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Abstract

Quantitative analysis of magnetic resonance imaging (MRI) scans of the brain requires accurate automated segmen-
tation of anatomical structures. A desirable feature for such segmentation methods is to be robust against changes
in acquisition platform and imaging protocol. In this paper we validate the performance of a segmentation algorithm
designed to meet these requirements, building upon generative parametric models previously used in tissue classi-
fication. The method is tested on four different datasets acquired with different scanners, field strengths and pulse
sequences, demonstrating comparable accuracy to state-of-the-art methods on T1-weighted scans while being one to
two orders of magnitude faster. The proposed algorithm is also shown to be robust against small training datasets, and
readily handles images with different MRI contrast as well as multi-contrast data.
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1. Introduction

So-called whole-brain segmentation techniques aim
to automatically label a multitude of cortical and sub-
cortical regions from brain MRI scans. Recent years
have seen tremendous advances in this field, enabling,
for the first time, fine-grained comparisons of regional
brain morphometry between large groups of subjects.
Current state-of-the-art whole-brain segmentation algo-
rithms are typically based on supervised models of im-
age appearance in T1-weighted scans, in which the rela-
tionship between intensities and neuroanatomical labels
is learned from a set of manually annotated training im-
ages.

This approach suffers from two fundamental limita-
tions. First, segmentation performance often degrades
when the algorithms are applied to T1-weighted data
acquired on different scanner platforms or using dif-
ferent imaging sequences, due to subtle changes in the
obtained image contrast (Han and Fischl, 2007; Roy
et al., 2013). And second, the exclusive focus on only
T1-weighted images hinders the ultimate translation of
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whole-brain segmentation techniques into clinical prac-
tice, where they hold great potential to support personal-
ized treatment of patients suffering from brain diseases.
This is because clinical imaging uses additional MRI
contrast mechanisms to show clinically relevant infor-
mation, including T2-weighted or fluid attenuated in-
version recovery (FLAIR) images that are much more
sensitive to certain pathologies than T1-weighted scans
(e.g., white matter lesions or brain tumors). Although
incorporating models of lesions into whole-brain seg-
mentation techniques is an open problem in itself, a first
necessary step towards bringing these techniques into
clinical practice is to make them capable of handling
the multi-contrast images that are acquired in standard
clinical routine.

In this article, we present and validate the perfor-
mance of a fast, sequence-independent whole-brain seg-
mentation algorithm. The method, which is based on a
mesh-based computational atlas combined with a Gaus-
sian appearance model, yields segmentation accuracies
comparable to the state of the art; automatically adapts
to different MRI contrasts (even if multimodal); requires
only a small amount of training data; and achieves com-
putational times comparable to those of the fastest algo-
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rithms in the field (Zikic et al., 2014; Ta et al., 2014).

1.1. Current state of the art in whole-brain segmenta-
tion

Early methods for the segmentation of brain struc-
tures often relied on parametric models, in which the
available training data were summarized in relevant
statistics that were subsequently used to inform the seg-
mentation of previously unseen subjects. Because many
distinct brain structures have similar intensity charac-
teristics in MRI, these methods were typically built
around detailed probabilistic models of the expected
shape and relative positioning of different brain regions,
using surface-based (Kelemen et al., 1998; Pizer et al.,
2003; Patenaude et al., 2011; Cootes et al., 1998) or vol-
umetric (Fischl et al., 2002; Pohl et al., 2006b) models.
These anatomical models were then combined with su-
pervised models of appearance to encode the typical in-
tensity characteristics of the relevant structures in the
training data, often using Gaussian models for either
the intensity of individual voxels (Fischl et al., 2002;
Pohl et al., 2006b) or for entire regional intensity pro-
files (Kelemen et al., 1998; Pizer et al., 2003; Patenaude
et al., 2011; Cootes et al., 1998). The segmentation
problem was then formulated in a Bayesian setting, in
which segmentations were sought that satisfy both the
shape and appearance constraints.

