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Abstract

Image registration between histology and magnetic res-
onance imaging (MRI) is a challenging task due to differ-
ences in structural content and contrast. Too thick and wide
specimens cannot be processed all at once and must be cut
into smaller pieces. This dramatically increases the com-
plexity of the problem, since each piece should be individ-
ually and manually pre-aligned. To the best of our knowl-
edge, no automatic method can reliably locate such piece
of tissue within its respective whole in the MRI slice, and
align it without any prior information. We propose here
a novel automatic approach to the joint problem of multi-
modal registration between histology and MRI, when only
a fraction of tissue is available from histology. The ap-
proach relies on the representation of images using their
level lines so as to reach contrast invariance. Shape ele-
ments obtained via the extraction of bitangents are encoded
in a projective-invariant manner, which permits the identi-
fication of common pieces of curves between two images.
We evaluated the approach on human brain histology and
compared resulting alignments against manually annotated
ground truths. Considering the complexity of the brain fold-
ing patterns, preliminary results are promising and suggest
the use of characteristic and meaningful shape elements for
improved robustness and efficiency.

1. Introduction

Histology is concerned with the various methods of mi-
croscopic examination of a thin tissue section. Cutting
through a specimen permits the investigation of its internal
topography and the observation of complex differentiated
structures through staining.
MRI constitutes an invaluable resource for routine, accu-
rate, non-invasive study of biological structures in three di-
mensions. Relative to histology, MRI avoids irreversible

Figure 1: Given a histological slice (bottom left) part of
a whole specimen, our method aims to automatically spot
where it was taken from in the clinical image and align it
(right). The result should agree with the areas delineated
prior to cutting (top left) to avoid any manual intervention.

damage and distortions induced by processing, cutting,
mounting and staining during the histological preparation.
However, resolution-wise, it is outperformed by histology.
One of the many benefits of combining histology and MRI
is to confirm non-invasive measures with baseline informa-
tion on the actual properties of tissues [5] by accessing si-
multaneously the chemical and cellular information of the
former and the rich structural information of the latter.

Such combination relies on image registration and this
can be achieved using iconic (intensity-based) [1] or ge-
ometric (feature-based) [22] approaches. Unfortunately,
the extraction and manipulation of meaningful information
from histology and clinical images is a very complicated
task because each modality has, by nature, its own features
and there does not always exist a mapping between their
constituents: local intensity mappings are non-linear and
images exhibit different structures—which is also a reason
why intensity-based methods tend to get trapped in local
optima. Hence, classical feature description methods, such



as SIFT [26], fail to match features [30]. Incidentally, man-
ual extraction of landmarks may remain the safest way to
establish correspondences across modalities [17].

Besides, it is common for histopathology laboratories to
receive tissue samples that are: (P1) too wide or (P2) too
thick, to be processed as they are. The sample is therefore
cut into separate sub-blocks, each of which is processed in-
dividually. Unless additional scans of sub-blocks are ac-
quired (like in [1] for example), one must record which part
of the sample each sub-block corresponds to and use that in-
formation to initialise the registration of histological slices
with the clinical image, or manually align them. As for
problem (P2), attempts at using similarity measures have
been made to initialise registrations, but those are ambigu-
ous and rely on absolute measures rather than relative ones
[34]. On that matter, it was shown in [33] that direct com-
parison of images from different modalities is non-trivial,
and fails to reliably determine slice correspondences. To
the best of our knowledge, no automatic method to address
(P1) (see Fig. 1) has been proposed in the literature.

1.1. Related work

Regarding geometric approaches, one possible strat-
egy to align histology and clinical imaging is to simplify
the images into their contours, so as to come down to a
monomodal registration problem and use the shape infor-
mation provided by the external boundaries. In [2], contours
from both histology and slices from a rat brain atlas were
extracted via thresholding and represented using B-splines.
Then, they were described by means of sets of affine invari-
ants constructed from the sequence of area patches bounded
by the contour and the line connecting two consecutive in-
flections. In [31], Curvature Scale Space [27] was used for
the registration of whole-slide images of histological sec-
tions in order to represent shape (the tissue boundary) at
various scales. In [10], curvature maps at different scales
were used to match boundaries of full brain MRI extracted
via an active contour algorithm. The main weaknesses of
active contours are the number of parameters and the sensi-
tivity to initialisation.

