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Abstract

Nonlinear registration of 2D histological sections with corresponding slices of MRI data is a critical step of 3D histology
reconstruction algorithms. This registration is difficult due to the large differences in image contrast and resolution, as well as the
complex nonrigid deformations and artefacts produced when sectioning the sample and mounting it on the glass slide. It has been
shown in brain MRI registration that better spatial alignment across modalities can be obtained by synthesising one modality from
the other and then using intra-modality registration metrics, rather than by using information theory based metrics to solve the
problem directly. However, such an approach typically requires a database of aligned images from the two modalities, which is
very difficult to obtain for histology and MRI.

Here, we overcome this limitation with a probabilistic method that simultaneously solves for deformable registration and syn-
thesis directly on the target images, without requiring any training data. The method is based on a probabilistic model in which the
MRI slice is assumed to be a contrast-warped, spatially deformed version of the histological section. We use approximate Bayesian
inference to iteratively refine the probabilistic estimate of the synthesis and the registration, while accounting for each other’s un-
certainty. Moreover, manually placed landmarks can be seamlessly integrated in the framework for increased performance and
robustness.

Experiments on a synthetic dataset of MRI slices show that, compared with mutual information based registration, the proposed
method makes it possible to use a much more flexible deformation model in the registration to improve its accuracy, without
compromising robustness. Moreover, our framework also exploits information in manually placed landmarks more efficiently than
mutual information: landmarks constrain the deformation field in both methods, but in our algorithm, it also has a positive effect on
the synthesis – which further improves the registration. We also show results on two real, publicly available datasets: the Allen and
BigBrain atlases. In both of them, the proposed method provides a clear improvement over mutual information based registration,
both qualitatively (visual inspection) and quantitatively (registration error measured with pairs of manually annotated landmarks).
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1. Introduction

1.1. Motivation: human brain atlases
Histology is the study of tissue microanatomy. Histologi-

cal analysis involves cutting a wax-embedded or frozen block
of tissue into very thin sections (in the order of 10 microns),
which are subsequently stained, mounted on glass slides, and
examined under the microscope. Using different types of stains,
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Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.
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pate in analysis or writing of this report. A complete listing of ADNI investi-
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different microscopic structures can be enhanced and studied.
Moreover, mounted sections can be digitised at high resolution
– in the order of a micron. Digital histological sections not only
enable digital pathology in a clinical setting, but also open the
door to an array of image analysis applications.

A promising application of digital histology is the construc-
tion of high resolution computational atlases of the human brain.
Such atlases have traditionally been built using MRI scans and/or
associated manual segmentations, depending on whether they
describe image intensities, neuroanatomical label probabilities,
or both. Examples include: the MNI atlas (Evans et al., 1993;
Collins et al., 1994), the Colin 27 atlas (Holmes et al., 1998),
the ICBM atlas (Mazziotta et al., 1995, 2001), and the LONI
LPBA40 atlas (Shattuck et al., 2008).

Computational atlas building using MRI is limited by the
resolution and contrast that can be achieved with this imaging
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technique. The resolution barrier can be partly overcome with
ex vivo MRI, in which motion – and hence time constraints –
are eliminated, enabling longer acquisition at ultra-high resolu-
tion (∼100 µm), which in turns enables manual segmentation at
a higher level of detail (Augustinack et al., 2005; Yushkevich
et al., 2009; Iglesias et al., 2015; Saygin et al., 2017). How-
ever, not even the highest resolution achievable with ex vivo
MRI is sufficient to study microanatomy. Moreover, and de-
spite recent advances in pulse sequences, MRI does not gen-
erate visible contrast at the boundaries of many neighbouring
brain structures, the way that histological staining does.

For these reasons, recent studies building computational brain
atlases are using stacks of digitised histological sections, which
enable more accurate manual segmentations, to build atlases
at a superior level of detail. Examples include the work by
Chakravarty et al. (2006) on the thalamus and basal ganglia;
by Krauth et al. (2010) on the thalamus; by Adler et al. (2014,
2016, 2018) on the hippocampus; our recent work on the thala-
mus (Iglesias et al., 2017), and the recently published atlas from
the Allen Institute (Ding et al., 2016)3.

1.2. Related work on 3D histology reconstruction

The main drawback of building atlases with histology is the
fact that the 3D structure of the tissue is lost in the process-
ing. Sectioning and mounting introduce large nonlinear distor-
tions in the tissue structure, including artefacts such as folds and
tears. In order to recover the 3D shape, image registration algo-
rithms can be used to estimate the spatial correspondences be-
tween the different sections. This problem is commonly known
as “histology reconstruction” (Pichat et al., 2018).

The simplest approach to histology reconstruction is to se-
quentially align sections in the stack to their neighbours using
a linear registration method. There is a wide literature on the
topic, not only for histological sections but also for autoradio-
graphs. Most of these methods use robust registration algo-
rithms, e.g., based on edges (Hibbard and Hawkins, 1988; Ran-
garajan et al., 1997), block matching (Ourselin et al., 2001) or
point disparity (Zhao et al., 1993). There are also nonlinear
versions of serial registration methods (e.g., Arganda-Carreras
et al. 2010; Pitiot et al. 2006; Chakravarty et al. 2006; Schmitt
et al. 2007), some of which introduce smoothness constraints
to minimise the impact of sections that are heavily affected by
artefacts and/or are poorly registered (Ju et al., 2006; Yushke-
vich et al., 2006; Cifor et al., 2011; Iglesias et al., 2018).

The problem with serial alignment of sections is that, with-
out any information on the original shape, methods are prone
to accumulating errors along sections (known as “z-shift”) and
to straightening curved structures (known as “banana effect”,
since the reconstruction of a sliced banana would be a cylin-
der). One way of overcoming this problem is the use of fiducial
markers such as needles or rods (e.g., Humm et al. 2003); how-
ever, this approach has two disadvantages: the tissue may be
damaged by the needles, and additional bias can be introduced

3http://atlas.brain-map.org/atlas?atlas=265297126

in the registration if the sectioning plane is not perpendicular to
the needles.

Another way of combating the “z-shift” and banana effect
is to use an external reference volume without geometric dis-
tortion. In an early study, Kim et al. (1997) used video frames
to construct such reference, in the context of autoradiograph
alignment. More recent works have used MRI scans (e.g., Ma-
landain et al. 2004; Dauguet et al. 2007; Yang et al. 2012; Ebner
et al. 2017). The general idea is to iteratively update: 1. a
rigid transform bringing the MRI to the space of the histologi-
cal stack; and 2. a nonlinear transform per histological section,
which registers it to the space of the corresponding (resampled)
MRI plane. A potential advantage of using MRI as a refer-
ence frame for histology reconstruction is that one recovers in
MRI space the manual delineations made on the histological
sections, which can be desirable when building atlases (Adler
et al., 2016, 2018).

Increased stability in histology reconstruction can be ob-
tained by using a third, intermediate modality to assist the pro-
cess. Such modality is typically a stack of blockface photographs,
which are taken prior to sectioning and are thus spatially undis-
torted. Such photographs help bridge the spaces of the MRI
(neither modality is distorted) and the histology (plane corre-
spondences are known). An example of this approach is the
BigBrain project (Amunts et al., 2013).

Assuming that a good estimate of the rigid alignment be-
tween the MRI and the histological stack is available, the main
technical challenge of 3D histology reconstruction is the non-
linear 2D registration of a histological section with the corre-
sponding (resampled) MRI plane. These images exhibit very
different contrast properties, in addition to modality-specific
artefacts, e.g., tears in histology, bias field in MRI. Therefore,
generic information theory based registration metrics such as
mutual information (Maes et al., 1997; Wells et al., 1996; Pluim
et al., 2003) yield unsatisfactory results. This is partly due to
the fact that such approaches only capture statistical relation-
ships between image intensities at the voxel level, disregarding
geometric information.

1.3. Related work on image synthesis for registration

An alternative to mutual information for inter-modality reg-
istration is to use image synthesis. The premise is simple: if we
need to register a floating image FA of modality A to a refer-
ence image RB of modality B, and we have access to a dataset of
spatially aligned pairs of images of the two modalities {Ai, Bi},
then we can: estimate a synthetic version of the floating im-
age FB that resembles modality B; register FB to RB with an
intra-modality registration algorithm; and apply the resulting
deformation field to the original floating image FA. In the con-
text of brain MRI, we have shown in Iglesias et al. (2013) that
such an approach, even with a simple synthesis model (Hertz-
mann et al., 2001), clearly outperforms registration based on
mutual information. This result has been replicated in other
studies (e.g., Roy et al. 2014), and similar conclusions have
been reached in the context of MRI segmentation (Roy et al.,
2013) and classification (van Tulder and de Bruijne, 2015).
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Medical image synthesis has gained popularity in the last
few years due to the advent of hybrid PET-MR scanners, since
synthesising a realistic CT scan from the corresponding MR
enables accurate attenuation correction of the PET data (Burgos
et al., 2014; Huynh et al., 2016). Another popular application of
CT synthesis from MRI is dose calculation in radiation therapy
(Kim et al., 2015; Siversson et al., 2015). Unfortunately, most
of these synthesis algorithms are based on supervised machine
learning techniques, which require aligned pairs of images from
the two modalities – which are very hard to obtain for histology
and MRI.