More recently, non-parametric methods1 have gained
increasing attention in the field of whole-brain seg-
mentation, mostly in the form of multi-atlas label fu-
sion (Rohfling et al., 2004a; Heckemann et al., 2006;
Isgum et al., 2009; Artaechevarria et al., 2009; Sabuncu
et al., 2010; Rohfling et al., 2004b; Wang et al., 2013;
Coupé et al., 2011; Rousseau et al., 2011; Tong et al.,
2013; Wu et al., 2014; Asman and Landman, 2013; Zi-
kic et al., 2014; Iglesias and Sabuncu, 2015). In these
methods, each of the manually annotated training scans
is first deformed onto the target image using an im-
age registration algorithm. Then, the resulting defor-
mation fields are used to warp the manual annotations,
which are subsequently fused into a final consensus seg-
mentation. Although early methods used a simple ma-
jority voting rule (Rohfling et al., 2004a; Heckemann
et al., 2006), recent developments have concentrated on
exploiting local intensity information to guide the at-
las fusion process. This is particularly helpful in cor-

1Note that the distinction between parametric vs. non-parametric
methods here only refers to the overall segmentation approach that
is taken – the pair-wise registrations in non-parametric segmentation
methods can still be either parametric (e.g., B-splines, Rueckert et al.,
1999) or non-parametric (e.g., Demons, Thirion, 1998).

tical areas, for which accurate inter-subject registra-
tion is challenging (Sabuncu et al., 2010; Ledig et al.,
2012b). Label fusion methods have been shown to yield
very accurate whole-brain segmentations (Landman and
Warfield, 2012), but their accuracy comes at the expense
of a high computational cost as a result of the multiple
non-linear registrations that are required. Efforts to alle-
viate this issue include a local search using entire image
patches, such that much faster linear registrations can
be used (Coupé et al., 2011; Ta et al., 2014), as well as
using rich contextual features so that only a single non-
linear warp is needed (Zikic et al., 2014).

1.2. Existing methods that handle changes in MRI con-
trast

With the exception of simple majority voting (Ro-
hfling et al., 2004a; Heckemann et al., 2006), all the
methods reviewed above use supervised intensity mod-
els, in the sense that they explicitly exploit the specific
image contrast properties of the dataset used for train-
ing. This poses limitations on their ability to segment
images that were acquired with different scanners or
imaging sequences than the training scans.

A generic way of making such methods work across
imaging platforms is histogram matching (also known
as intensity normalization), in which the intensity pro-
files of new images are altered so as to resemble those
of the images used for training (Nyúl et al., 2000; Roy
et al., 2013). However, histogram matching can only
be used when the training and target data have been ac-
quired with the same type of MRI sequence (e.g., T1-
weighted), and it does not completely cancel the nega-
tive effects that intensity mismatches have on segmen-
tation accuracy (Roy et al., 2013).

Another approach is to have the training dataset in-
clude images that are representative of all the scanners
and protocols that are expected to be encountered in
practice. However, this approach quickly becomes im-
practical due to the large number of possible combina-
tions of MRI hardware and acquisition parameters. The
situation is exacerbated for clinical data, due to the lack
of standardized protocols to acquire multi-contrast MRI
data across clinical imaging centers.

In contrast synthesis (Roy et al., 2013), the original
scan is not directly segmented, but rather used to gener-
ate a new scan with the desired intensity profile, which
is then segmented instead. The premise of this tech-
nique is that a database of scans acquired with both the
source and target contrast is available, so that the rela-
tionship between the two can be learned (Iglesias et al.,
2013a; Roy et al., 2013). This approach makes it unnec-
essary to manually annotate additional training data for
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each new set-up that is considered – a considerable ad-
vantage given that a manual whole-brain segmentation
often takes several days per scan (Fischl et al., 2002).
However, it still requires that additional example sub-
jects are scanned with both the source and target scanner
and protocol, which is not always practical.

Finally, a more fundamental way to address the prob-
lem is to perform whole-brain segmentation in the space
of intrinsic MRI tissue parameters (Fischl et al., 2004b).
However, this requires the usage of specific MRI se-
quences for which a physical forward model is avail-
able, which are not widely implemented on MRI scan-
ning platforms, and particularly not on clinical systems.