An alternative to using a single contour was proposed
by morphologists, observing that level lines (the boundaries
of level sets) provide a complete, contrast-invariant repre-
sentation of images. Furthermore, level lines fit the bound-
aries of structures and sub-structures of objects very well.
Then, given two images, the problem is to retrieve all the
level lines that are common to both images; this is however
feasible only if curves have been appropriately simplified
(smoothed) [18] (p.95). Like in [25], smooth pieces of level
lines (the shape elements [9]) can be encoded to represent
shape locally in e.g., an affine-invariant manner [24]. The
comparison of the resulting canonical curves then permits
to identify portions of level lines common to two images.

Problem (P1) being multimodal and fractional by na-
ture, it seems natural to formulate a solution that involves
contrast- and geometric-invariance, as well as locality.

Here, we present a novel approach to (P1) based on:
(i) representing both histology and MRI images using their
level lines [25]. This allows to reach contrast invariance
and to consider implicitly several structural layers of the
images—as opposed to relying solely on the outer bound-
aries of tissues. From there, characteristic shape elements
can be extracted locally along the level lines via their bitan-
gents (§3). (ii) Representing those elements in a projective
invariant manner (§4) as introduced by Rothwell in [29], so
as to be robust to some non-linear deformations that tissues
undergo during the histological process. Combining the two
procedures permits the partial matching of shape elements
regardless of the orientation of the tissue on glass slides.
Registration is then obtained as a result of shape recogni-
tion (§5).

1.2. Contributions

1. We address the joint problem of multimodal registra-
tion between a fraction of histology and its whole in an
MRI slice as a result of shape recognition using por-
tions of level lines.

2. We introduce an efficient refinement of bitangents via
ellipses.

3. We extend Rothwell’s framework to bitangents cross-
ing the level lines and compare the resulting canonical
curves using the Fréchet distance.

2. Preprocessing
We used two standard preprocessing steps: first, smooth-

ing, in order to simplify the image, preserve the shape of the
tissue, remove unnecessary details and obtain smooth level
lines (Fig. 2a); then, intensity correction, in order to account
for inhomogeneities of the field in MR images (Fig. 2c) or
illumination in histology.

Smoothing is based on Affine Morphological Scale
Space (AMSS) [4]. It is governed by the partial differen-
tial equation: ∂u

∂t = |Du|curv(u)1/3 where u is the image,
|Du| is the gradient of the image, curv(u) is the curvature
of the level line and t is a scale parameter. AMSS smoothes
homogeneous regions but enhances tissue boundaries. The
sequence of updates necessary to its computation follows
that presented in [28] (equations of §2.3).

Image intensities correction relies on surface fitting [11]:
the low-frequency bias of an image can be estimated us-
ing an adequate basis of smooth and orthogonal polynomial
functions. It then comes down to solving the least square
problemAc = b, where b ∈ RN is the vector of all the pix-
els values, and c the coefficients of one linear combination
of basis functions. A ∈ RN×(n+1)(m+1) is the matrix of the
system: its k-th row is the vectorised outer product Φ(xk)⊗



Figure 2: Smoothing and bias correction. (a) Level lines
(multiple of 16) prior (in colour) and posterior to AMSS
filtering (scale 2). (b) Corrupted and bias corrected images
of a T2 image of a human brain, along with the estimated
bias (Legendre polynomials of order 2). (c) The effect on
level lines of corrupted and corrected images is shown.

Φ(yk) with Φ(xk) = [P0(xk), P1(xk), . . . , Pm(xk)]T and
Φ(yk) = [P0(yk), P1(yk), . . . , Pn(yk)] for pixel k ≤ N .
Pi(.) denotes a certain 1D polynomial of degree i. Degrees
m and n are usually taken small so as not to overfit the im-
age intensities. The left inverse of A (it is full rank) gives
the bias image, and correction is straightforward (Fig. 2b).

3. Finding bitangents
Characteristic shape elements are extracted by means of

bitangents of level lines. Bitangents are identified via the
tangent space (§3.1) and each one is refined using two el-
lipses fitted in the neighbourhood of estimated bitangent
points (§3.2.1). Since two ellipses have at most four bi-
tangents (§3.2.2), one needs to be singled out which corre-
sponds to the refined bitangent of the level line (§3.2.3).