A possible alternative to supervised synthesis is a weakly
supervised paradigm, best represented by the recent deep learn-
ing method CycleGAN (Zhu et al., 2017). This algorithm uses
two sets of (unpaired) images of the two modalities, to learn two
mapping functions, from each modality to the other. CycleGAN
enforces cycle consistency of the two mappings (i.e., that they
approximately invert each other), while training two classifiers
that discriminate between synthetic and real images of each
modality in order to avoid overfitting. While this technique
has been shown to produce realistic medical images (Chartsias
et al., 2017; Wolterink et al., 2017), it has an important limita-
tion in the context of histology-MRI registration: it is unable to
exploit the pairing between the (nonlinearly misaligned) histol-
ogy and MRI images. Another disadvantage of CycleGAN is
that, since a database of cases is necessary to train the model, it
cannot be applied to a single image pair, i.e., it cannot be used
as a generic inter-modality registration tool.

1.4. Contribution

In this study, we propose a novel probabilistic model that
simultaneously solves for registration and synthesis directly on
the target images, i.e., without any training data. The princi-
ple behind the method is that improved registration provides
less noisy data for the synthesis, while more accurate synthesis
leads to better registration. Our framework enables these two
components to iteratively exploit the improvements in the es-
timates of the other, while considering the uncertainty in each
other’s parameters. Taking uncertainty into account is crucial:
if one simply tries to iteratively optimise synthesis and regis-
tration while keeping the other fixed to a point estimate, both
components are greatly affected by the noise introduced by the
other. More specifically, misregistration leads to bad synthesis
due to noisy training data, whereas accurate registration to a
poorly synthesised image yields incorrect alignment.

If multiple image pairs are available, the framework exploits
the complete database, by jointly considering the probabilistic
registrations between the pairs. In addition, the synthesis al-
gorithm effectively takes advantage of the spatial structure in
the data, as opposed to mutual information based registration.
Moreover, the probabilistic nature of the model also enables
the seamless integration of manually placed landmarks, which
inform both the registration (directly) and the synthesis (indi-
rectly, by creating areas of high certainty in the registration);
the results show that the improvement in synthesis yields more
accurate registration than when the landmarks only inform the

deformation field. Finally, we present a variational expecta-
tion maximisation algorithm (VEM, also known as variational
Bayes) to solve the model with Bayesian inference, and illus-
trate the proposed approach through experiments on synthetic
and real data.

The rest of this paper is organised as follows. In Section 2,
we describe the probabilistic model on which our algorithm re-
lies (Section 2.1), as well as an inference algorithm to com-
pute the most likely solution within the proposed framework
(Section 2.2). In Section 3, we describe the MRI and histolog-
ical data (Section 3.1) that we used in our experiments (Sec-
tion 3.2), as well as the results on real data and the Allen atlas
(Section 3.3). Finally, Section 4 concludes the paper.

2. Methods

2.1. Probabilistic framework

The graphical model of our probabilistic framework and
corresponding mathematical symbols are shown in Figure 1.
For the sake of simplicity, we describe the framework from
the perspective of the MRI to histology registration problem,
though the method is general and can be applied to other inter-
modality registration task – in any number of dimensions.

Let {Mn}n=1,...,N and {Hn}n=1,...,N represent N ≥ 1 MRI image
slices and corresponding histological sections. We assume that
each pair of images has been coarsely aligned with a 2D linear
registration algorithm (e.g., using mutual information), and are
hence defined over the same image domain Ωn. Mn and Hn are
functions of the spatial coordinates x ∈ Ωn, i.e., Mn = Mn(x)
and Hn = Hn(x). In addition, let Kn and Kh

n represent two sets of
Ln corresponding landmarks, manually placed on the nth MRI
image and histological section, respectively: Kn = {knl}l=1,...,Ln

and Kh
n = {kh

nl}l=1,...,Ln , where knl and kh
nl are 2D vectors with the

spatial coordinates of the lth landmark on the nth image pair; for
reasons that will be apparent in Section 2.2 below, we will as-
sume that every knl coincides with an integer pixel coordinate.
Finally, Mh

n represents the nth MR image after applying a non-
linear deformation field Un(x), which deterministically warps it
to the space of the nth histological section Hn, i.e.,

Mh
n(x) = Mn(x + Un(x)), (1)

which in general requires interpolation of Mn(x).
Each deformation field Un is assumed to be an independent

sample of a Markov Random Field (MRF) prior, with unary po-
tentials penalising large displacements (their squared module),
and binary potentials penalising the squared gradient magni-
tude:

p(Un) =
1

Zn(β1, β2)

∏
x∈Ωn

e−β1‖Un(x)‖2−β2
∑

x′∈B(x) ‖Un(x)−Un(x′)‖2 , (2)

where β1 > 0 and β2 > 0 are the parameters of the MRF (which
we group in β = {β1, β2}); Zn(β1, β2) is the partition function;
and B(x) is the neighbourhood of the pixel located at x. We
note that this prior encodes a regularisation similar to that of
the popular demons registration algorithm (Vercauteren et al.,
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Mn knl

khnl

Hn

Mh
n

θ
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ɣ

β

𝜎"#

N

Ln

(a)

x Spatial coordinates
Ωn Image domain of nth image pair
N Number of image pairs

Mn(x) Intensities of nth MRI image
Mh

n(x) Intensities of nth registered MRI image
Hn(x) Intensities of nth histological section
Un(x) Deformation field for nth image pair

Ln Number of available landmarks for nth image pair
knl Spatial coordinates of kth landmark on Mn

kh
nl Spatial coordinates of kth landmark on Hn

θ Parameters of image intensity transform (contrast synthesis)
γ Hyperparameters of image intensity transform (contrast synthesis)
β Hyperparameters of deformation field
σ2

k Variance of manual landmark placement
(b)

Figure 1: (a) Graphical model of the proposed probabilistic framework. Circles represent random variables or parameters, arrows indicate dependencies between
the variables, dots represent known (hyper)parameters, shaded variables are observed, and plates indicate replication. (b) Mathematical symbols corresponding to
the model.

2007; Cachier et al., 2003). Moreover, we also discretise the
deformation fields, such that Un(x) can only take values in a
finite, discrete set of displacements {∆s}s=1,...,S at any location,
i.e., Un(x) ∈ {∆s}. We note that these displacements do not
need to be integer (in pixels). While this choice of deformation
model and regulariser does not guarantee the registration to be
diffeomorphic (which might be desirable), it enables marginali-
sation over the deformation fields {Un} – and, as we will discuss
in Section 2.2 below, a more sophisticated deformation model
can be used to refine the final registration.

Application of Un to Mn and Kn yields not only a registered
MRI image Mh

n (Equation 1), but also a set of warped landmarks
Kh. When modelling Kh, we need to account for the error made
by the user when manually placing corresponding key-points in
the MR images and the histological sections. We assume that
these errors are independent and follow zero-mean, isotropic
Gaussian distributions parametrised by their covariances σ2

k I
(where I is the 2×2 identity matrix, and where σ2

k is expected
to be quite small):

p(Kh
n |Kn,Un, σ

2
k) =

Ln∏
l=1

p(kh
nl|knl − Un(kh

nl), σ
2
k)

=

Ln∏
l=1

1
2πσ2

k

exp
− 1

2σ2
k

‖kh
nl − knl + Un(kh

nl)‖
2
 .

(3)

Note that the parameter σ2
k is assumed to have the same value

for all landmark pairs. While we would expect the variance
of the error to be larger in flat areas of the image (we could
make it dependent on e.g., the gradient magnitude), we will
here assume that the landmarks will seldom be located around
such uniform areas – as the user would normally use salient
features (e.g., corners) as reference points.

Finally, to model the connection between the intensities of
the histological sections {Hn} and the registered MRI images

{Mh
n}, we follow Tu et al. (2008) and make the assumption that:

p(Hn|Mh
n , θ) ∝ p(Mh

n |Hn, θ). (4)

This assumption is equivalent to adopting a discriminative ap-
proach to model the contrast synthesis. While this discrimina-
tive component breaks the generative nature of the framework,
it also enables the modelling of much more complex relation-
ships between the intensities of the two modalities, including
spatial and geometric information about the pixels. Such spatial
patterns cannot be captured by, e.g., mutual information, which
only models statistical relationships between intensities (e.g., a
random shuffling of pixels does not affect the metric). Any dis-
criminative, probabilistic regression technique can be used to
model the synthesis. Here we choose to use a regression forest
(Breiman, 2001), which can model complex intensity relation-
ships while being fast to train – which is crucial because we will
have to retrain the forest several times in inference, as explained
in Section 2.2 below. We assume conditional independence of
the pixels in the prediction: the forest produces a Gaussian dis-
tribution for each pixel x separately, parametrised by µnx and
σ2

nx. Moreover, we place a (conjugate) Inverse Gamma prior on
the variances σ2

nx, with hyperparameters a and b:

p(σ2
nx|a, b) =

ba

Γ(a)
(σ2

nx)−a−1 exp(−b/σ2
nx). (5)

Thanks to the conjugacy property, this choice of prior greatly
simplifies inference in Section 2.2 below, as it is equivalent
to having observed 2a pseudo-samples (tree predictions) with
sample variance b/a. The effect of the prior is to ensure that
the Gaussians describing the predictions do not degenerate into
zero variance distributions.