1.3. Contribution: validation of a fast, sequence-
adaptive whole-brain segmentation algorithm

In contrast to the aforementioned approaches to
whole-brain segmentation, which rely on supervised
models of the specific intensity profiles seen in the train-
ing data, in this paper we validate an unsupervised ap-
proach that automatically learns appropriate intensity
models from the images being analyzed. At the core of
the method is an intensity clustering algorithm (a Gaus-
sian mixture model) that derives its independence of
specific image contrast properties by simply grouping
together voxels with similar intensities. This approach
is well-established for the purpose of tissue classifica-
tion (aimed at extracting the white matter, gray mat-
ter and cerebrospinal fluid) where it is typically aug-
mented with models of MRI imaging artifacts (Wells
et al., 1996a; Van Leemput et al., 1999a; Ashburner and
Friston, 2005) and spatial models such as probabilis-
tic atlases (Ashburner and Friston, 1997; Van Leemput
et al., 1999a; Ashburner and Friston, 2005) or Markov
random fields (Van Leemput et al., 1999b; Zhang et al.,
2001).

Here we validate a method for whole-brain segmen-
tation that is rooted in this type of approach, building on
prior work from our group including a proof-of-concept
demonstration in whole-brain segmentation (Van Leem-
put, 2009), as well as the automated segmentation meth-
ods for hippocampal subfields (Iglesias et al., 2015a)
and subregions of the brainstem (Iglesias et al., 2015b)
that are distributed with the FreeSurfer software pack-
age (Fischl et al., 2002). The method we validate here
uses a mesh-based probabilistic atlas to provide whole-
brain segmentation accuracy at the level of the state of
the art, both within and across scanner platforms and
pulse sequences. Unlike many other techniques, the
method does not need any preprocessing such as skull
stripping, bias field correction or intensity normaliza-
tion. Furthermore, because the method is parametric,

only a single non-linear registration (of the atlas to the
target image) is required, yielding a very fast overall
computational footprint.

An early version of this work, with a preliminary val-
idation, was presented in (Puonti et al., 2013). The
current article adds a more detailed explanation of our
modeling approach, quantitative comparisons with ad-
ditional state-of-the-art label fusion algorithms, and
more extensive experiments – particularly regarding
test-retest reliability, segmentation of multi-contrast and
non-T1-contrast data, and the sensitivity of the method
to the size of the training dataset.

2. Modeling framework

Let D = (d1, . . . ,dI) denote a matrix collecting the in-
tensities in a multi-contrast brain MRI scan with I vox-
els, where the vector di = (d1

i , . . . , d
N
i )T contains the in-

tensities in voxel i for each of the available N contrasts.
Furthermore, let l = (l1, . . . , lI) be the corresponding
segmentation, where li ∈ {1, . . . ,K} denotes the one of
K possible segmentation labels assigned to voxel i.

In order to estimate l from D, i.e., to compute auto-
mated segmentations, we use a generative modeling ap-
proach: a forward probabilistic model of MRI images is
defined, and subsequently “inverted” to obtain the seg-
mentation. The model consists of two parts: a prior and
a likelihood. The prior is a probability distribution over
segmentations p(l) that encodes prior knowledge on hu-
man neuroanatomy. The likelihood is a probability dis-
tribution over image intensities that is conditioned on
the segmentation p(D|l), which models the imaging pro-
cess through which a certain segmentation yields the ob-
served MRI scan. This type of model is generative be-
cause it provides a mechanism to generate data through
the forward model: in our case, we could generate a
random brain MRI scan by first sampling the prior to
obtain a segmentation, and then sampling the likelihood
conditioned on the resulting segmentation.

Within this framework, the posterior distribution of
image segmentations given an input brain MRI scan is
given by Bayes’ rule:

p (l|D) ∝ p (D|l) p (l) . (1)

Maximizing Eq. 1 with respect to l then yields the max-
imum a posteriori (MAP) estimate of the segmentation.