In the following, a bitangent point is one of the two
points where a bitangent is in contact with the level line.
The length of a bitangent is defined as the number of inflec-
tions of the portion of level line that it covers. As a result,
a short bitangent refers to a bitangent that covers portions
with exactly two inflections and a long one, more than two.

3.1. Dual curve

Let L be a Jordan curve (level lines are plane simple
curves, though closedness is not guaranteed for all of them

in practice). Duality is defined as the polarity that sends
any point to a line and vice versa. The image of a point
with parameter t = t0 is the line:

ux(t0) + vy(t0) + 1 = 0. (1)

If the parameter t covers the whole range of definition, the
resulting set of straight lines is the envelope of L: the dual
L∗ of L is the set of its tangent lines. A parametrisation of
L∗ in homogeneous coordinates can be obtained from (1)
by differentiation w.r.t the parameter t and elimination. This
yields u = −ẏ(t)

ẋ(t)y(t)−ẏ(t)x(t) and v = ẋ(t)
ẋ(t)y(t)−ẏ(t)x(t) with

x, y 6= 0 (dot notation is used for differentiation).
Dual curves feature the following properties: an inflec-

tion of L maps onto a cusp of the dual, and two points shar-
ing a common tangent map onto a double point of the dual
curve. More generally, a set of n points sharing a common
tangent line maps onto a point of multiplicity n of the dual
curve. Finding the bitangents of L is therefore equivalent to
finding self-intersections of the polygonal curve L∗ (Fig. 3).
To that end, we used the Bentley-Ottmann algorithm [7, 6],
which is a line sweep algorithm that reports all intersections
among line segments in the plane.

3.2. Refining bitangents locations

The refinement of bitangents is preferable: since the
slopes of tangents vary substantially in portions of high cur-
vature, the lengths of segments of the dual curve increase on
portions where a self-intersection may happen. The evalu-
ation of that double point thus degrades, which directly af-
fects the estimation of bitangents.

3.2.1 Ellipse fitting

In order to cope with bitangent errors, we propose to refine
their locations by fitting ellipses [16] around estimated bi-
tangent points. This allows skipping the rotation part prior
to the quadratic fitting in [29]. Beforehand, bitangents lying
on almost straight edges of the level lines are removed by
looking at the residual of a line fit on the portions bounded
by the two bitangent points. This is intended to avoid the
degenerate case of fitting an ellipse to a nearly straight line.

Let F be a general conic. It is defined as the set of points
such that:

F (a,x) = a.x = ax2 +by2 +cxy+dx+ey+f = 0, (2)

where a = [a b c d e f ]T and x = [x2 y2 xy x y 1]T .
The constrained least square problem we wish to solve

here is: mina = aTSa subject to aTCa = 1, where
S = DTD is the scatter matrix, D is the design matrix,
made of the N points to be fitted and C is the constraint
matrix which expresses the constraint 4ac − b2 = 1 on the
conic parameters to make it an ellipse. This translates in a



Figure 3: Left: the function x 7→ xsin(x) for all x ∈ [0, 4π],
and the set of its tangents (in grey) are shown. Inflection
points are shown with red dots (black dots in the right pic-
ture) and bitangents are coloured lines. Middle: the dual
curve: its 4 crossing points correspond to the 4 coloured bi-
tangents on the left. Right: bitangents (11 in total) of one
level line (in white) from a histological slice (after §3.1).

[6 × 6] matrix where C22 = −1 and C31 = C13 = 2, the
rest being zeros.

This yields the generalised eigenvalue problem (GEP):

Sa = λCa. (3)

The ellipse coefficients, a are the elements of the eigen-
vector that corresponds to the only positive eigenvalue. Al-
though the impact of S being nearly singular and C being
singular on the stability of the eigenvalues computation is
discussed in [20], we did not encounter any problem in our
experiments.

3.2.2 Bitangents of ellipses

The main goal of this section is to compute the bitangents
of two ellipses efficiently. This is achieved by transform-
ing a system of two polynomial equations into a polyno-
mial eigenvalue problem, and for further performance, into
a generalised eigenvalue problem.