Henceforth, we use θ to represent the set of forest parame-
ters, which groups the selected features, split values, tree struc-
ture and the prediction at each leaf node. The set of correspond-
ing hyperparameters are grouped in γ, which includes the pa-
rameters of the Gamma prior {a, b}, the number of trees, and
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minimum number of samples in leaf nodes. The intensity model
is hence:

p(Mh
n |Hn, θ) =

∏
x∈Ωn

p
(
Mh

n(x)|Hn(W(x)), θ
)

=
∏
x∈Ωn

N
(
Mh

n(x); µnx(Hn(W(x)), θ), σ2
nx(Hn(W(x)), θ)

)
,

whereW(x) is a spatial window centred at x, andN represents
the Gaussian distribution. Given the deterministic deformation
model (Equation 1), and the assumption in Equation 4, we fi-
nally obtain the likelihood term:

p(Hn|Mn,Un, θ) =
∏
x∈Ωn

p (Mn(x + U(x))|Hn(W(x)), θ)

=
∏
x∈Ωn

N
(
Mn(x + U(x)); µnx(Hn, θ), σ2

nx(Hn(W(x)), θ)
)
.

(6)

We emphasise that, despite breaking the generative nature
of the model, the assumption in Equation 4 still leads to a valid
objective function when performing Bayesian inference. This
objective function can be optimised with standard inference tech-
niques, as explained in Section 2.2 below.

2.2. Inference

We use Bayesian inference to “invert” the probabilistic model
described in Section 2.1 above. If we group all the observed
variables into the set O = {{Mn}, {Hn}, {Kn}, {Kh

n }, β, γ, σ
2
k}, the

problem is to maximise:

{Ûn} = argmax
{Un}

p({Un}|O) = argmax
{Un}

∫
θ

p({Un}|θ,O)p(θ|O)dθ

≈ argmax
{Un}

p({Un}|θ̂,O), (7)

where we have made the standard approximation that the pos-
terior p(θ|O) is strongly peaked around its mode θ̂, i.e., we use
point estimates for the parameters, computed as:

θ̂ = argmax
θ

p(θ|O). (8)

In this section, we first describe a VEM algorithm to obtain the
point estimate of θ using Equation 8 (Section 2.2.1), and then
address the computation of the final registrations with Equa-
tion 7 (Section 2.2.2). The presented method is summarised in
Algorithm 1.

2.2.1. Computation of point estimate θ̂ of forest parameters
Applying Bayes’s rule on Equation 8 and taking logarithm,

we obtain the following objective function:

θ̂ = argmax
θ

p(θ|{Mn}, {Hn}, {Kn}, {Kh
n }, β, γ, σ

2
k)

= argmax
θ

log p({Kh
n }, {Hn}|θ, {Mn}, {Kn}, β, γ, σ

2
k) + log p(θ|γ).

(9)

Algorithm 1 Simultaneous synthesis and registration
Input: {Mn}n=1,...,N , {Hn}n=1,...,N , Kn, Kh

n
Output: θ̂, {Ûn}

qnx(∆)← 1/S ,∀n, x
Initialise θ with Eq. 13 (random forest training)
while µnx, σ

2
nx change do

E-step:
for n = 1 to n = N do

Compute µnx, σ
2
nx,∀x ∈ Ωn with Eq. 14

while qnx changes do
Fixed point iteration of qnx (Eq. 12)

end while
end for
M-step:
Update θ with Eq. 13 (random forest retraining)

end while
θ̂ ← θ
for n = 1 to n = N do

Compute final µnx, σ
2
nx,∀x ∈ Ωn with Eq. 14

Compute Ûn with Eq. 15 or Eq. 16
end for

Exact maximisation of Equation 9 would require marginalising
over the deformation fields {Un}, which leads to an intractable
integral due to the pairwise terms of the MRF prior (Equa-
tion 2). Instead, we use a variational technique (VEM) for
approximate inference. VEM inherits the advantages of stan-
dard EM optimisation (it does not require computing gradients
or Hessian; it does not require tuning step sizes or backtrack-
ing; it is numerically stable; and it effectively handles hidden
variables), while enabling (approximate) marginalisation over
variables coupled by the MRF.

Since the Kullback-Leibler (KL) divergence is by definition
non-negative, the objective function in Equation 9 is bounded
from below by:

J[q({Un}), θ] = log p({Kh
n }, {Hn}|θ, {Mn}, {Kn}, β, γ, σ

2
k}) + log p(θ|γ)

− KL[q({Un})‖p({Un}|{Kh
n }, {Hn}, θ, {Mn}, {Kn}, β, γ, σ

2
k}) (10)

=η[q] +
∑
{Un}

q({Un}) log p({Un}, {Kh
n }, {Hn}|θ, {Mn}, {Kn}, β, γ, σ

2
k})

+ log p(θ|γ). (11)

The bound J[q({Un}), θ] is the negative of the so-called free
energy: η represents the entropy of a random variable; and
q({Un}) is a distribution over {Un} which approximates the pos-
terior p({Un}|{Kh

n }, {Hn}, θ, {Mn}, {Kn}, β, γ, σ
2
k}), while being re-

stricted to have a simpler form. The standard mean field ap-
proximation (Parisi, 1988) assumes that q factorises over voxels
for each field Un:

q({Un}) =

N∏
n=1

∏
x∈Ωn

qnx(Un(x)),

where qnx is a discrete distribution over displacements at pixel
x of image n, such that qnx(∆s) ≥ 0,

∑S
s=1 qnx(∆s) = 1, ∀n, x.

Rather than the original objective function (Equation 9),
VEM maximises the lower bound J, by alternately optimising
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with respect to q (E-step) and θ (M-step) in a coordinate ascent
scheme. We summarise these two steps below.

E-step. To optimise the lower bound with respect to q, it is con-
venient to work with Equation 10. Since the first two terms are
independent of q, one can minimise the KL divergence between
q and the posterior distribution of {Un} (see Equation S1 in the
supplementary material). Building the Lagrangian (to ensure
that q stays in the probability simplex) and setting derivatives
to zero, we obtain:

qnx(∆s) ∝ p (Mn(x + ∆s)|Hn(W(x)), θ) e−β1‖∆s‖
2

×

Ln∏
l=1

p
(
kh

nl|knl − ∆s, σ
2
k

)δ(knl=x)

× exp

β2

∑
x′∈B(x)

S∑
s′=1

‖∆s − ∆s′‖
2qnx′ (∆s′ )

 . (12)

This equation has no closed-form solution, but can be solved
with fixed point iterations, one image pair at the time – since
there is no interdependence in n. We note that the effect of the
landmarks is not local; in addition to creating a very sharp qnx
around pixel at hand, the variational algorithm also creates a
high confidence region around x, by encouraging neighbouring
pixels to have similar displacements. This user-informed, high-
confidence region will have a higher weight in the synthesis,
hence improving its quality. This effect is exemplified in Fig-
ure 2(a,d), which illustrates the uncertainty in the two compo-
nents (synthesis and registration) of the VEM algorithm. The
spatial location marked by red dot number 1 is right below a
manually placed landmark in the histological section, and the
distribution qnx is hence strongly peaked at a location right be-
low the corresponding landmark in the MRI slice. Red dot num-
ber 2, on the contrary, is located in the middle of the cerebral
white matter, where there is little contrast to guide the regis-
tration, so qnx is much more more spread and isotropic. Red
dot number 3 lies in the white matter right under the cortex,
so its distribution is elongated and parallel to the white matter
surface.

M-step. When optimising J with respect to θ, it is more con-
venient to work with Equation 11 – since the term η[q] can be
neglected. Applying the chain rule of probability, and leaving
aside terms independent of θ, we obtain:

argmax
θ

∑
{Un}

q({Un}) log p({Hn}|{Un}, {Mn}, θ) + log p(θ|γ)

= argmax
θ

N∑
n=1

∑
x∈Ωn

S∑
s=1

qnx(∆s) log p(Mn(x + ∆s)|Hn(W(x)), θ)

+ log p(θ|γ). (13)

Maximisation of Equation 13 amounts to training the regres-
sor, such that each input image patch Hn(W(x)) is considered
S times, each with an output intensity corresponding to a dif-
ferently displaced pixel location Mn(x + ∆s), and with weight
qnx(∆s). In practice, and since injection of randomness is a cru-
cial aspect of the training process of random forests, we found it

beneficial to consider each patch Hn(W(x)) only once in each
tree, with a displacement ∆s sampled from the corresponding
distribution qnx(∆) – fed to the tree with weight 1.

The injection of additional randomness through sampling
of ∆ not only greatly increases the robustness of the regressor
against misregistration, but also decreases the computational
cost of training – since only a single displacement is consid-
ered per pixel. We also note that this sampling strategy still
yields a valid stochastic optimiser for Equation 13, since qnx
is a discrete probability distribution over displacements. Such
stochastic procedure (as well as other sources of randomness in
the forest training algorithm) makes the maximisation of Equa-
tion 13 only approximate; this means that the coordinate ascent
algorithm to maximise the lower bound J of the objective func-
tion is no longer guaranteed to converge. In practice, however,
the VEM algorithm typically converges after ∼5 iterations.

