trajectory due to B0 errors also alternate in effect. A gradient

echo is formed at the center of each readout. Dephasing gradients

on the two-phase encoding gradients refocus the gradients so that

the integral is zero. Spoiling is done on the readout gradient where

an additional pulse after the last readout is added so that the total

integral in the readout direction is four times the integral under

each readout gradient (Fig. 1).

Finally, we have preliminary data suggesting that this sequence

has significantly better test–retest replicability both within and

across sites, a critical issue for longitudinal analysis of morpho-

metric changes. Specifically, the variance in intensity values is

significantly reduced relative to low band width FLASH and MP-

RAGE sequences due presumably to the high band width of the

MEF sequence, as will be shown in the Multiecho FLASH

section.

Nonlinear transform

While the linear registration procedure outlined in Fischl et

al. (2002) accounts for much of the anatomical variability across

subjects, there is clearly much room for improvement. Nonlinear

extensions to this type of intersubject registration procedure have
Fig. 4. Tissue parameter estimation. Left: map of T1; right: map of proton density (

Note the color scale at the left is only for the T1 image, the PD values are arbitrar

which the T1 estimates are arbitrary have been masked.
been extensively investigated (Ashburner et al., 1997; Collins et

al., 1994; Davatzikos, 1997; Fox et al., 1984, 1985; Woods et

al., 1992). Most of these techniques have error functionals with

two types of terms—data-driven terms (e.g., aligning like

intensities) and smoothness terms (e.g., generating morphs with

minimal metric distortion). Here we extend this type of cross-

subject registration to account for the fact that while smoothness

of the deformation is reasonable within tissue class, it is not

desirable to enforce such constraints across the border between

structures.

For example, many neurodegenerative disorders result in a

contraction of either cerebral white matter or cortical gray matter

and a concomitant expansion of the ventricular system. Thus, a

shock exists in the metric properties of the mapping at the border

between the ventricles and the white matter in which adjacent

locations in the brain are experiencing deformations with very

different characteristics. In order to model this type of deformation,

we disable the smoothness constraints on the evolving vector field

across the border between structures. Specifically, we use an

energy functional with five terms, similar to Fischl et al. (1999a),

one to encourage smooth deformation fields, one maximizing the

log likelihood of the image given the class at each atlas location,

one ensuring invertibility, and one minimizing within class metric
regions of low PD have been masked as the T1 estimates are arbitrary there).

y. Note also that regions outside the skull with extremely low PD values in
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distortion, and one that discretizes the probability field directly, as

will be described below:

G ¼ GI þ kTGT þ kMGM þ kSGS þ kLGL ð14Þ
where GI is an intensity term, GT is a topology constraining one,

GM is a metric preservation term, GS is a smoothness term, and GL

is a label term, each of which is described in detail below.
Fig. 5. T1 distribution
Considering the atlas an array of V nodes at locations ri, we can

write the image likelihood in discrete form as:

GI ¼
XV
i ¼ 1

mc rið Þ � I ri þ við Þ½ �TSc rið Þ�1 mc rið Þ � I ri þ viÞð �;½ ð15Þ

where mc and Sc are the mean vector and covariance matrix for

class c, respectively (predicted for the acquisition parameters of the
s by structure.



Fig. 5 (continued ).
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input scans, as detailed in the Cross-sequence prediction of means

and covariance matrices section, and vi is the vector field that we

are seeking. The topology term GT is given by:

GT ¼
XV
i ¼ 1

log 1þ e kRi
� 


k
� Ri

�
;Ri ¼

At
i

A0
i

;

�
ð16Þ

where Ai
0 is the determinant of the Jacobian of the initial linear

mapping, and Ai
t is the determinant of the current mapping. The

nonlinearity in Eq. (16) only penalizes regions that are highly

compressed or negative definite, and thus the coefficient on this

term can be set to an arbitrarily large value as it only affects regions

that are either noninvertible or almost noninvertible.