Let us consider two ellipses, E1(a1,x) and E2(a2,x)
defined by bivariate quadratic polynomials, like in (2). The
tangent line, T : y = ux + v to say E1, is the line that in-
tersects E1 at exactly one point. By substitution, one gets
a degree 2 polynomial in x, which has a single root if and
only if its discriminant, ∆(α1,u) = 0. When considering
the tangent to both ellipses, this gives a system of n = 2
polynomial equations in unknowns u, v:

(s1)

{
α11u

2 + α12v
2 + α13uv + α14u+ α15v + α16 = 0

α21u
2 + α22v

2 + α23uv + α24u+ α25v + α26 = 0,

(4)
αi1 = e2i − 4cifi, αi2 = b2i − 4aici, αi3 = 4cidi − 2bidi,
αi4 = 2diei − 2bifi, αi5 = 2bidi − 4aiei and
αi6 = d2i − 4aifi, i = {1, 2}.

To start with, u is hidden in the coefficient field;
(s1) becomes a system of two equations f1(u, v) and
f2(u, v) in one variable v and coefficients from R[u] i.e.

f1, f2 ∈ (R[u])[v]. The degrees of these two equations are
d1 = d2 = 2.

Homogenising (s1) using a new variable w gives
(s2), a system of two homogeneous polynomial equations
F1(v, w) and F2(v, w) in two unknowns v, w:

(s2)

{
α11u

2 + α12v
2 + α13uv + α14uw + α15vw + α16w

2 = 0

α21u
2 + α22v

2 + α23uv + α24uw + α25vw + α26w
2 = 0,

(5)
The total degree d =

∑n
i=1(di − 1) + 1 equals 3. This

gives the set S of
(
n+ d− 1

d

)
= 4 possible monomials

ωδ = vδ2wδ3 in variables v, w of total degree d i.e., such
that |δ| =

∑3
i=2 δi = 3: S = {v3, v2w, vw2, w3}. The set

S can be partitioned into two subsets according to a modi-
fied Macaulay-based method [23]:

S1 = {ωδ : |δ| = 3, vd1 |ωδ},
S2 = {ωδ : |δ| = 3, wd2 |ωδ}. (6)

In other words, S1 (resp. S2) is the set of monomials of
total degree 3 that can be divided by v2 (resp. w2). This
gives S1 = {v3, v2w} and S2 = {vw2, w3}, from which
the extended set of four polynomial equations: vF1 = 0,
wF1 = 0, vF2 = 0 and wF2 = 0 can be derived.

After dehomogenisation (by setting w = 1), the ex-
tended system can be rewritten as a polynomial eigenvalue
problem (PEP):

C(u)v = 0, (7)

where v = [v3 v2 v 1]T and

C(u) =

 α12 α13u+α15 α11u
2+α14u+α16 0

0 α12 α13u+α15 α11u
2+α14u+α16

α22 α23u+α25 α21u
2+α24u+α26 0

0 α22 α23u+α25 α21u
2+α24u+α26

.

Non-trivial solutions to (7) are the roots of det(C), which
gives up to 4 real solutions for u.

For each one of them e.g., u1, the corresponding singular
value decomposition has the form: C(u1) = USVT , where
the solution vector [v1 v2 v3 v4]T is the column of V that
corresponds to the smallest singular value. The particular
solution v1 associated with u1 is e.g. v3

v4
, meaning that one

bitangent is parametrised by T1: y = u1x+ v1.
For the sake of completeness, the PEP (7) can be further

transformed into a GEP by first rewriting it as:([ 0 0 α11 0
0 0 0 α11
0 0 α21 0
0 0 0 α21

]
︸ ︷︷ ︸

C2

u2 +

[ 0 α13 α14 0
0 0 α13 α14
0 α23 α24 0
0 0 α23 α24

]
︸ ︷︷ ︸

C1

u+

[ α12 α15 α16 0
0 α12 α15 α16
α22 α25 α26 0
0 α22 α25 α26

]
︸ ︷︷ ︸

C0

)
v = 0,

(8)
which is equivalent to the GEP:

Ay = uBy, (9)

with A =
[

04 I4
−C0 −C1

]
and B =

[
I4 04
04 C2

]
, 04 and I4 being

the [4 × 4] zero and identity matrices, and y = [ v
uv ] =



[y1 y2 . . . y8]
T . A particular solution v1 is e.g., the quotient

y3
y4

(or equivalently 3

√
y1
y4

) from the eigenvector associated
with eigenvalue u1.