In the rest of this Section, we will describe in depth
the prior (Section 2.1) and likelihood (Section 2.2); we
will propose an inference algorithm to approximately
maximize Eq. 1 (Section 2.3); and finally we will de-
scribe the details of the implementation of this algo-
rithm (Section 2.4).
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2.1. Prior

For the prior p(l) we use a generalization of the
probabilistic brain atlases often used in brain MRI seg-
mentation (Ashburner and Friston, 1997; Van Leem-
put et al., 1999b,a, 2001; Zijdenbos et al., 2002; Fis-
chl et al., 2002; Ashburner and Friston, 2005; Prastawa
et al., 2005; Pohl et al., 2006b; D’Agostino et al., 2006;
Awate et al., 2006; Pohl et al., 2007). This model, de-
tailed in (Van Leemput, 2009), is based on a deformable
tetrahedral mesh, the properties of which are learned
automatically from a set of manual example segmen-
tations made on MRI scans of training subjects. Each
of the vertices of the mesh has an associated set of label
probabilities specifying how frequently each of the K
labels occurs at the vertex. The resolution of the mesh
is locally adaptive, being sparse in large uniform regions
and dense around the structure borders. This automati-
cally introduces a locally varying amount of spatial blur-
ring in the resulting atlas, aiming to avoid over-fitting of
the model to the available training samples (Van Leem-
put, 2009). During training, the topology of the mesh
and the position of its vertices in atlas space (henceforth
“reference position”) is computed along with the label
probabilities in a non-linear, group-wise registration of
the labeled training data. An example of the resulting
probabilistic brain atlas, computed from manual parcel-
lations in 20 subjects, is displayed in its reference posi-
tion in Figure 1; note the irregularity in the shapes and
sizes of the tetrahedra.

The positions of the mesh nodes x can change accord-
ing to their prior distribution p(x):

p(x) ∝ exp

−β T∑
t=1

φt(x, xre f )

 (2)

where T and xre f denote the number of tetrahedra
and the reference position of the mesh, respectively;
φt(x, xre f ) is a penalty for deforming tetrahedron t from
its reference to its actual position; and β > 0 is a scalar
that controls the global stiffness of the mesh. We use
the penalty term proposed in (Ashburner et al., 2000),
which goes to infinity when the Jacobian determinant
of the deformation approaches zero. This choice pre-
vents the mesh from tearing or folding onto itself, thus
preserving its topology.

Given a deformed mesh with node positions x, the
probability pi(k|x) of observing label k at a voxel i is
obtained by barycentric interpolation of the label prob-
abilities at the vertices of the tetrahedron containing the
voxel. Moreover, we assume conditional independence
of the labels of the different voxels given the mesh node

positions, such that

p(l|x) =

I∏
i=1

pi(li|x). (3)

The expression for the prior distribution over segmenta-
tions is finally:

p(l) =

∫
x

p(l|x)p(x)dx. (4)

2.2. Likelihood
The likelihood p(D|l) models the relationship be-

tween segmentation labels and image intensities. For
this purpose, we associate a mixture of Gaussian distri-
butions with each label (Ashburner and Friston, 2005),
and assume that the bias field imaging artifact typically
seen in MRI can be modeled as a multiplicative and spa-
tially smooth effect (Wells et al., 1996a). For computa-
tional reasons, we use log-transformed image intensities
in D, and model the bias field as a linear combination of
spatially smooth basis functions that is added to the lo-
cal voxel intensities (Van Leemput et al., 1999a).

Specifically, letting θ denote all bias field and Gaus-
sian mixture parameters, with uniform prior p(θ) ∝ 1,
the likelihood is defined by

p(D|l) =

∫
θ

p(D|l, θ)p(θ)dθ, (5)

where

p(D|l, θ) =

I∏
i=1

pi(di|li, θ), (6)

pi(d|k, θ) =

Gk∑
g=1

wk,gN
(
d − Cφi|µk,g,Σk,g

)
,

and

N (d|µ,Σ) =
1√

(2π)N |Σ|
exp

(
−

1
2

(d − µ)T Σ−1 (d − µ)
)
.

Here, Gk is the number of Gaussian distributions in the
mixture associated with label k; and µk,g, Σk,g, and wk,g

are the mean, covariance matrix, and weight of com-
ponent g ∈ {1, . . . ,Gk} in the mixture model of label k
(satisfying wk,g ≥ 0 and

∑
g wk,g = 1). Furthermore,

C =


cT

1
...

cT
N

 , cn =


cn,1
...

cn,P

 and φi =


φi

1
φi

2
...
φi

P

 ,
where P denotes the number of bias field basis func-
tions, φi

p is the basis function p evaluated at voxel i, and
cn holds the bias field coefficients for MRI contrast n.