The metric distortion of the morph can be computed in a

straightforward manner as the mean squared difference between

the distance of the nodes at time t denoted d t, and their original

distance d 0. In a similar manner, the smoothness of the

deformation can be quantified as the difference between the

vector at location i and the mean of its neighbors. We then

modulate the metric term with the Kroneker delta dij, in order

to limit its application to within a neuroanatomical label, where

dij = 1 if the highest probability class labels at locations ri and
Fig. 6. Average maps of T1 in cortical gray matter for the left hemisphere (left) and right hemisphere (right) across 10 subjects, shown in lateral (top), ventra

(middle), and medial (bottom) views.
rj are the same, and 0 otherwise. Denoting the set of Eq. (6)

neighbors of each node by N(i), these terms are given by:

GM ¼ 1

4V

XV
i ¼ 1

X
n a N ið Þ

din d t
in � d 0

in

� 
2
; dtin

¼ jjri þ v ti � rn þ v tnjj ð17Þ

GS ¼ 1

2V

XV
i ¼ 1OVi �

1

N ið Þ
X

n a N ið Þ
Vn

1
AO

2

:

0
@ ð18Þ

Density-based morphing

Most volumetric intersubject morphing procedures assume an

additive Gaussian noise model. For the scalar case, this gives

rise to a log likelihood term that is the scalar analog of Eq.

(15):

logðp I rð Þj f ; cð Þ~� Ið f rð Þ � �c rð Þ
rc

� �2

ð19Þ
l
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Differentiating Eq. (19) with respect to the atlas coordinate f(r)

we are seeking results in:

dlogðp I rð Þj f ; cð Þ
df

~� I f rð Þð Þ � lcðrÞÞ
rc

�
5 I f rð Þð Þ df

dr

�
ð20Þ

where the gradient is taken with respect to the coordinates f(r). Eq.

(20) simply states that if the image intensity at f(r) is smaller than

the atlas at r, then f should be adjusted such that f(r) maps to a new

point rV, where rV is in the direction of jI[ f(r)] with respect to r.

At first glance, one would think that discretizing Eq. (19) would
Fig. 7. Ambiguity for various brain
result in a similar minimization to discretizing Eq. (20). However,

this is not the case, as implementing minimization techniques

based on Eq. (20) can result in incorrect solutions, a problem not

suffered by the direct discretization of Eq. (19). To see why this is

the case, consider a one-dimensional registration problem in which

the image consists of three voxels and the atlas consists of a single

one (Fig. 2).

Further, assume the initial conditions are such that the atlas

point with mean mc and unit variance is initially aligned with the

central voxel. Given this configuration, let us examine the gradient
structures versus flip angle.



Fig. 7 (continued ).
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of Eq. (19) given by direct discretization and interpolation of

�log[ p(I(r)jf,c)] versus discretizing Eq. (20) and computing

�log[ p(I(r)jf ,c] by interpolating image values, as is more

commonly done. This situation is depicted in Fig. 3, with the

interpolated image values shown in green, the direct interpolation

of �log[ p(I(r)jf,c] in blue, and �log[ p(I(r)jf,c] computed from

the interpolated image in red. Note that at the central point (voxel

1 on the x-axis), the gradient of the red and blue curves points in

opposite directions. Specifically, interpolating the image first

results in the movement of the atlas point towards the right, as the

error functional decreases more sharply in that direction. This is a

direct result of the assumption of continuity in the image—since

voxel 1 has a value of mc/2 and voxel 2 has a value of 2mc,

continuity implies that somewhere between the two is a point with

exactly the value of mc. Unfortunately, in Magn. Reson. Imaging,

this will not in general be the case. In fact, partial volume effects

frequently cause the truth to lie towards the opposite extreme.

That is, if we assume that the true underlying image is made up of

piecewise constant regions corresponding to different objects

being imaged, with noise added and blurring induced by the

imaging process (such as partial volume effects), then the

intensity distribution induced by imaging the underlying objects

is less continuous then the actual ones. In this case, interpolating

image values can lead to incorrect results. Directly interpolating

the probability field (or its log), however, avoids these problems

as the assumption of continuity is not violated. Another way to

look at this issue is that interpolation should be done after

nonlinearities, resulting in the more reasonable interpolation of the

blue line in Fig. 3, the gradient of which points in the correct

direction.