Note that the resolution of (9) is two orders of magnitude
faster compared to (7) using linear algebra packages.

Lastly, when the two ellipses E1 and E2 intersect in two
points, two out of the four eigenvalues obtained for u are
complex. These correspond to the two internal bitangents:
in that case, ellipses have only two external bitangents asso-
ciated with the other two real eigenvalues. It is also worth
noting that, when they exist, internal bitangents are associ-
ated with the extremal (real) eigenvalues.

3.2.3 Selecting one bitangent

In this section, we identify the only bitangent of E1 and
E2 that is also a bitangent of L (Fig. 4)—referred to as the
usable bitangent.

Let us consider: (i) bitangents directed from E1 to E2,
(ii) E1 is oriented positively and (iii) ∆ is its left-most
vertical tangent. Bitangents of E1 can be cyclically ordered
by considering independently the tangents below (in blue
in Fig. 4 Left), and above (in red) it, and sorting them by
decreasing y-intercept with the ellipse’s left-most tangent,
∆. This holds for cases where an ellipse lies above (resp.
below) all of the bitangents. Lemma 1 in [19] states that
the resulting cyclic order of the bitangent directions is C:
[LL,LR,RL,RR] (L and R stand for left and right and
refer to the locations of an ellipse relative to a bitangent).

Four possible cases arise: (c1) E2 stands to the right of
E1, (c2) is aboveE1 intersecting ∆, (c3) is to the left ofE1,
and (c4) is below E1 intersecting ∆. For each case, the first
bitangent encountered starting from ∆, counter-clockwise,
has type LL, RR, RL and LR respectively; the next up to
three bitangents for each case have their types deduced from
the positive cyclic order C.

Now in order to select the usable bitangent, one has to
rely on the geometry of the level line L. Let us define
the unit curvature vector k, at every point along L as the
vector pointing toward the centre of the osculating circle:
k = κn = 〈kx, ky〉, where κ is the scalar curvature andn is
the normal (it is colinear to the gradient of the image along
L and directed toward the inside of the clockwise-oriented
closed curve here). The orientation of k allows differen-
tiating otherwise ambiguous situations; for example, two
pairs of ellipses (E1, E2) and (E1, E3), all of them fitting
portions with same curvature and satisfying the configura-
tion of case (c1), can be associated with a different type of
usable bitangent, RR and RL respectively. This happens
when k1 and k3 have opposite sense, while k1 and k2 have
the same. In the following, positiveness is defined for (c1)
and (c3) as ky > 0 and as kx > 0 for (c2) and (c4), and is
denoted with the superscript (+).

Figure 4: Left: cyclic ordering of bitangents. Middle/right:
Refinement of bitangents through ellipse fitting (E1 is in
cyan and E2 in red). The curvature vectors are shown in
blue, bitangent points are shown with triangles, and bitan-
gents with coloured dashed lines. Selected refined bitan-
gents are shown in yellow (usable bitangent types: middle,
LL; right, RL).

From there we define four patterns: (p1) (k
(+)
1 , k

(+)
2 ),

(p2) (k
(+)
1 , k

(−)
2 ), (p3) (k

(−)
1 , k

(+)
2 ) and (p4) (k

(−)
1 , k

(−)
2 ).

In cases (c1) and (c2), they correspond to the usable bitan-
gent type LL, LR, RL, RR respectively. Conversely, in
cases (c3) and (c4), they correspond to the type RR, RL,
LR, LL respectively. Since there is a one to one correspon-
dence between the four bitangents and the four types, it only
requires identifying one of four patterns (p) and one of four
cases (c) to pick the usable bitangent parameters.

We also extend the mapping to intersecting ellipses
(Fig. 4 Middle) by observing that the cyclic order of bitan-
gents is of the form [Te, Ti, Ti, Te] (subscripts e and i stand
for external and internal). Since only external bitangents
exist in the case where E1 and E2 intersect in two points
(§3.2.2), we are left with the cyclic order [Te, , , Te].