Combined with the conjugate prior on the variance p(θ|γ),
the joint prediction of the forest is finally given by:

µnx =
1
T

T∑
t=1

gt[Hn(W(x)); θ]

σ2
nx =

2b +
∑T

t=1 (gt[Hn(W(x)); θ] − µnx)2

2a + T
, (14)

where gt is the guess made by tree t; T is the total number of
trees in the forest; and where we have dropped the dependency
of µnx and σnx on {Hn, θ̂} for simplicity.

Areas corrupted by artefacts lead to higher variances σ2
nx.

While the deformation model in our algorithm cannot describe
cracks, holes or tears (which would require non-diffeomorphic
deformation fields and an intensity model for missing tissue),
our method copes well with these artefacts by yielding high
uncertainty (variance) in these regions. This has the effect of
decreasing the weight of these areas in the registration, as we
will explain in Section 2.2.2 below. An example is shown in
Figure 2(b,c), in which the horizontal crack is assigned high un-
certainty. High variance is also assigned to cerebrospinal fluid
regions; while these areas do not display artefacts, their appear-
ance might be bright or dark, depending on whether they are
filled with paraformaldehyde, air or Fomblin (further details on
these data can be found in Section 3.1).

2.2.2. Computation of optimal deformation fields {Ûn}

Once the point estimate θ̂ (i.e., the optimal regression forest
for synthesis) has been computed, one can obtain the optimal
registrations by maximising p({Un}|θ̂, {Mn}, {Hn}, {Kn}, {Kh

n }, β, σ
2
k).

This amounts to maximising the log-posterior in Equation S2 in
the supplementary material. Given the parameters, this poste-
rior factorises over image pairs, and can thus be optimised on n
at the time. Disregarding terms independent of Un, substituting
the Gaussian likelihoods and switching signs in Equation S2
yields, for each image pair, the following cost function for the
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Figure 2: Uncertainty of registration and synthesis in the VEM algorithm: (a) Histological section from the Allen atlas. The green dots represent manually placed
landmarks. (b,c) Mean and variance maps of the synthesised MRI slice, after 5 iterations of the VEM algorithm; higher variance corresponds to higher uncertainty
in the synthesis. (d) Corresponding real MRI slice. The green dots represent the manually placed landmarks, corresponding to the ones in (a). The heat maps
represent the variational distributions of displacements (qnx) corresponding to the red dots in (a), which illustrate the uncertainty in the registration.

registration:

Ûn = argmin
Un

∑
x∈Ωn

[
Mn(x + Un(x)) − µ̂nx

]2

2σ̂2
nx︸                               ︷︷                               ︸

Image term

+
1

2σ2
k

Nl∑
l=1

‖kh
nl − knl + Un(kh

nl)‖
2

︸                                  ︷︷                                  ︸
Landmark term

+ β1

∑
x∈Ωn

‖Un(x))‖2 + β2

N∑
n=1

∑
x∈Ωn

∑
x′∈B(x)

‖Un(x) − Un(x′)‖2︸                                                                   ︷︷                                                                   ︸
Regularisation

,

(15)

where the image term is a weighted sum of squared differences,
in which the weights are inversely proportional to the variance
of the forest predictions – hence downweighting the contribu-
tion of regions of high uncertainty in the synthesis. Thanks to
the discrete nature of Un, a local minimum of the cost function
in Equation 15 can be efficiently found with algorithms based
on graph cuts (Ahuja et al., 1993), such as Boykov et al. (2001).

We note that the result does not need to be diffeomorphic
or invertible, which might be a desirable feature of the regis-
tration. This is due to the properties of the deformation model,
which was chosen due to the fact that it easily enables marginal-
isation over the deformation fields with variational techniques.
In practice, we have found that, once the optimal (probabilis-
tic) synthesis has been computed, we can obtain smoother and
more accurate solutions by using more sophisticated deforma-
tion models and priors. More specifically, we implemented the
image and landmark terms of Equation 15 in our registration
package NiftyReg (Modat et al., 2010), instantly getting access
to its advanced deformation models, regularisers and optimis-
ers. NiftyReg parametrises the deformation field with a grid of
control points combined with cubic B-Splines (Rueckert et al.,
1999). If Ψn represents the vector of parameters of the spatial

transform x′ = V(x;Ψn) for image pair n, we optimise:

Ψ̂n = argmin
Ψn

α
∑
x∈Ωn

[
Mn(V(x;Ψn)) − µ̂nx

]2

2σ̂2
nx

+
1

2σ2
k

Nl∑
l=1

‖V(kh
nl;Ψn) − knl‖

2

+ βbEb(Ψn) + βlEl(Ψn) + β jE j(Ψn), (16)

where Eb(Ψn) is the bending energy of the transform parametrised
by Ψn; El(Ψn) is the sum of squares of the symmetric part
of the Jacobian after filtering out rotation (penalises stretch-
ing and shearing); E j is the Jacobian energy (given by its log-
determinant); βb > 0, βl > 0, β j > 0 are the corresponding
weights; and α > 0 is a constant that scales the contribution
of the image term, such that it is approximately bounded by 1:
α−1 = 9|Ωn|/2, i.e., a value of 1 is achieved if all pixels are three
standard deviations away from the predicted mean.

Note that this choice for the final model also enables com-
parison with mutual information as implemented in NiftyReg,
which minimises:

Ψ̂MI
n = argmin

Un

−MI[Mn(V(x;Ψn)),Hn(x)]

+
1

2σ2
k

Nl∑
l=1

‖V(kh
nl;Ψn) − knl‖

2

+ βbEb(Ψn) + βlEl(Ψn) + β jE j(Ψn), (17)

where MI represents the mutual information. We note that find-
ing the value of α that matches the importances of the data terms
in Equations 16 and 17 is a non-trivial task; however, our choice
of α defined above places the data terms in approximately the
same range of values.

2.3. Summary of the algorithm and implementation details
The proposed method is summarised in Algorithm 1, and

parameter settings (and criteria for setting them) are listed in
Table 1. We define {∆s} as a grid covering a square with radius
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10 mm, in increments of 0.5 mm; this is enough to model all
deformations we encountered in our datasets, since we assume
that images are linearly pre-aligned. The approximate poste-
riors qnx(∆) are initialised to 1/S , evenly spreading the prob-
ability mass across all possible displacements (i.e., maximum
uncertainty in the registration). Given qnx, Equation 13 is used
to initialise the forest parameters θ. At that point, the VEM al-
gorithm alternates between the E and M steps until convergence
is reached. Convergence would ideally be assessed with θ but,
since these parameters can vary significantly from one iteration
to the next due to the randomness injected in training, we use
the predicted means and variances instead (µnx, σ

2
nx).

In the E-step, each image pair can be considered indepen-
dently. First, the histological section is pushed through the for-
est to generate a prediction for the (registered) MR image, in-
cluding a mean and a standard deviation for each pixel (Equa-
tion 14). Then, fixed point iterations of Equation 12 are run
until convergence of qnx,∀x ∈ Ωn. In the M-step, the approxi-
mate posteriors q of all images are used together to retrain the
random forest with Equation 13. When the algorithm has con-
verged, the final predictions (mean, variance) can be generated
for each voxel, and the final registrations can be computed with
Equation 15, or with NiftyReg (see details below).

The random forest regressor used Gaussian derivatives (or-
ders zero to three, and three scales: 0, 2 and 4 mm) and location
as features. Injection of randomness is a crucial aspect of ran-
dom forests, as it increases their generalization ability (Crimin-
isi et al., 2011). Here we used bagging (Breiman, 1996) at both
the image and pixel levels, and used random subsets of features
when splitting data at the internal nodes of the trees. An addi-
tional random component in the stochastic optimization is the
sampling of displacements ∆ to make the model robust against
misregistration (see Section 2.2.1). While all these random el-
ements have beneficial effects, these come at the expense of
giving up the theoretical guarantees on the convergence of the
VEM algorithm – though this was never found to be a problem
in practice, as explained in Section 2.2.1 above.

For the final registration, we used the default regularisation
scheme in NiftyReg, which is a weighted combination of the
bending energy (second derivative) and the sum of squares of
the symmetric part of the Jacobian. We note that NiftyReg uses
β j = 0 by default; while using β j > 0 guarantees that the out-
put is diffeomorphic, the other two regularisation terms (Eb, El)
ensure in practice that the deformation field is well behaved.

Table 1 summarises the values that we used for the param-
eters of the proposed algorithm, as well as those for the com-
peting, mutual information based registration. We used a pilot
image T1/T2 image pair to coarsely tune β1, based on visual
inspection of the distributions qnx (i.e, as in Figure 2d). We
then heuristically set β2 = β1. All other parameters were set ei-
ther heuristically or based on the default values from software
packages, but never tuned on the data.