Unfortunately resolving this problem requires a significant

increase in computational complexity. If a scale-space approach is

to be taken, the probability field (or its log) must be smoothed as

opposed to the image. This implies that a smoothed probability

field must be generated for every atlas point (as each one has

different means and covariance matrices) at each step in the

numerical minimization. Instead of replacing the likelihood term

GI in Eq. (15), we implement a preliminary version of the density-

based morphing only for white matter regions inferior to the

hippocampus and append it as a separate term GL with coefficient

kL in Eq. (15), as it is these regions that most frequently misalign

due to very bright blood vessels inferior to cortex in this part of the

brain. Note that this term is essentially identical to Eq. (5), but its

numerical implementation and smoothing must be done quite

differently, as a smoothed probability field must be computed for

each atlas location separately, then its derivative with respect to a
change in the associated vector results in the delta that must be

applied to the current vector field.

Eq. (15) is minimized using a multiscale line minimization, as

outlined in (Fischl et al., 1999a). The tissue classes c are initially

assumed to be the class with the highest prior probability at each

location. After the minimization of Eq. (15) converges, the classes

are reestimated to be those with the highest posterior density. The

minimization is then repeated and the classes reestimated until the

entire procedure converges, with the topology checked at each step

of the integration, to insure invertibility.
Results

Intrinsic tissue parameter distributions

Preliminary results of the intrinsic tissue parameter estimation

procedure are given in Fig. 4, which was generated by minimizing

Eqs. (5) and (6), assuming that the noise is independent and

identically distributed to estimate T1 and PD from five FLASH

scans (fov = 240 mm � 240 mm; matrix = 256 � 256; slice

thickness = 1.5 mm; TR = 18, 18, 20, 20, and 20 ms; a = 38, 58,
208, and 308).

Distribution of T1 by tissue class

In this study, four FLASH images (1.5 T; TR = 20; TE = min;

fov = 240 � 240; matrix = 256 � 256; a = 38, 58, 208, and 308)
were acquired for each of eight healthy subjects (five males, three

females, ages 21–37, mean 25.5 F 6.1) and the parameter

estimation procedure detailed in the intrinsic tissue parameter

estimation section was applied to yield maps of proton density and

T1. Each of the subjects was manually labeled using the

procedures given in (Kennedy et al., 1993), and The T1 maps

were combined with the segmentations in order to estimate the

distribution of T1 on a structure by structure basis. The results of

this study are given in Fig. 5. Note the variability in some

structures, such as cortical gray matter, while others have very

tight T1 distributions, such as the pallidum. The maximum

likelihood estimate of the T1 for each structure is given in the

title bar of each figure. There are a number of interesting points

to note in this data set. First, the rightwards tail of many of the

distributions is caused by the partial volume effects with CSF,

which has an extremely long T1. This and the coloring effect of

the nonlinearity involved in inverting Eq. (2) result in the non-

Gaussian nature of the distributions, indicating the desirability of



Fig. 8. �log(A) measure for two FLASH scans with different flip angles.

The minimum ambiguity (a maximum in the �log(A) plot) occurs at the

location 68,218 indicating that having different contrast properties in the

two images helps the segmentation procedure (the 68 would be strongly

proton density weighted, and the 218 strongly T1 weighted).
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classifying in the signal space where the Gaussian assumption if

more valid.

Distribution of T1 across the cortex

The parameter estimation procedure can be combined with

cortical surface models (Dale and Sereno, 1993; Fischl et al.,

1999b; 2001) and high-resolution intersubject averaging proce-

dures (Fischl et al., 1999a) in order to compute maps that reveal the

spatial distribution of T1 across the cerebral cortex. In this study,

10 healthy subjects (four males, six females, ages 22–34, mean

25.7 F 5.5) were scanned using the same protocol detailed above,

and parameter maps were generated in the same way. Eq. (2) was

then used to synthesize a strongly T1-weighted image with a flip

angle of 308, which was used as input to automated cortical surface

reconstruction procedures (Dale and Sereno, 1993; Fischl et al.,

1999b; 2001) to generate explicit models of both the gray/white

junction and the pial surface. The T1 and proton density of the

cortical gray matter were estimated at each position on the surface

of each subject by sampling at the midpoint of the cortical ribbon

defined by these surfaces. These T1 maps were then averaged

using a spherical morphing procedure that aligns cortical folding

patterns (Fischl et al., 1999a).