Bitangent points are straightforward to obtain forE1 and
E2 by substitution of the tangent equation in the ellipses
equations. Finally, we select the point of L that is the closest
to an ellipse bitangent point. Note that once all bitangents
are refined, some bitangent points may collapse to similar
locations. In order to reduce ineffective redundancy, only
one bitangent out of those that have their end points close
to each other is kept [29].

4. Projective shape representation
We now have a set of refined bitangents. Let us con-

sider one bitangent and its endpoints b1 and b2. In order
to encode the shape of a portion of (oriented) level line
Lr = L�[b1, b2] (assuming b1 comes before b2) in a projec-
tive invariant manner (as opposed to affine invariant [24],
used in [25]), two more points are required: the cast points
c.. The four points b1, c1, c2, b2, invariant under projective
transformation, form the vertices of a polygon—the level
line frame Fl—and are mapped to the unit square vertices,
Fc (the canonical frame) [29]. The resulting projection is
applied to Lr and provides a canonical curve that can be
used for shape comparison and matching.

A cast point c1 (resp. c2) is defined as the contact point
of the tangent to Lr that intersects the level line at b1 (resp.



Figure 5: Comparison of canonical curves (CC) and free
space diagrams. For two shape elements, the Fréchet dis-
tance, dF is computed between 2 CC from histology (red)
and MRI (blue) and the associated free space diagrams with
Fréchet paths (white line) are shown—only endpoints of
segments are used. The regions in black correspond to the
reachable free space (δ ≤ dF here).

b2). There exist several such points for each bitangent point
in the case of long bitangents. It thus becomes critical to
ensure that a candidate frame Fl forms a convex polygon
so as to get an acceptable projection of Lr to the canonical
frame. In the case of short bitangents, the construction of
Fl is straightforward as only two cast points exist. As for
long bitangents, a single portion of curve may be associated
with several canonical curves, each of which depends on
the frame configuration. As noted in [29], it is preferable to
pick those making a wide angle between the bitangent and
the cast tangents, as well as those having the cast points as
far from one another as possible: unbalanced frames may
give distorted canonical curves. This holds for bitangents
crossing the level line. It is also worth mentioning that this
step drastically prunes the set of bitangents that can lead to
satisfying frames.

4.1. Canonical curves

The goal is here to determine the 2D homography matrix
such that xi = ρTXi [21], where Xi = [Xi Yi 1]T is the i-
th point in Fl (which no 3 are colinear) in homogeneous
coordinates, xi = [xi yi 1]T is the i-th vertex of the unit
square defined by (0, 0, 1), (0, 1, 1), (1, 1, 1) and (1, 0, 1),
T is a [3 × 3] matrix of the transformation parameters with
T33 = 1 and ρ is a non-zero scalar that gives by elimination
8 equations from four correspondences, linear in the param-
eters. The solution we are seeking is the unit singular vector
corresponding to the smallest singular value of the matrix of
the system.

A normalisation step, which consists of translating and
scaling, is recommended for it forces the entries of the ma-
trix of the system to have similar magnitude. Further details
can be found in [21] (p.108).

4.2. Comparing polygonal curves

Contrary to [29], who relied on rays extended from an
origin (1/2, 0) in Fc and designed a feature vector made
of all the distances from every intersection point with the
canonical curve to the origin, we compare canonical curves
by means of the Fréchet distance (Fig. 5). The rationale is
that we also consider bitangents that cross level lines. This
means that the canonical curves may cross the base of Fc
one or several times with more or less complex convolu-
tions, making the use of rays impractical.

There are (at least) two common ways of defining the
similarity between polygonal curves: the Hausdorff dis-
tance [32] and the Fréchet distance. The latter has the ad-
vantage that it takes into account the ordering of the points
along the curves, thereby capturing curves structure better
[3]. For the sake of speed, we used the discrete Fréchet
distance (see Table 1 of [14]), which is an approximation
of the continuous Fréchet distance: it only uses the curves
vertices for measurements. From there, one can also define
the reachable free space, which is the set of points for which
the distance between two curves is lower than a distance pa-
rameter, δ and this allows tracking local similarity [8]. The
Fréchet distance is the minimum δ that allows reaching the
top right corner of the free space starting from (0, 0).