More specifically: we set the variance of the manual land-
mark placement to a low value, to reflect the high confidence
in annotations provided by the user. We set the hyperparam-
eters γ = [a, b]T to values equivalent to a few (4) pseudo-
observations with a small sample intensity variance (52); the

main objective is just to avoid pixels with zero variance in the
synthesis. For the random forest, we used 100 trees. The more
trees in the ensemble, the better the performance is expected to
be – but the slower the training and testing are. The minimum
number of samples in leaf nodes was set to 5, which is within
the usual range in the literature (between 1 and 10). For the
number of features sampled at each node in training, we used
the square root of the total number of features, which is a com-
mon heuristic. The weight of the image term in Equation 16 (α)
attempted to match the range of this term to that of mutual in-
formation, with a value that makes it equal to 1 if all pixels are
three standard deviations away from the mean predicted by the
synthesis. Finally, all the parameters related to NiftyReg were
set to the default values defined in the package, including the
number of bins for computing the mutual information, and the
relative weights of the different regularisers. The only parame-
ter we swept in the experiments was the control point spacing
of the final registration, which is well known to have a strong
effect on the output.

3. Experiments and results

3.1. Data

We used three datasets to validate the proposed technique;
two real (Allen Institute atlas, BigBrain atlas), and one syn-
thetic. The real datasets enable us to assess how the algorithm
behaves in a practical scenario. However, quantitative evalua-
tion on real data is limited because it can only rely on manu-
ally placed landmarks, rather than full deformation fields – due
to the unavailability of perfectly aligned histology-MRI data.
For that reason, in addition to Allen and BigBrain, we have
also included experiments on a synthetic MR dataset including
T1-weighted and (synthetically deformed) T2-weighted scans.
While these images are not necessarily an accurate substitute
for the histology-MRI registration problem, they enable a di-
rect, pixel-wise comparison of the estimated deformations with
the ground truth fields that were used to generate them.

3.1.1. Synthetic MRI dataset
The synthetic data were generated from 676 (real) pairs of

T1- and T2-weighted scans from the publicly available ADNI
dataset. The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether se-
rial magnetic resonance imaging, positron emission tomogra-
phy, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression
of mild cognitive impairment and early Alzheimers disease.

The resolution of the T1 scans was approximately 1 mm
isotropic; the ADNI project spans multiple sites, different scan-
ners were used to acquire the images; further details on the ac-
quisition can be found at http://www.adni-info.org. The
T2 scans correspond to an acquisition designed to study the hip-
pocampus, and consist of 25-30 coronal images at 0.4×0.4 mm
resolution, with slice thickness of 2 mm. These images cover
a slab of tissue containing the hippocampi, which is manually
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Symbol Value Description Criteria for setting Notes
β1 0.02 Weight of unary term in MRF Visual inspection in pilot image Equivalent to σ = 5mm
β2 0.02 Weight of pairwise term in MRF Heuristic: set β2 = β1 N/A
σ2

k 0.5 mm Variance of landmarks Set to a low value N/A
a 2 Shape parameter of Inv-Gamma A couple of pseudo-observations Equivalent to 4 pseudo-obs.
b 52a Scale parameter of Inv-Gamma A small intensity sample variance Equivalent to 4 pseudo-obs.
T 100 Number of trees in forest More is better, but slower N/A

N/A 5 Minimum samples in leaves Most packages use 1-10 N/A
N/A 5 Features sampled at each node Heuristic: sq. root of total features N/A
α 2/(9|Ωn|) Weight of proposed image term Match range of mutual information Cost = 1 if all pixels 3σ away

N/A 64 Bins for mutual information NiftyReg default N/A
βb 0.001 Weight of bending energy NiftyReg default Both for proposed and MI
βl 0.01 Weight of stretching / shearing NiftyReg default Both for proposed and MI
β j 0 Weight of Jacobian energy NiftyReg default Both for proposed and MI

Table 1: List of parameters in model, values, and summary of criteria for setting them to their corresponding settings.

oriented by the operator to be approximately orthogonal to the
major axes of the hippocampi. Once more, further details on the
acquisition at different sites can be found at the ADNI website.

The T1 scans were preprocessed with FreeSurfer (Fischl,
2012) in order to obtain skull-stripped, bias-field corrected im-
ages with a corresponding segmentation of brain structures (Fis-
chl et al., 2002). We simplified this segmentation to three tis-
sue types (gray matter, white matter, cerebrospinal fluid) and a
generic background label. The processed T1 was rigidly regis-
tered to the corresponding T2 scan with mutual information, as
implemented in NiftyReg (Modat et al., 2014). The registration
was also used to propagate the brain mask and automated seg-
mentation; the former was used to skull-strip the T2, and the
latter for bias field correction using the technique described in
Van Leemput et al. (1999). Note that we deform the T1 to the
T2 – despite its lower resolution – because of its more isotropic
voxel size.

From these pairs of preprocessed 3D scans, we generated a
dataset of 1000 pairs of 2D images. To create each image pair,
we followed these steps: 1. Randomly select one pair of 3D
scans; 2. In the preprocessed T2 scan, randomly select a (coro-
nal) slice, other than the first and the last, which sometimes
display artefacts; 3. Downsample the T2 slice to 1 × 1 mm res-
olution, for consistency with the resolution of the T1 scans; 4.
Reslice the (preprocessed) T1 scan to obtain the 2D image cor-
responding to the downsampled T2 slice; 5. Sample a random
diffeomorphic deformation field (details below) in the space of
the 2D slice; 6. Combine the deformation field with a random
similarity transform, including rotation, scaling and translation;
7. Deform the T2 scan with the composed field (linear + nonlin-
ear). 8. Rescale intensities to [0,255] and discretise with 8-bit
precision. Note than we deform the T2 slices – rather than the
T1 counterpart – to avoid interpolating the T1 data twice. The
T2 images play the role of the MRI, and the T1s play the role
of histology.

To generate synthetic fields without biasing the evaluation,
we used a deformation model different from that used by NiftyReg
(i.e., a grid of control points and cubic B-Splines). More specif-
ically, we created diffeormorphic deformations as follows. First,

we generated random velocity fields by independently sampling
bivariate Gaussian noise at each spatial location (no x-y corre-
lation) with different levels of variance; smoothing them with
a Gaussian filter; and multiplying them by a window function
in order to prevent deformations close to the boundaries; we
used exp[0.01D(x)], where D(x) is the distance to the bound-
ary of the image in mm. Then, these velocity fields were in-
tegrated over unit time using a scaling and squaring approach
(Moler and Van Loan, 2003; Arsigny et al., 2006) to generate
the deformation fields. Sample velocity and deformation fields
generated with different levels of noise are shown in Figure 3.

Given the synthetic deformation fields, we generated spa-
tially spread pairs of salient landmarks with the following itera-
tive procedure: 1. Feeding the T1 slice through a Harris corner
detector (Harris and Stephens, 1988). 2. Taking the pixel with
the highest response xmax, following the ground truth deforma-
tion to obtain the corresponding location in the deformed T2
slice, and corrupting it with Gaussian noise of variance σ2

k ; this
pair of locations is added to the set of landmarks of the slice.
3. Multiplying the Harris response by a complementary Gaus-
sian function centred at xmax, i.e., f (x) = 1 − exp[−0.5‖x −
xmax‖

2/σ2], with standard deviation σ equal to 1/10 of the im-
age dimensions; this ensures that the following landmarks will
be far from the current xmax, eventually leading to a set of spa-
tially spread set. 4. Going back to Step 2, until enough land-
marks have been generated. In this iterative procedure, the Har-
ris detector ensures that landmarks are located at salient points
(rather than image regions of flat appearance), mimicking the
way in which human labellers place landmarks. The comple-
mentary Gaussian, on the other hand, ensures that the land-
marks are spatially distributed across the images, in order to
assist the registration across the full image domain. This au-
tomated landmark generation procedure is illustrated in the ex-
ample in Figure 7b.

3.1.2. Real data: Allen dataset
The Allen atlas is based on the left hemisphere of a 34-year-

old donor. The histology of the atlas includes 106 Nissl-stained
sections of the whole hemisphere in coronal plane, with manual
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Figure 3: Synthetic velocity (top row) and corresponding deformation fields (bottom row) generated with three different levels of noise σv.

segmentations of 862 brain structures. Sample sections of the
dataset are shown in Figures S7 and S8 of the supplementary
material. Due to the challenges associated with sectioning and
mounting thin sections from complete hemispheres, artefacts
such as holes, large cracks, and severe staining inhomogeneities
are prevalent in this dataset; see examples in Figure S8, or the
horizontal crack in Figure 2a. These artefacts make the Allen
atlas representative of typical histological images, and hamper
image registration.

The sections of the Allen atlas are 50 µm thick, and digi-
tised at 1 µm in-plane resolution with a customised microscopy
system – though we downsampled them to 200 µm to match
the resolution of the MRI data (details below). We also down-
sampled the manual segmentations to the same resolution, and
merged them into a whole brain segmentation that, after dila-
tion, we used to mask the histological sections. The histology
and associated segmentations can be interactively visualised at
http://atlas.brain-map.org, and further details can be
found in Ding et al. (2016). No 3D reconstruction of the histol-
ogy was performed in their study.