The results of this analysis are given in Fig. 6, for the left and

right hemisphere (left and right), in lateral (top), inferior (middle),

and medial (bottom) views of an average inflated surface. Note the

spatial heterogeneity of the tissue characteristics across the

surface, with limbic and association cortices having significantly

longer T1 (and hence darker gray matter) than other cortical

regions, agreeing with other published studies (Cho et al., 1997;

Ogg and Steen, 1998; Steen et al., 2000). This spatial variability

underscores the difficulty of the segmentation problem as the

underlying characteristics of the tissue are changing across space

in a way that cannot be accounted for by a multiplicative bias field

correction.

There are several possible confounds to this analysis. The

principle one is that the results reflect inhomogeneities in the RF

transmit field, which would then masquerade as T1 variability due

to the erroneous assumption that the flip angle is constant across

space in Eq. (2). These inhomogeneities would derive from two

sources-dielectric resonance, and the sensitivity profile of the

transmit coil. While dielectric effects cannot be ruled out entirely,

we think they are unlikely to be a major source of error in this

study as it was carried out exclusively at 1.5 T where dielectric

effects are minimal. In addition, the pattern of T1 variability is not

what one would expect from dielectric resonance, in which a

radially symmetric pattern is typical. Similarly, transmit inhomo-

geneities due to the coil are unlikely to be a major source of error

as a body transmit coil with an extremely uniform spatial profile

over the head was used in all data acquisition. An additional point

to note is that the T1 estimates are completely insensitive to the

more standard bias fields due to the sensitivity profile of the

receive coil, as these effects, being multiplicative, are accounted

for in the PD estimates.

Partial volume effects are harder to avoid, particularly in thin

regions such as primary sensory ones. We minimize these effects

by sampling at the midpoint of the cortical ribbon. One indication

of the effectiveness of this technique is that the primary sensory

areas typically show shorter T1 than the average, whereas partial

volume effects should bias the estimates of the T1 in gray matter to

be longer than the true value due to the extremely long T1 of CSF.
Sequence optimization

The sequence optimization procedure detailed in the Sequence

optimization section is a quite general one. In this section, we

present results for optimal acquisitions for one, two, and three

standard single-echo FLASH images. In all cases, we hold TR and

TE constant in (20 and 6 ms, respectively) order to fix the image

noise and the flip angles induced by the vary RF excitation. Note

that the noise parameter k in Eq. (8) was varied across three orders

of magnitude without substantially changing the results and was

ultimately fixed at k = 100 for all studies presented here.

Optimal single angle acquisition

One important advantage of phrasing the sequence optimization

as in Eq. (12) is that one has the freedom to restrict the classes c1
and c2 that are considered. In this section, we carry out an

optimization for a single FLASH acquisition in order to determine

the optimal flip angle for segmentation purposes. This is done

across all classes, as well as on a class-by-class basis, in order to

determine, for example, the optimal flip angle for segmenting

hippocampus from all other structures that it abuts. It is important

to note that the minimum ambiguity for each structure is not simply

determined by the flip angle that maximizes the signal-to-noise

ratio (SNR) of that tissue class, which would be given by the Ernst

angle. For example, for cortical gray matter, which has a T1 of

approximately 1300 ms at 1.5 T, the Ernst angle for a TR of 20 ms

would be 10.08. However, the optimal flip angle for segmenting

cortical gray matter from other structures that it is adjacent to is

218, reflecting the T1/PD characteristics of cerebral white matter,

CSF, and dura that the gray matter must be distinguished from.