The entire forward model is summarized in Table 1.
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Figure 1: Left: T1-weighted scan from the training data. Center: corresponding manual segmentation. Right: atlas mesh built from 20 randomly selected subjects from
the training data.

Table 1: Equations for the forward probabilistic model of MRI brain scans

x ∼ p(x) (Eq. 2)
l ∼ p(l|x) (Eq. 3)
θ ∼ p(θ) ∝ 1
D ∼ p(D|l, θ) (Eq. 6)

2.3. Inference

Using the model described above, the MAP segmen-
tation for a given MRI scan is obtained by maximizing
Eq. 1 with respect to l:

l̂ = arg max
l

p(l|D) = arg max
l

p(D|l)p(l), (7)

which is intractable due to the integrals over the parame-
ters x and θ that appear in the expressions for p(l) (Eq. 4)
and p(D|l) (Eq. 5), respectively. This difficulty can be
side-stepped if the posterior distribution of the model
parameters in light of the data is heavily peaked around
its mode:

p(x, θ|D) ' δ(x − x̂, θ − θ̂),

where δ(·) is Dirac’s delta and the point estimates {x̂, θ̂}
are given by:

{x̂, θ̂} = argmax
{x,θ}

p(x, θ|D). (8)

In that scenario, we can approximate:

p(l|D) =

∫
x

∫
θ

p(l|D, x, θ)p(x, θ|D)dxdθ

' p(l|D, x̂, θ̂), (9)

which no longer involves intractable integrals. The re-
sulting inference algorithm then involves two distinct
phases, detailed below: first, computing the point esti-
mates by maximizing Eq. 8; and subsequently comput-
ing the segmentation by maximizing Eq. 9 with respect
to l.

Computation of point estimates. Applying Bayes’ rule
to Eq. 8, we obtain:

p(x, θ|D) ∝ p(D|x, θ)p(x)p(θ)

∝

∑
l

p(D|l, θ)p(l|x)

 p(x)

=

I∏
i=1

 K∑
k=1

pi(di|k, θ)pi(k|x)

 p(x).

Taking the logarithm, we can rewrite the problem as the
maximization of the following objective function:

{x̂, θ̂} = argmax
{x,θ}

 I∑
i=1

log

 K∑
k=1

pi(di|k, θ)pi(k|x)

 + log p(x)

 .
(10)

We solve this problem with a coordinate ascent scheme,
in which the mesh node positions x and likelihood pa-
rameters θ are iteratively updated, by alternately opti-
mizing one while keeping the other fixed.

To optimize the mesh node positions x with
fixed θ, we use a standard conjugate gradient op-
timizer (Shewchuk, 1994). To optimize the likeli-
hood parameters θ with fixed x, we use a generalized
expectation-maximization (GEM) algorithm (Dempster
et al., 1977) similar to the one proposed in (Van Leem-
put et al., 1999a). In particular, the GEM optimization
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involves iteratively computing the following soft assign-
ments of each voxel to each of the Gaussian distribu-
tions, based on the current parameter estimates:

qk,g
i =

wk,gN
(
di − Cφi|µk,g,Σk,g

)
pi(k|x)∑K

k′=1 pi(di|k′, θ)pi(k′|x)
, (11)

and subsequently updating the parameters accordingly:

µk,g ←

∑I
i=1 qk,g

i (di − Cφi)∑I
i=1 qk,g

i

, wk,g ←

∑I
i=1 qk,g

i∑I
i=1

∑Gk
g′=1 qk,g′

i

,

Σk,g ←

∑I
i=1 qk,g

i (di − µk,g − Cφi)(di − µk,g − Cφi)T∑I
i=1 qk,g

i

,


c1
...

cN

←


AT S1,1A . . . AT S1,NA
...

. . .
...

AT SN,1A . . . AT SN,NA


−1

·


AT (

S1,1r1,1 + · · · + S1,Nr1,N
)

...
AT (

SN,1rN,1 + · · · + SN,NrN,N
)

 ,
where

A =


φ1

1 . . . φ1
P

...
. . .