In addition to the histology, high-resolution MRI images
of the whole brain were acquired on a 7 T Siemens scanner
with a custom 30-channel receive-array coil. The specimen
was scanned in a vacuum-sealed bag surrounded by Fomblin
to avoid artefacts caused by air-tissue interfaces. The images
were acquired with a multiecho flash sequence (TR = 50 ms; α
= 20◦, 40◦, 60◦, 80◦; echoes at 5.5, 12.8, 20.2, 27.6, 35.2, and
42.8 ms), at 200 µm isotropic resolution. Once more, the details
can be found in (Ding et al., 2016). In this study, we used a sin-
gle volume, obtained by averaging the echoes corresponding to

flip angle α = 20◦, which provided good contrast between gray
and white matter tissue, as well as great signal-to-noise ratio.
The combined image was bias field corrected with the method
described in (Van Leemput et al., 1999) using the probability
maps from the LONI atlas (Shattuck et al., 2008), which was
linearly registered with NiftyReg (Modat et al., 2014). A coarse
mask for the left hemisphere was manually delineated by JEI,
and used to mask out tissue from the right hemisphere, which is
not included in the histological analysis. Sample coronal slices
of this dataset are shown in 2a (histology) and 2b (MRI).

3.1.3. Real data: BigBrain dataset
The publicly available BigBrain atlas consists of a full brain

of a 64-year-old donor (Amunts et al., 2013). The brain was em-
bedded in paraffin and, using a large-scale microtome, cut into
7,404 coronal sections with 20 µm thickness. All 7,404 sec-
tions were stained for cell bodies, and digitised at 20 µm reso-
lution – to match the section thickness. Sample sections of the
dataset are shown in Figures S9 and S10 of the supplementary
material. As in the Allen Atlas, severe artefacts (though not
as pronounced) are prevalent in this dataset – see examples in
Figure S10. The atlas also includes an MRI scan of the sam-
ple, which was acquired on a 1.5T scanner using a 12-channel
coil. The volume was acquired with an MPRAGE sequence
with parameters: TR = 2.220 ms, TE = 3 ms, IR = 1.200 ms,
α=15◦, resolution 0.4×0.4×0.8 mm3, 6 averages. The sample
was scanned inside a Plexiglas cylinder and kept in formalin;
extensive degassing of the formalin was performed to eliminate
air bubbles. No manual segmentations are available for this
dataset.
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In addition to the raw data, the BigBrain dataset includes
a very accurate 3D reconstruction of the histology, which was
performed with a complex pipeline that involved not only man-
ual intervention, but also ∼ 250, 000 hours of CPU time on
a high-performance computing cluster (see details in Amunts
et al. 2013). Since BigBrain provides an approximate spatial
alignment between the MRI scan and the 3D reconstruction of
the histology, it is straightforward to derive a correspondence
between histological sections and corresponding coronal slices.
Therefore, rather than using the full raw dataset (placing man-
ual landmarks on 7,404 pairs of images would be excruciating),
we only considered the histological sections that correspond to
coronal slices in the brain MRI scan. We left aside the first and
last 20 slices, which contain very little tissue, ending up with
331 pairs of images (histological sections and MRI slices). We
downsampled these histological sections to 400 µm pixel size,
to match the resolution of the MRI.

3.2. Experimental setup

In the experiments, we compared the performance of our
proposed method with that of mutual information based regis-
tration. First, we conducted thorough experiments on the syn-
thetic data, in which we swept the control point spacing in the
registration. And second, we used the optimal parameter set-
tings to register the real data from the Allen Institute and the
BigBrain atlas. We note that we use the NiftyReg implemen-
tation of mutual information based registration as competing
method, because it is the only way of comparing the image
terms of the two approaches (i.e., Equations 16 and 17) in a
fair manner. In other words: if we used a different registra-
tion package as competing method, we could not disambiguate
whether differences in performance stem from the image terms
or from differences in implementation details, regularisers, etc.

In the synthetic data, we considered three different levels of
Gaussian noise (σv = 10, 20, 30 mm) when generating the ve-
locity fields, in order to model nonlinear deformations of differ-
ent severity. The standard deviation of the Gaussian smoothing
filter was set to 5 mm, in both the horizontal and vertical di-
rection. The random rotations, translations and log-scalings of
the similarity transform were sampled from zero-mean Gaus-
sian distributions, with standard deviations of 2◦, 1 pixel, and
0.1, respectively. We then used NiftyReg with mutual infor-
mation and our method to recover the deformations, both using
the same landmark sets. We used different spacings between
control points (from 3 to 21 mm, with 3 mm steps) to eval-
uate different levels of model flexibility. Otherwise we used
the parameters listed in Table 1, both for our proposed method
(Equation 16) and mutual information (Equation 17). We tested
our algorithm in two different scenarios: running it on all image
pairs simultaneously, or on each image pair independently (i.e.,
with N = 1). In the former case, bagging was used at both the
slice and pixel levels, using 66% of the available images, and
as many pixels per image as necessary in order to have a total
of 25,000 training pixels. In the latter case, which represents
the common case that a user runs the algorithm on just a pair of
images, we used 66% of the pixels to train each tree.

In the Allen Institute data, we compared mutual informa-
tion based registration with our approach, using all slices si-
multaneously in the synthesis with bagging (as for the synthetic
data, using 66% of the images in each tree, randomly sampling
25,000 pixels). In order to put the MRI in linear alignment
with the histological sections, we used an iterative approach
very similar to that of Yang et al. (2012). Starting from a stack
of histological sections, we first rigidly aligned the brain MRI
to the stack using mutual information. Then, we resampled
the registered MRI to the space of each histological section,
and aligned them one by one using a similarity transform com-
bined with mutual information. The registration of the MRI
was then refined using the realigned sections, starting a new it-
eration. Upon convergence of the linear registration procedure,
we resampled the MR images into the space of the histologi-
cal sections. Next, a human labeller (JEI) manually annotated
1, 104 pairs of landmarks – approximately 11 per image pair.
The landmarks were placed on salient points that were easy to
recognise on both images (e.g., corners of sulci, gyri, and sub-
cortical structures), while being spatially spread across the im-
ages – in order to inform the registration throughout the whole
image domain. The exact number of landmarks on each image
pair depends on the amount of tissue in the histological sec-
tion, and the observer’s discretion. These landmarks were ran-
domly divided into two folds, with cross-validation purposes.
We then used the two competing methods to nonlinearly regis-
ter the histological sections to the corresponding resampled MR
images. We used the same parameters as for the experiment
with the synthetic data, setting the control point spacing to the
optimal values from such experiments (6 mm for the proposed
approach, and 18 mm for mutual information; see Section 3.3.1
below); note that, for the manual landmarks, σk = 0.5 mm was
equivalent to 2.5 pixels at the resolution of this dataset – rather
than one pixel, as in the synthetic data. We produced three dif-
ferent registrations with each method: one using all landmarks
(for qualitative evaluation based on visual inspection), and two
using the landmarks in the cross-validation folds (for quantita-
tive evaluation).

Finally, the experimental setup for the BigBrain data was
almost the same as for the Allen Institute data. Again, we
compared our approach with mutual information based regis-
tration. The parameters for the synthesis was the same as for
Allen. We note that it was not necessary to rigidly align the
MRI to the histology, as an approximate alignment is already
given in this dataset, as explained in Section 3.1.3. As for the
Allen dataset, JEI manually labelled 3, 839 pairs of landmarks
across the 331 image pairs (approximately 12 per pair, placed
on salient points), which were randomly split into two folds.
The control point spacing was again 6 mm for the proposed
approach and 18 mm for mutual information. Once more, we
computed registrations using all the landmarks, for qualitative
evaluation, but also using the landmarks within each fold, for
quantitative evaluation. In this dataset, σk = 0.5 mm was equiv-
alent to 1.25 pixels.
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3.3. Results

3.3.1. Synthetic data
Figures 4, 5 and 6 show the mean registration error as a

function of the control point separation and the number of land-
marks for three different levels of noise deformation: 10, 20
and 30 mm, which correspond to mild, medium and strong de-
formations, respectively. The mean error reflects the precision
of the estimation, whereas the maximum is related to its ro-
bustness. When using mutual information, finer control point
spacings in the deformation model yield transforms that are too
flexible, leading to very poor results (even in presence of control
points); see example in Figure 7. Both the mean and maximum
error improve with larger spacings, flattening out at around 18-
20 mm.

The proposed method, on the other hand, provides higher
precision with flexible models, thanks to the higher robustness
of the intramodality metric. The two versions of the method (es-
timating the regressor one image pair at the time or from all im-
ages simultaneously) consistently outperform mutual informa-
tion in every scenario. An important difference in the results is
that the mean error hits its minimum at a much smaller control
point spacing (typically 6 mm), yielding a much more accurate
registration; see example in Figure 7, and also further examples
– including orthogonal views (i.e., from 3D reconstructions) –
in Figures S1-S6 in the supplementary material. Moreover, the
maximum error has already flattened at that point (6 mm) in
almost every tested setting.

In addition to supporting finer control points spacings, the
proposed method can more effectively exploit the information
provided by landmarks. In mutual information based registra-
tions, the landmarks guide the registration, especially in the ear-
lier iterations, since their relative cost is high. However, the
landmarks only constrain the deformation field locally, and fur-
ther influence on the registration (e.g., by improving the estima-
tion of the joint histogram) is indirect and very limited. There-
fore, the quantitative effect of adding landmarks on the mean
and maximum errors is rather small.