Fig. 7 gives the ambiguity measure for a set of structures for flip

angles from 08 to 508, with the optimum given in the title of each

figure. Most structures share a characteristic U-shaped curve, with

very low flip angles resulting in very low signal and hence high

ambiguity. The ambiguity then typically reduces until the global

minimum is reached between 158 and 258. The upward spike in



Fig. 9. MEF acquisitions. Top: proton density-weighted scan on a 1.5-T Siemens Sonata (TR = 20 ms; flip angle = 58; band width = 615 Hz/voxel; TE = 1.85,

3.67, 5.49, 7.31, 9.13, 10.95, 12.77, 14.59 ms). Bottom: T1-weighted scan (flip angle = 308, other parameters same as above).

Table 1

T2* values for gray matter and white matter at 1.5 and 3 T

Field strength

(T)

Gray matter

T2* (ms)

White matter

T2* (ms)

1.5 75 55

3 68 53
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many of the plots that occurs at approximately 78 or 88 no doubt

reflects the isointensity point of gray and white matter. In contrast,

the ventricular plots, particularly the lateral ventricles and the third

ventricle, show increased ambiguity at lower flip angles due to the

gray or CSF isointensity point, which occurs at about 58. This
effect is also apparent in the ambiguity curve for the caudate due to

its proximity to the lateral ventricles for much of its extent, again

highlighting the fact that the optimal acquisition parameters reflect

the properties of a structure, and the properties of the structures that

occur near it.

Optimal dual-angle acquisition

Most morphometry studies have sufficient acquisition time for

at least two 3-D structural images to be acquired. These images

most commonly have the same pulse parameters, allowing them to

be easily motion corrected and averaged, resulting in a M2

improvement in the noise. In order to investigate the efficiency

of this approach, we again held TR and TE constant, while

allowing two flip angles to vary from 08 to 608. We fixed TR to be

20 ms, resulting in an acquisition time of approximately 16.5 min.

The results of this analysis are given in Fig. 8, which plots �log(A)

for pairs of flip angles. Note the shoulder in the graph that runs

parallel to the x- and y-axes, indicating the optimum pair of flip

angles is composed of a low (68) and a high (218) angle.

Intuitively, this makes sense, as the low and high flip angle images

contain qualitatively different information, being strongly proton

density and T1-weighted, respectively. The ambiguity is relatively

insensitive to the exact value of the larger flip angle, as evidenced

by the gentle slope of the plot in the region around 208.

Optimal triple-angle acquisition

In this study, we searched the full 11-dimensional space to find

the optimal triplet of flip angles for segmentation purposes. This is

a difficult global optimization problem due to its high-dimensional

nature. That is, three flip angles must be searched over, each of

which contains an eight-dimensional optimization (two classes,

three spatial dimensions, and three intensity dimensions). Carrying

this calculation out for the N8000 flip angle triples required over

80,000 h of compute time on our 200 node Beowulf cluster, with

the optimum occurring at 58, 168, and 318. As might be expected,

the addition of a third flip angle occurs in the middle of the

previous two and pushes them outwards so that the low flip angle

is lowered and the higher one is increased.
Multiecho FLASH

An example of images acquired using the multiecho FLASH

sequence is given in Fig. 9, which shows the echoes (left to right)

of a 58 (top) and a 308 (bottom scan), with increasing echo

numbers going from left to right. The sequence was run in 3-D

mode with timing approximately as shown in Fig. 1 (note that the

duration of the readout ramps has been exaggerated for visual-

ization purposes). The sequence has eight echoes following each

excitation pulse, a band width of 651 Hz/pixel for each readout, a

voxel size of 1.3 � 1.0 � 1.3 mm with a field of view of 256 mm,

and 128 partitions (192 � 256 imaging matrix). Acquisition time is

8 min and 12 s.

An additional advantage of this sequence is that the acquisition

of data at varying echo times allows the explicit estimation of T2*

from a single 8 min scan set. Examining the two image sequences

in Fig. 9, the T2* decay is apparent, as the images get uniformly

darker from left to right. Using a log-linear fitting procedure, we

used manually drawn ROIs in the cortical gray matter and the

underlying white matter to estimate T2* for each tissue class for

both 1.5 and 3 T scanners. The results of this analysis are given in

Table 1 for 1.5 T (top row) and 3 T (bottom row).