...
φI

1 . . . φI
P

 , Sm,n = diag
(
sm,n

i

)
and rm,n =

(
rm,n

1 , . . . , rm,n
I

)T
, with

sm,n
i =

K∑
k=1

Gk∑
g=1

sm,n
i,k,g, sm,n

i,k,g = qk,g
i

(
Σ−1

k,g

)
m,n

rm,n
i = dn

i −

∑K
l=1

∑Gl
g=1 sm,n

i,k,g

(
µk,g

)
n∑K

l=1
∑Gk

g=1 sm,n
i,k,g

.

It can be shown that this process is guaranteed to in-
crease the objective function of Eq. (10) with respect
to θ in each GEM iteration (Dempster et al., 1977; Van
Leemput et al., 1999a).

Computation of the final segmentation. Given the point
estimates of the model parameters, the conditional pos-
terior distribution of the segmentation l factorizes over
voxels:

p(l|D, x̂, θ̂) =

I∏
i=1

pi(li|di, x̂, θ̂), pi(k|di, x̂, θ̂) =

Gk∑
g=1

qk,g
i .

The optimal segmentation for each voxel is therefore
given by:

l̂i = argmax
k

Gk∑
g=1

qk,g
i .

2.4. Implementation
In practice, we have found that modeling substruc-

tures with similar intensity properties (e.g., all white
matter structures) with the same Gaussian mixture
model improves the robustness of the algorithm while
giving faster execution times. Letting f denote a set of
structures that share the same mixture model, this is ac-
complished by altering the GEM update equations for
the Gaussian mixture parameters as follows:

µk,g ←

∑I
i=1 q f ,g

i (di − Cφi)∑I
i=1 q f ,g

i

∀k ∈ f ,

wk,g ←

∑I
i=1 q f ,g

i∑I
i=1

∑G f

g′=1 q f ,g′
i

∀k ∈ f ,

Σk,g ←

∑I
i=1 q f ,g

i (di − µk,g − Cφi)(di − µk,g − Cφi)T∑I
i=1 q f ,g

i

∀k ∈ f ,

where
q f ,g

i =
∑
k∈ f

qk,g
i .

The details of which structures share the same mixture
models will be given in Section 3.3.

To initialize the algorithm, we first affinely align the
atlas to the target image using the registration method
described in (D’Agostino et al., 2004), which uses at-
las probabilities – rather than an intensity template – to
drive the registration process. After the initial registra-
tion we mask out non-brain tissues by excluding voxels
that have a prior probability lower than 0.01 of belong-
ing to any of the brain structures.

The image intensities are then log-transformed to ac-
commodate the additive bias field that is employed (cf.
Section 2.2). For the bias field modeling, we use the
lowest frequency components of the 3D discrete cosine
transform (DCT) as basis functions (for the number of
components see Section 3.3).

The subsequent optimization is done at two resolu-
tion levels. In the first level, the atlas probabilities are
smoothed using a Gaussian kernel with a standard devi-
ation of 2.0 mm in order to fit large scale mesh deforma-
tions. No smoothing is used in the second level, which
refines the registration on a smaller scale.

The stopping criteria for the different components of
the algorithm are as follows: the likelihood parameters
θ are updated until the relative change in the objective
function (Eq. 10) falls under 10−5; the mesh node posi-
tions are updated until the maximum deformation across
vertices falls under 10−3 mm; and the GEM and conju-
gate gradient optimizers are iteratively interleaved until
the decrease in the cost function falls under 10−6.
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The algorithm is implemented in Matlab except for
the computationally demanding optimization of the
mesh node positions, which is implemented in C++,
and which involves computing the mesh node deforma-
tion prior p(x) (Eq. 2), the interpolated prior probabili-
ties p(l|x) (Eq. 3) and the gradient of the objective func-
tion (Eq. 10) with respect to the mesh node positions.

3. Experiments

In this section, we first describe the brain MRI
datasets used in this study (Section 3.1). Then, we out-
line four methods that our algorithm is benchmarked
against (Section 3.2) . Next, we detail how the free pa-
rameters of each method are set (Section 3.3). Finally,
we describe the setups for four different experiments in
which the different methods are tested (Section 3.4).