Our proposed algorithm, on the other hand, explicitly ex-
ploits the landmark information not only in the registration, but
also in the synthesis. Following the exponential MRF term in
Equation 12, the landmarks sharpen the distribution q not only
at their locations, but also in their surroundings (see for instance
Tag 1 in Figure 2d). Therefore, very similar displaced loca-
tions of these pixels are consistently selected when sampling
for each tree of the forest, which greatly informs the learning
of the appearance model, i.e., the synthesis – particularly since
the model is learned directly from the test data, and adapts to
variations in staining, MRI contrast, etc. Increased number of
landmarks Nl yields higher performance both for our proposed
method and mutual information. However, given that better
synthesis leads to improved registration, the gap in performance
between the two methods actually widens as Nl increases, as re-
flected by the quantitative results.

When no landmarks are used and image pairs are assessed
independently, the proposed algorithm can be seen as a conven-
tional inter-modality registration method. In that scenario, the

Method Mean Median Maximum p-value
Mutual info. 1.83 1.49 46.25 N/A

Proposed 1.49 1.22 18.45 4.4 · 10−33

Table 2: Mean, median and maximum registration errors on Allen dataset (in
mm). The p-value corresponds to a paired, non-parametric, Wilcoxon signed-
rank test comparing the landmark-wise errors produced by the two competing
methods.

results discussed above still hold: our method can be used at
finer control point spacings, and provides average reductions of
11%, 22% and 15% in the mean error, at σv = 10, σv = 20 and
σv = 30, respectively. We also note that, as one would expect,
our method and mutual information produce almost identical
results at large control point spacings.

Finally, we note a modest improvement is observed when
image pairs are considered simultaneously – rather then inde-
pendently. Nevertheless, the joint estimation consistently yields
higher robustness at the finest control point spacing (3 mm), and
also produces smaller errors across the different settings when
the deformations are mild (Figure 4). We hypothesise that, even
though the simultaneous estimation has the advantage of hav-
ing access to more data (which is particularly useful with more
flexible models, i.e., finer spacing), the independent version can
also benefit from having a regressor that is tailored to the single
image pair at hand.

3.3.2. Results on Allen Institute data
Table 2 displays the quantitative results for this dataset. In

absolute terms, the errors are larger than for the synthetic data
in Section 3.3.1 above, due to the starker differences in image
contrast between the two modalities, and the presence of arte-
facts in the histology. Still, the proposed method provides a
significant (p ∼ 10−33) reduction in registration error, compared
with the baseline, mutual information based approach; we note
that registration errors are not independent across landmarks or
even images, so statistical testing produces underestimated p
values, but the results still clearly point towards a statistically
significant improvement.

The decrease in registration error is also apparent from the
registered images. Figure 8 shows a representative coronal sec-
tion of the data, which covers multiple cortical and subcorti-
cal structures of interest (e.g., hippocampus, thalamus, puta-
men and pallidum). Comparing the segmentations propagated
from the histology to the MRI with the proposed method (Fig-
ure 8d) and mutual information (Figure 8e) using all available
landmarks in both cases, it is apparent that our algorithm pro-
duces a much more accurate registration. The contours of the
white matter surface are rather inaccurate when using mutual
information; see for instance the insular (Tag 1 in the figure),
auditory (Tag 2), or polysensoral temporal cortices (Tag 3); or
area 36 (Tag 4). Using the proposed method, the registered
contours follow the underlying MRI intensities much more ac-
curately. The same applies to subcortical structures. In the tha-
lamus (light purple), it can be seen that the segmentation of the
reticular nucleus (Tag 5) is too medial when using mutual in-
formation. The same applies to the pallidum (Tag 6), putamen
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Figure 4: Mean and maximum registration error in mm for deformations with σv = 10 (mild).

5 10 15 20

Control point spacing (mm)

0.5

1

1.5

2

2.5

E
rr

o
r 

(m
m

)

Mean error: σ
v

= 20, N
l
= 0

Mutual info.
Prop. (indep.)
Prop. (simult.)

5 10 15 20

Control point spacing (mm)

0

5

10

15

E
rr

o
r 

(m
m

)

Maximum error: σ
v

= 20, N
l
= 0

5 10 15 20

Control point spacing (mm)

0.5

1

1.5

2

2.5

E
rr

o
r 

(m
m

)

Mean error: σ
v

= 20, N
l
= 10

5 10 15 20

Control point spacing (mm)

0

5

10

15

E
rr

o
r 

(m
m

)

Maximum error: σ
v

= 20, N
l
= 10

5 10 15 20

Control point spacing (mm)

0.5

1

1.5

2

2.5

E
rr

o
r 

(m
m

)

Mean error: σ
v

= 20, N
l
= 20

5 10 15 20

Control point spacing (mm)

0

5

10

15

E
rr

o
r 

(m
m

)

Maximum error: σ
v

= 20, N
l
= 20

Figure 5: Mean and maximum registration error in mm for deformations with σv = 20 (medium).
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Figure 6: Mean and maximum registration error in mm for deformations with σv = 10 (strong).

(a)																																																				(b)																																																			 (c)																																																				(d)																																																					(e)

Figure 7: Example from synthetic dataset: (a) Deformed T2 image, used as floating image in the registration. (b) Corresponding T1 scan, used as reference image,
with 10 automatically placed landmarks (blue dots) overlaid. (c) Corresponding synthetic T2 image, after 5 iterations of our VEM algorithm. (d) Registered with
mutual information. (e) Registered with our algorithm. Both in (d) and (e), the control point spacing was set to 6 mm. We have overlaid on all five images a manual
outline of the gray matter surface (in red) and of the ventricles (in green), which were drawn using the T1 scan (b) as a reference. Note the poor registration produced
by mutual information in the ventricles and cortical regions – see for instance the areas pointed by the yellow arrows in (d).
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Method Mean Median Maximum p-value
Mutual info. 1.70 1.31 18.02 N/A

Proposed 1.41 1.19 14.09 5.4 · 10−23

Table 3: Mean, median and maximum registration errors on BigBrain dataset
(in mm). The p-value corresponds to a paired, non-parametric, Wilcoxon
signed-rank test comparing the landmark-wise errors produced by the two com-
peting methods.

(Tag 7) and claustrum (Tag 8). The hippocampus (dark purple;
Tag 9) is too inferior to the actual anatomy in the MRI. Once
more, the proposed algorithm produces, qualitatively speaking,
much improved boundaries.

To better assess the quality of the reconstruction as a whole
(rather than on a single slice), Figure 9 shows the propagated
segmentations in the orthogonal views: sagittal (Figures 9a, 9b)
and axial (Figures 9c, 9d). The proposed method produces re-
constructed segmentations that are smoother and that better fol-
low the anatomy in the MRI scan. In sagittal view, this can be
easily observed in subcortical regions such as the putamen (Tag
1 in Figure 9b), the hippocampus (Tag 2) or the lateral ventricle
(Tag 3); and also in cortical regions such as the premotor (Tag
4), parahippocampal (Tag 5) or fusiform temporal (Tag 6) cor-
tices. The improvement is also apparent from how much less
frequently the segmentation leaks outside the brain when us-
ing our algorithm. Similar conclusions can be derived from the
axial view; see for instance the putamen (Tag 1 in Figure 9d),
thalamus (purple region, Tag 2), polysensory temporal cortex
(Tag 3) or insular cortex (Tag 4).

3.3.3. Results on BigBrain data
Table 3 displays the quantitative results for the BigBrain

dataset. The errors are once more clearly larger than for the
synthetic dataset, but slightly smaller than for the Allen Insti-
tute data, since the artefacts are not as strong in this dataset
(e.g., compare Figure S8 with Figure S10). As in Section 3.3.1,
our method provides a significant improvement over mutual in-
formation based registration (p ∼ 10−23), with reduced mean,
median and maximum registration errors (again, p values need
to be interpreted with caution due to the lack of statistical inde-
pendence between landmarks and images).

Figure 10 shows qualitative results for this dataset. More
specifically, the figure displays a set of reconstructed slices in
the two planes orthogonal to the sectioning direction, i.e., axial
and sagittal. The proposed method yields reconstructions that
are more consistent than those produced by mutual information.
Areas that are clearly better reconstructed include: the cerebel-
lum, for which the reconstruction is crisper in every slice in
which it is visible (see green boxes in the figure); the basal gan-
glia, which is greatly and artificially enlarged by mutual infor-
mation based registration (see red boxes); the occipital region,
in which our proposed method yields a much smoother recon-
struction (see blue boxes in the figure); and the cortical surface,
which is smoother when reconstructed with our method in all
images in the figure (see for example the areas marked with
black boxes). Finally, we note that these reconstructions are not
as sharp as those in the BigBrain website; it is not our goal here

to produce reconstructions of such high quality, which would
require careful artefact correction, intensity normalisation, and
considering the intra-modality registration of neighbouring sec-
tions in the reconstruction.

4. Discussion and conclusion

In this article, we presented a novel method to simultane-
ously estimate the registration and synthesis between a pair of
corresponding images from different modalities. The results on
both synthetic and real data show that the proposed algorithm
is superior to standard inter-modality registration based on mu-
tual information, albeit slower due to the need to iterate be-
tween registration and synthesis – especially the former, since
it requires nested iteration of Equation 12. Our Matlab imple-
mentation runs in 2-3 minutes for images of size 2562 pixels,
but parallelised implementation in C++ or on the GPU should
greatly reduce the running time.