Optimizing multiecho FLASH for segmentation

In order to gain some intuition as to the contrast properties of

the different echoes in the MEF acquisition, we manually labeled

an ROI in the cortical gray matter and another in the cerebral white

matter. The ROIs were chosen in perirolandic regions where the

contrast-to-noise ratio (CNR) between gray and white is reduced

relative to other cortical regions due to intrinsic variations in the

tissue parameters. The CNR between gray and white matter in this

region is quantified in Fig. 10 for the 308 (left) and 58 scans for

each of the eight echoes.

As can be seen from these plots, the gray/white CNR generally

decreases with increasing echo number for the 308 scan and

increases for the 58 scan. We then used the T2* values tabulated in



Fig. 10. CNR between gray and white matter as a function of echo no. for 308 (left) and 58 images (right).
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Table 1 and Eq. (2) to simulate the evolution of the contrast

properties of the different flip angles with increasing echo time.

The results of this analysis are given in Fig. 11. Examining this

figure, it is apparent that the longer T2* of GM results in it

darkening more gradually than WM, implying that for scans in

which it is initially darker (such as the 308), T2* decay will reduce

CNR at longer echo times. Conversely for scans in which GM is

initially brighter than WM (such as the 58), the converse holds and
the T2* effect will increase the CNR at longer echo times. An

additional observation of note is that much of the contrast in a

bproton-density-weighted imageQ seems to be due to T2* decay,

implying longer TEs will increase CNR for low flip angle FLASH

scans. An additional implication of these results is that the optimal

method of combining the different echoes is not simply to average

them but rather to weight them unequally based on their contrast.

In future work, we will implement an optimization procedure to

minimize the ambiguity A given by Eq. (11) as a function of echo

weighting.

Multiecho FLASH test–retest stability

In order to assess the test–retest repeatability of the multiecho

FLASH acquisition protocol, we acquired four images for each of

three different acquisition types [single echo FLASH, MP-RAGE

(Mugler, 1999), and multiecho FLASH] within a single scan

session. The images were each rigidly aligned to the first

acquisition of each type (Jenkinson and Smith, 2001). Nonbrain

tissue in these images was removed using a hybrid watershed or

deformable surface algorithm (Segonne et al., in press), resulting

in four coregistered brain images for each structural image type.

The intensity values in each scan were then scaled to be a fraction
Fig. 11. T2* decay curves for gray matter (solid) and
of the mean brain intensity value, and the cross-scan intensity

standard deviations were computed at each voxel. The mean of

these values across the brain represents the stability of the intensity

of each acquisition type, from scan to scan. The results of this

analysis are given in Fig. 12 for standard MP-RAGE (left),

FLASH (center), and multiecho FLASH (right). Note that the

standard errors of the mean are too small to see on this plot,

indicating that all the results are significant (due mainly to the

large number of degrees of freedom in the standard error

calculation—one for each brain voxel). As can be seen, the test–

retest intensity variation is significantly reduced in the MEF

acquisitions, a critical issue for longitudinal analysis of morpho-

metric changes. Presumably, the reduction in the variance in

intensity values is due to the high band width of the MEF

sequence, whereas the higher variability of the MP-RAGE is due

to its relatively low SNR with respect to FLASH acquisitions (due

among other factors to its high band width).

Nonlinear density-based morphing

As pointed out in the Nonlinear transform section, discretizing

the gradient of the standard log likelihood term commonly used in

nonlinear image registration can result in incorrect results. This is

due to the assumption of spatial continuity implicit in this

derivation. In this formulation, extremely bright structures in the

image will attract atlas regions that are initially aligned with low-

intensity portions of the image. Computing the gradient of the

discretized log likelihood instead can resolve this problem, as

illustrated in Fig. 13, which shows a representation of the atlas (top

left), the initial image after optimal linear alignment (top right), and
white matter (dotted) at 308 (left) and 58 (right).