5. Matching and registration
By cross-comparisons between histology and MRI, one

obtains a measure of shape similarity (§4.2). Because each
level line is associated with many canonical curves (one for
each shape element), matches are found when the Fréchet
distance is minimum and below a certain threshold. We
can then use correspondences between Fl in histology and
MRI to compute an affine transformation (same principle as
in §4.1 with only 3 points—each providing two equations—
and p = [T11 T12 . . . T23 0 0 1]T ). In order to minimise
the global alignment error, the points must be well-arranged
in images, i.e. the frames should be as wide as possible
(hence the advantage of using long bitangents). When con-
sidering several level lines in both modalities, each canon-
ical curve of each level line from histology returns at most
one matching canonical curve for each level line in the MRI.
False matches are filtered out using random sample consen-
sus (RANSAC) [15] and a single global transformation is
computed.

6. Results and discussion
We evaluated the method on 7 pieces of tissue, alto-

gether covering 3 different subjects. For each subject, we
had access to T2w, PSIR and PD MRI volumes (7 slices,
0.25×0.25×2mm3). From these volumes we selected the
slice that visually looked the most similar to one piece of
histology. Histological images were a series of 11 consec-



utive 2µm-thick sections, stained with 11 different dyes.
At this point, it is worth noting that because the histolog-
ical slab was about 25µm-thick—compared to a 2mm-thick
slice from MRI—projective invariance not only allowed be-
ing robust to tissue distortions in the recognition process but
was also required in order to tolerate morphological varia-
tions happening within that 2mm gap.

A ground truth arrangement similar to that of Fig. 1 was
available for direct assessment of success or failure of the
alignment. It was made by a histopathologist at the time
of the tissue preparation and essentially consisted of report-
ing the cassettes locations onto a slice of a medical image
in order to keep track on which part of the sample the tis-
sue piece was cut from. In the following, we call confusing
(as opposed to meaningful [12] i.e., the tissue outer/inner
boundaries) level lines, those not providing relevant infor-
mation about the tissue shape.

We ran two experiments (Fig. 6): (E1) consisted of us-
ing levels multiple of 16, 12, 8 and 4 in histology and MR
images to investigate two questions: what is the impact of
confusing level lines as well as their number, on the match-
ing and the alignment? Can level lines be used as they
are, without any form of prior knowledge about the tissue
boundaries in images? Note that level lines were computed
at quantised levels 0 to 255 by steps of 1. We expect that
the sparser the set of level lines, the less informative about
the actual tissue shape they can be (since information is
lost when quantisation is coarse). This indeed translates in
higher numbers of false than true matches when using be-
tween 1/16th and 1/8th of all available level lines (except
for pieces 1 and 3 when using 1/8th, but this is hardly rep-
resentative). When sufficient information comes in (1/4th),
recognition becomes more successful: despite finding more
false than true matches for piece 2, RANSAC was able to re-
turn the correct transformation—most of the false matches
being isolated and spread across the MR image domain in
that case. In contrary, RANSAC was unable to deal with
false matches for pieces 5 and 6, those being related to am-
biguities (shape elements were small and confusing).

The second experiment (E2) investigated the question:
how robust is the matching/alignment when injecting con-
fusing information into a subset of meaningful level lines?
As such, we increased the number of neighbouring level
lines from ±5 to ±20 around a meaningful one. In prac-
tice, meaningful level lines are those around structural lay-
ers (contrasted boundaries) of the tissue and we manually
picked the corresponding levels. We can observe that the
more localised around relevant information the level lines
are, the higher the ratio true/false matches and the more
trustful the set of correspondences fed to RANSAC. This
is where redundancy is very valuable. However, the more
levels one includes, the further one goes from meaningful
information, and the more confusing it can get (see the in-

Figure 6: Top: (E1) joint effects of sparsity and confused-
ness on the recognition of shape elements between histol-
ogy and MRI for 6 pieces of tissue, along with the ability
of RANSAC to provide the correct transformation (*). Bot-
tom: (E2) effects of redundancy/confusedness. Numbers of
true/false matches (different opacity) are reported for each
piece (different colours) in both experiments. RANSAC is
successful 5 out of 6 times in (E2).

crease in false matches). Due to the complexity of the in-
formation and the sinuosity of the shape, we believe that
starting from a meaningful subset of level lines is an impor-
tant consideration.