3.1. MRI data

In the experiments, we use five different sets of scans:
one exclusively for training the segmentation methods,
and the other four for testing the performance on un-
seen data. For training, we use a dataset of 39 T1-
weighted MRI scans and corresponding expert segmen-
tations. The expert segmentations were obtained us-
ing a validated semi-automated protocol developed at
the Center for Morphometric Analysis (CMA), MGH,
Boston (Caviness Jr et al., 1989; Caviness et al., 1996;
Kennedy et al., 1989). All raters had to pass tests
measuring intra- and inter-rater reliability before they
were allowed to perform segmentations. The result-
ing training data consists of 28 healthy subjects and
11 subjects with questionable or probable Alzheimer’s
disease with ages ranging from under 30 years old to
over 60 years old (Sabuncu et al., 2010). The scans
were acquired on a 1.5T Siemens Vision scanner using
an MPRAGE sequence with parameters: TR=9.7ms,
TE=4ms, TI=20ms, flip angle = 10◦ and voxel size =

1.0 × 1.0 × 1.5mm3 (128 sagittal slices), where the scan
parameters were empirically optimized for gray-white
matter contrast (Buckner et al., 2004). This is the same
dataset used for training in the publicly available soft-
ware package FreeSurfer (Fischl et al., 2002). An ex-
ample scan and a corresponding manual segmentation
are shown in Figure 1.

For testing, we use four different datasets acquired
on scanners from different manufacturers, with differ-
ent field strengths and pulse sequences. For three of the
datasets, including a total of 35 subjects, we have ac-
cess to expert manual segmentations, enabling quantita-
tive comparisons of automated segmentation accuracy.

All these manual segmentations were performed using
the same protocol as was used for the training data.
The fourth test dataset consists of 40 subjects scanned
at two time points; it does not have expert segmenta-
tions but will be used to assess test-retest reliability in-
stead. Below we provide details on each of these four
test datasets.

The first test dataset consists of T1-weighted scans
of 13 individuals with age and disease status match-
ing those of the training dataset, acquired on a 1.5T
Siemens Sonata scanner with the same sequence and
parameters as the training data (Han and Fischl, 2007).
Given the similarity with the training data (vendor, field
strength, pulse sequence), we will refer to this dataset
as the “intra-scanner dataset”. An example scan and
a corresponding manual segmentation are shown in Fig-
ure 2.

The second test dataset consists of T1-weighted scans
of 14 individuals with age and disease status matching
those of the training dataset, acquired on a 1.5T GE
Signa Scanner using an SPGR sequence with parame-
ters: TR = 35 ms, TE = 5 ms, flip angle = 45◦ and
voxel size = 0.9375 × 0.9375 × 1.5mm3 (124 coronal
slices) (Han and Fischl, 2007). This dataset will be re-
ferred to as the “cross-scanner dataset”. An exam-
ple scan and a corresponding manual segmentation are
shown in Figure 3.

The third test dataset consists of multi-echo FLASH
scans from 8 healthy subjects acquired on a 1.5T
Siemens Sonata scanner. The acquisition parameters
were: TR = 20 ms, TE = min, flip angle = 3◦, 5◦,
20◦ and 30◦, and voxel size = 1.0mm3 isotropic (Fis-
chl et al., 2004b; Iglesias et al., 2012). The different
flip angles correspond to different contrast properties,
with the smallest angle having contrast similar to pro-
ton density (PD) weighting and the largest one having
a contrast similar to T1-weighting. These data will be
referred to as the “multi-echo dataset”. A sample slice
from this dataset, with flip angles 30◦ and 3◦, is shown
in Figure 4.

The fourth and final test dataset consists of 40 healthy
subjects scanned at two different time points at differ-
ent facilities, with scan intervals ranging from 2 days
to six months, amounting to a total of 80 T1- and T2-
weighted scans for the whole dataset (Holmes et al.,
2012). The scans were all acquired with 3T Siemens
Tim Trio scanners using identical multi-echo MPRAGE
sequences for the T1 and 3D T2-SPACE sequences for
the T2, with voxel size = 1.2 × 1.2 × 1.2mm3. Note
that the acquisition protocol was highly optimized for
speed, with a total acquisition time for both scans of un-
der 5 minutes. This dataset will be referred to as the
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“test-retest dataset”. One of the scans had to be ex-
cluded because of motion artifacts. Moreover, some of
the T2-weighted scans have minor artifacts not present
in the T1-weighted scans. These scans were however in-
cluded in the experiments. Manual segmentations were
not available for this dataset; however, these scans are
still useful in test-retest experiments quantifying the dif-
ferences between the two time points. Ideally, as all
the subjects are healthy, the biological variations should
be small and the segmentations between the two time
points should be identical. An example of the T1- and
T2-weighted scans is shown in Figure 5.