Fig. 12. Test–retest intensity variation for three different structural

acquisition protocols.
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the final aligned image without (bottom left) and with (bottom

right) a term discretizing the likelihood instead of its derivative.

Note the distortions induced by very bright blood vessels in

inferior temporal regions. Computing the gradient after discretiza-

tion (bottom right) instead of before (bottom left) can resolve this

issue, as atlas voxels are attracted to regions of high probability

instead of along the intensity gradient.

It is important to note that this problem is exacerbated if a

standard scale-space approach is taken and jI is convolved with a
Fig. 13. Distortions induced by intensity-based morphing that can be eliminated with

image after optimal linear alignment. Bottom left: morph results with kL = 0. Bott

corresponding points across all images, and the green arrow indicates the location of

right), kM = 0, k = 5 in Eq. (14).
large Gaussian in the initial stages of the numerical minimization.

In this case, the interpolation of gradient values is carried out over

long distances, resulting in effects such as those seen in Fig. 13: All

atlas near the edge of the brain or the ventricles that are initially

aligned with image locations brighter than mc(r) are drawn towards

the outside of the brain or towards the ventricles as the image

intensity gradient points in these directions. Note that the presence

of the label term eliminates this effect and properly aligns the

temporal white matter, even in the presence of dramatically

enlarged ventricles (bottom right).

Cross-sequence segmentation

In order to test the sequence independence of the segmentation

procedure, nine FLASH scans were acquired on a single subject

(TR = 20 ms; TE = 6 ms; flip angles a = 308, 28, 158, 38, 108,
208, 48, 78, and 258). Each set of three consecutive scans

(consisting of a low, middle, and high flip angle) was used to

separately estimate b using Eqs. (5) and (6). The forward Bloch

Eq. (2) was then used to synthesize an image for each set with a =

308. These images were labeled using the technique described in

(Fischl et al., 2002), and the volumes of 14 major brain structures

were computed for each of the three data sets. The results of this

study are given in Fig. 14. As can be seen, the mean difference in

the structure volumes between the scans was found to be 1.8%,

indicating the insensitivity to the image contrast found in the

original data.

In a final study, four FLASH images (1.5 T; TR = 20 ms; TE =

min; fov = 240 � 240; matrix = 256 � 256; a = 38, 58, 208, and
308) were acquired for each of eight healthy subjects (five males,

three females, ages 21–37, mean 25.5 F 6.1). A jackknifing
discretization of the probability field. Top left: target image. Top right: initial

om right: morph results with kL = 1. Note that the red cross-hair represents

a blood vessel in the atlas. kS = 1, kT = 1, kL= 0 (bottom left) or kL= 1 (bottom



Fig. 14. Test–retest structure volumes measured from three separate data sets (dark, medium, and light bars) acquired on the same subject. Note that each data

set had different acquisition parameters (LV = lateral ventricle, HP = hippocampus, TH = thalamus, CA = caudate, PU = putamen, PA = pallidum, AM =

amygdala).
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procedure was used to generate an atlas for each subject by using

the remaining seven subjects’ data. In order to simulate the

variability in acquisition parameters, each subject’s four FLASH

scans were grouped into four sets of two, consisting of a high and a

low flip angle (38,208), (38,308), (58,208), (58,308). Each of these

scan pairs was then registered and labeled using Eqs. (7) and (8) to

map the atlas into the appropriate FLASH space. The mean and

standard errors across subjects for four brain structures for each of

the scan pairs are given in Fig. 15, together with the mean and

standard error of the manual labeling (in blue). The agreement of

the structure volumes across flip angle is in general quite good,

with a mean variation of less than 3% (standard deviation/mean =

2.9%, mean across structures). The residual variability may be due

to poorly regularized estimates of the covariance structure. This

leads to ill-conditioned inverse covariance matrices being used in

the estimation of the image likelihood and hence errors in the MAP

estimates of the segmentation. This type of problem may be

improved by regularization techniques such as those suggested in

Efron and Morris (1976), Haff (1979), Rayens and Greene (1991),

and Tadjudin and Landgrebe (1999). In addition, there are many
Fig. 15. Structure volumes for different pairs of flip angles across eight