Resulting alignments are shown in Fig. 7 for 3 pieces,
considering neighbourhoods of ±10 level lines. Overall, 5
pieces were matched correctly and two incorrectly. As for
piece 6, no shape element was discriminative enough to be
correctly matched with an MRI portion of level line without
any ambiguity (Fig. 7c), as only relatively short bitangents
could be extracted. As for piece 7, this is due to the fact
that it is close to convex (and thus was not considered in
the previous experiments). As a result, a few or no bitan-
gents could be extracted from that histological image and
no match was therefore available.

The main requirements of the approach are twofold and
relate to the length of the bitangents and the threshold on the
Fréchet distance. As stressed out earlier, short bitangents
convey little and ambiguous information about shape. This
results in false matches especially because of the tolerance
of the projective-invariant setting and the sinuosity of the
MRI level lines. As a matter of fact, we constrained the ap-
proach to using long bitangents: in practice, we used those
covering portions of a level line with more than 6 inflec-
tions. If a histological image happened to have informative
portions with more than two inflections but less than 6—



Figure 7: Alignment results. (a1)-(b)-(c) Successes and
failure of the approach for pieces 1, 5 and 6, using PSIR,
T2 and PD images respectively. (a2) Example of matching
shape elements (orange) and associated level lines (green
and black) of piece 1. (a3) Affine-transformed matching
level lines of histology (orange) overlaid onto matching
level lines (green) of PSIR and its other level lines (black).

as it was the case for piece 5—then the longest bitangents
were used (4 and 5 inflections in that case). An upper bound
was also set (we chose 10 inflections) in order to speed up
the matching process and avoid aberrant comparisons with
bitangents covering the whole MR image; that range was
applied to both MRI and histology. The rationale for con-
sidering such a range is also that it is not guaranteed that two
level lines have the exact same number of inflections on cor-
responding portions across modalities, but their smoothness
ensures those numbers are close. Long bitangents produce
characteristic canonical curves (furthermore associated with
wide frames) and allow for lower thresholds on the Fréchet
distance while discarding false matches better.

7. Conclusion
This paper stands as a proof of concept that multimodal

registration between a piece of tissue from histology and its
whole in an MRI—which, to the best of our knowledge, re-
mains to be addressed—is achievable as a result of shape
recognition using portions of their level lines. Such a for-
mulation allows for contrast, projective invariant represen-
tation of shape elements and partial matching regardless of
the orientation of the piece of tissue on the glass slide (flips,
rotations). We also introduced a computationally efficient
refinement of bitangents using ellipses, from which a sin-
gle bitangent was retained according to the local geome-
try of the level line. All this however, is to be related with
the complexity of medical images; successful alignments
require subsets of meaningful level lines along with char-
acteristic shape elements. Those were obtained via the ex-
tension of Rothwell’s framework to bitangents crossing the

level lines and by preferring long bitangents.
Future works include: (i) the automatic extraction of

meaningful level lines [12]; (ii) the use of shortcut Fréchet
distance [13], which bypasses large dissimilarities. This
could improve robustness to tissue tears: a level line in his-
tology may be globally close in terms of its shape to part of
another in MRI but because of a tear that it follows, the dis-
tance between the associated canonical curves will be large.
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tween two polygonal curves. International Journal of Com-
putational Geometry & Applications, 5:75–91, 1995. 6

[4] L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel.
Axioms and fundamental equations of image processing.
Archive for rational mechanics and analysis, 123(3):199–
257, 1993. 2

[5] J. Annese. The importance of combining mri and large-scale
digital histology in neuroimaging studies of brain connectiv-
ity. Mapping the connectome: Multi-level analysis of brain
connectivity, 2012. 1

[6] C. Barton. https://github.com/ideasman42/
isect_segments-bentley_ottmann. 3

[7] J. L. Bentley and T. A. Ottmann. Algorithms for Reporting
and Counting Geometric Intersections. IEEE Transactions
on computers, (9):643–647, 1979. 3

[8] K. Buchin, M. Buchin, and Y. Wang. Exact Algorithms for
Partial Curve Matching via the Fréchet Distance. In Pro-
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