The quantitative experiments on synthetic data demonstrated
that our algorithm supports much more flexible deformation
models than mutual information (i.e., smaller control point spac-
ing) without compromising robustness, attributed to the more
stable intra-modality metric (which we have made publicly avail-
able in NiftyReg). Moreover, these experiments also showed
that our algorithm can more effectively take advantage of the in-
formation encoded in manually placed pairs of landmarks. Mu-
tual information alone only benefits from the constraints that
landmarks introduce in the deformation fields, which yields a
small decrease in registration error. Our method, on the other
hand, also exploits landmark information in synthesis, which
further improves the results, as registration and synthesis in-
form each other in model fitting. The more landmarks we used,
the larger the gap between our method and mutual information
was – however, we should note that, in the limit, the perfor-
mance of the two methods would be the same, since the regis-
tration error would go to zero in both cases.

The proposed method relies on a number of parameters,
which influence the final result. As explained in Section 2.3,
these parameters were set to sensible values defined a priori,
except for the parameters of the MRF, which were coarsely
tuned by visual inspection of the output on a pilot dataset. The
fact that the same parameter values produced satisfactory out-
puts in all three datasets indicates that the output is not too sen-
sitive to parameter settings. The only parameter that has a great
influence on the results is the control point spacing – which is
well known from the image registration literature. This is the
reason why control point spacing is the only parameter – along
with landmark count – that we swept in the experiments to find
suitable values. On a related note, we must note that, in the
experiments with synthetic data, the relative contributions of
the data terms in Equations 16) and 17 are slightly different,
since computing the value of α that makes these contributions
exactly equal is very difficult. However, the minor differences
that our heuristic choice of α might introduce do not undermine
the results of the experiments, since the approximate effect of
modifying α is mildly shifting the curves in Figures 4-6 to the
left or right – which does not change the conclusions.
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Figure 8: (a) Coronal slice of the MRI scan. (b) Corresponding histological section, registered with the proposed method. (c) Corresponding manual segmentation,
propagated to MR space. (d) Close-up of the region inside the blue square, showing the boundaries of the segmentation; see main text (Section /3.3.2) for an
explanation of the numerical tags. (e) Segmentation obtained when using mutual information in the registration. See http://atlas.brain-map.org for the
color map.
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Figure 9: (a) Sagittal slice of the MRI scan, with registered segmentation superimposed. The deformation fields used to propagate the manual segmentations from
histology to MRI space were computed with mutual information. (b) Same as (a), but using our technique to register the data. (c) Axial slice, reconstruction with
mutual information. (d) Same slice, reconstructed with our proposed method. See http://atlas.brain-map.org for the color map.

Our method also outperformed mutual information when
applied to real data from the Allen Institute and BigBrain datasets,
which are more challenging due to the more complex relation-
ships between the two contrast mechanisms, and the presence
of artefacts such as cracks and tears. Qualitatively speaking, the
superiority of our approach is clearly apparent from Figures 9
and 10, in which it produces much smoother segmentations and
reconstructions in the orthogonal planes. We note that we did
not introduce any smoothness constraints in the reconstruction,
e.g., by forcing the registered histological sections to be similar
to their neighbours, through an explicit term in the cost function
of the registration. Such a strategy would produce smoother re-
constructions, but these would not necessarily be more accurate
– particularly if one considers that the 2D deformations fields
of the different sections are independent a priori, which makes
the histological sections conditionally independent a posteriori,
given the MRI data and the image intensity transform. More-
over, explicitly enforcing such smoothness in the registration
would preclude qualitative evaluation through visual inspection
of the segmentation in the orthogonal orientations.

The proposed algorithm is hybrid in the sense that, despite
being formulated in a generative framework, it replaces the like-
lihood term of the synthesis by a discriminative element. We
emphasise that such a change still yields a valid objective func-
tion (Equation 9) that we can approximately optimise with VEM
– which maximises Equations 10 and 11 instead. The VEM
algorithm alternately optimises for q and θ in a coordinate de-

scent scheme, and is in principle guaranteed to converge. In
our method, we lose this property due to the approximate opti-
misation of the random forest parameters, since injecting ran-
domness is one of the key elements of the success of random
decision trees. However, in practice, our algorithm typically
converges in 5-6 iterations, in terms of changes in the predicted
synthetic image (i.e., in µnx and σ2

nx).
Our approach can also be used in an online manner, i.e., if

data become progressively available at testing. For example, the
random forest could be optimised on an (ideally) large set of im-
ages, considering them simultaneously in the framework. Then,
when a new pair of images arrives, one can assume that the for-
est parameters are fixed and equal to θ̂, and proceed directly to
the estimation of the synthetic image µ1x, σ

2
1x and deformation

field Û1. An alternative would be to fine tune θ to the new input,
considering it in isolation or jointly with the other scans. But
even if no other previous data are available (i.e., N = 1), the reg-
istration uncertainty encoded in q prevents the regression from
overfitting, and enables our method to still outperform mutual
information. This is in contrast with supervised synthesis algo-
rithms, which cannot operate without training data.

The work presented in this paper also opens up a number
of new directions of related research. One direction is integrat-
ing deep learning techniques into the framework, which could
be particularly useful when large amounts of image pairs are
available, e.g., in a large histology reconstruction project. The
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MUTUAL	INFORMATION														PROPOSED																											MUTUAL	INFORMATION																						PROPOSED

Figure 10: Orthogonal views of reconstructed BigBrain using mutual information based information and our approach. Leftmost columns: axial view, from inferior
to superior. Rightmost columns: sagittal view, from medial to lateral. The boxes mark areas in which the proposed method yields more accurate results than mutual
information based registration; please see text in Section 3.3.3 for explanations.
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main challenges to tackle are overfitting and avoiding to make
the algorithm impractically slow. A possible solution to this
problem would be to use a pretrained network, and only update
the connections in the last layer during the analysis of the im-
age pair at hand (e.g., as in Wang et al. 2017). Another direction
of future work is the extension of the algorithm to 3D. Albeit
mathematically straightforward (no changes are required in the
framework), such extension poses problems from the practical
perspective, e.g., the memory requirements for storing q grow
very quickly. Another avenue of future work is the application
to other target modalities, such as optical coherence tomogra-
phy (OCT).

Yet another interesting direction would be to explicitly model
artefacts in the probabilistic model. While the method proposed
here copes with cracks, holes, etc., by downweighting them in
the registration, better results might be obtained by using more
complex, non-diffeomorphic deformation fields which, com-
bined with intensity models for missing tissue, could better rep-
resent these artefacts. In a similar fashion, a relevant direction
of future work is the simulation of histological artefacts in im-
ages – possibly MRI slices, or histological sections with little
or no artefacts. The existing literature on such simulations is
surprisingly sparse, even though such synthetic images would
enable us to quantitatively evaluate the performance of regis-
tration methods in presence of cracks, tears, folding, etc. Fi-
nally, we will also explore the possibility of synthesising histol-
ogy from MRI. This a more challenging task that might require
multiple input MRI contrasts, depending on the target stain to
synthesise. However, synthetic histology would not only pro-
vide an estimate of the microanatomy of tissue imaged with
MRI, but would also enable the symmetrisation of the frame-
work presented in this article; by computing two syntheses, the
robustness of the algorithm would be be expected to increase.

The algorithm presented in this paper represents a signifi-
cant step towards solving the problem of aligning histological
images and MRI, by exploiting the connection between regis-
tration and synthesis within a novel probabilistic framework.
We will use this method to produce increasingly precise histo-
logical reconstructions of tissue, which in turn will enable us to
build probabilistic atlases of the human brain at a superior level
of detail.
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C.A., Išgum, I., 2017. Deep MR to CT synthesis using unpaired data, in:
International Workshop on Simulation and Synthesis in Medical Imaging,
Springer. pp. 14–23.

Yang, Z., Richards, K., Kurniawan, N.D., Petrou, S., Reutens, D.C., 2012. Mri-
guided volume reconstruction of mouse brain from histological sections.
Journal of neuroscience methods 211, 210–217.

Yushkevich, P.A., Avants, B.B., Ng, L., Hawrylycz, M., Burstein, P.D., Zhang,
H., Gee, J.C., 2006. 3d mouse brain reconstruction from histology using
a coarse-to-fine approach. Lecture Notes in Computer Science 4057, 230–
237.

Yushkevich, P.A., Avants, B.B., Pluta, J., Das, S., Minkoff, D., Mechanic-

Hamilton, D., Glynn, S., Pickup, S., Liu, W., Gee, J.C., Grossman, M.,
Detre, J.A., 2009. A high-resolution computational atlas of the human hip-
pocampus from postmortem magnetic resonance imaging at 9.4T . Neu-
roimage 44, 385–398.

Zhao, W., Young, T.Y., Ginsberg, M.D., 1993. Registration and three-
dimensional reconstruction of autoradiographic images by the disparity
analysis method. IEEE Transactions on medical imaging 12, 782–791.

Zhu, J.Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image
translation using cycle-consistent adversarial networks. arXiv preprint
arXiv:1703.10593 .

21