subjects. Structures: lv = lateral ventricles, hp = hippocampus, th = thalamus,

ca = caudate, pu = putamen, pa = pallidum, am = amygdala, bs = brainstem,

3rd = third ventricle, 4th = fourth ventricle (blue = manual; cyan = 38,208;
green = 38,308; orange = 58,208; red = 58,308).
MRI effects not modeled by Eq. (2) such as magnetization transfer,

inflow effects, etc., which may also contribute to the residual

variability.
Conclusion

Current anatomical studies are frequently limited by the require-

ment that the initial MR protocol used be held fixed throughout the

length of the study. This is because automated and semiautomated

techniques are typically only optimized for a given MR pulse

sequence. Thus, measurements of structural properties may vary as a

function of the particular sequence used in acquiring the data. This is

of course undesirable, particularly for longitudinal studies that are

then unable to take advantage of advances in imaging technology.

The ability to combine data across sites in neuroimaging studies

would also be of great potential utility, as it would facilitate the

analysis of large subject populations. Unfortunately, this type of

cross-site study is frequently hampered by the lack of standard

parameter settings for structural MRI acquisition. This problem is

again compounded by the dependence of postprocessing software

on a particular set of acquisition parameters.

High-resolution structural MR images are usually generated

from so-called bT1-weightedQ pulse sequences. Nevertheless, all

structural scans also image the density of protons in the underlying

tissue, as well as the transverse relaxation time T2* (or T2 for spin-

echo sequences). Thus, it is impossible to infer from changes in a

single type of structural scan which of these tissue parameters (i.e.,

T1, T2, T2*, and proton density) is responsible for the variation. T1-

weighted morphometry must therefore frequently be solely phe-

nomenological, or descriptive, as opposed to providing a more

comprehensive understanding of disease processes. As part of the

current work, we have extended a standard clinical sequence

(FLASH) in order to allow the estimation of transverse relaxation

time T2*. An additional benefit of this sequence is that it has a high

band width, essentially eliminating geometric distortions and signal

loss due to magnetic susceptibility interfaces. The multiecho nature

of the sequence allows the high band width to be achieved without

sacrificing SNR and has the added benefit of reducing test–retest

intensity variability.

In this paper, we have presented a set of techniques to address

the problems associated with the sequence dependence of

morphometry tools. First, we derived and implemented a parameter
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estimation procedure that yields measures of intrinsic tissue

properties rather than the somewhat arbitrary intensity of an MR

image. These parameters can be derived from a set of standard

structural scans (SPGR or FLASH) and are properties of the tissue

and hence insensitive to changes in the acquisition parameters. We

then embedded the solution to the steady state Bloch equations into

the registration and segmentation procedures, allowing the

prediction of the intensity distributions of the underlying structures

for any set of MR acquisition parameters. The segmentation and

registration thus use the physics of image formation in order to

map an atlas into the signal space of a novel image. This results in

procedures that are largely invariant to variations in the acquisition

details, as these variations are explicitly modeled.

The explicit estimation of the underlying tissue parameters may

also be beneficial for detecting pathology-related changes in T2*,

T1, and proton density. In particular, these changes may be

correlated but have opposite effects on image contrast, making

them difficult or impossible to detect from a single T1-weighted

image. This type of alteration in the imaging properties of the

tissue, possibly due to processes such as cell death or gliosis, may

entail changes in the parameters but not in morphometric properties

such as volume. Variations of this nature would thus be

undetectable to a standard morphometric analysis procedure but

would be clearly revealed by cross-group comparison of the tissue

parameters.

Another advantage of embedding models of the physics of

image formation into the segmentation procedure is that it allows

the explicit optimization of the imaging parameters for the

segmentation to be used on them. This can be carried out for all

tissue classes or can be naturally restricted to a subset of the

structures that can be labeled. This optimization reveals that

ambiguity in the segmentation is minimized by the conjunction of

proton density and T1-weighted images, in contrast to the more

standard practice of acquiring two strongly T1-weighted images

and averaging them.
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