3.2. Benchmark methods

In order to gauge the performance of the proposed
algorithm with respect to the state of the art in brain
MRI segmentation, we compare its performance against
four representative methods:

• BrainFuse2 (Sabuncu et al., 2010) is a multi-atlas
segmentation method that uses an intensity-based
label fusion approach to merge a set of propagated
training labelings into a final segmentation of a tar-
get scan. More specifically, it assumes a genera-
tive model in which the joint intensity-label space
is modeled with a Parzen density estimator (using
a logOdds-based kernel (Pohl et al., 2006a) for the
labels, and a Gaussian kernel for the intensities);
with an optional Markov random field prior enforc-
ing spatial consistency. Segmentation is carried
out through Bayesian inference, effectively giving
more weight to atlases that have locally similar in-
tensities to the target scan. In the publicly available
implementation, the Markov random field prior is
not included – however it does not yield a signifi-
cant increase in segmentation accuracy (Sabuncu
et al., 2010). For computing the registrations
between the training and target subjects, Brain-
Fuse employs asymmetric bidirectional registra-
tions based on an efficient Demons-style algorithm
that uses a one parameter sub-group of diffeomor-
phisms combined with a sum of squared inten-
sity differences (SSD) similarity measure (Sabuncu
et al., 2010). The freely available implementation
of BrainFuse is optimized to work with data that
has been preprocessed (skull-stripped, bias field
corrected, intensity normalized and re-sampled to
a 1mm3 grid) with FreeSurfer. In the experiments,

2http://people.csail.mit.edu/msabuncu/sw/bfl/

index.html

Figure 2: On the left an example slice from the intra-scanner dataset and on the
right a corresponding manual segmentation.

Figure 3: On the left an example slice from the cross-scanner dataset and on the
right a corresponding manual segmentation.

Figure 4: An example of the T1- (flip angle = 30◦) and PD-weighted (flip angle
= 3◦) scans of the same subject from the multi-echo dataset.

Figure 5: An example of the T1- and T2-weighted scans of the same subject
from the test-retest dataset.
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we follow these preprocessing requirements. The
free parameters of the registration method are set to
the values reported in (Sabuncu et al., 2010), where
the authors cross-validated the parameter values on
the same training dataset that we use in this study.

• PICSL MALF3 (Wang et al., 2013) assumes that
the segmentation errors of the propagated training
labelings can be correlated, as opposed to Brain-
Fuse, in which independence of the errors of the
different labelings is assumed. PICSL MALF for-
mulates a weighted voting problem in terms of try-
ing to minimize the expectation of the labeling er-
ror, i.e., the error between the fused labels and the
true segmentation in every voxel. To achieve this, it
approximates the expected pairwise joint label dif-
ferences between the training scans and the target
scan using intensity similarity information. The
intensity similarities are computed within a patch
around each voxel. The patch intensities are nor-
malized to have zero mean and a constant norm,
making the similarity measure robust against lin-
ear intensity change, which is often enough to cor-
rect for small differences in MRI contrast. More-
over, PICSL MALF also performs a local search
to try to find the voxel that is most similar to the
corresponding target image voxel patch-wise. This
can be interpreted as additional refinement of the
pre-computed pairwise registrations. For comput-
ing the initial pair-wise registrations between the
training and target subjects PICSL MALF uses
ANTs/SyN4 (Avants et al., 2008), which is a dif-
feomorphic registration algorithm. We follow the
implementation details that were used in the im-
plementation of PICSL MALF that won the MIC-
CAI 2012 Grand Challenge on Multi-Atlas Label-
ing (Landman and Warfield, 2012). Specifically,
for computing the pair-wise registrations, we use
the cross-correlation (CC) similarity metric, which
adapts naturally to situations where locally vary-
ing intensities occur (Avants et al., 2008); and we
set the registration parameters to the values re-
ported in (Landman and Warfield, 2012). The au-
thors use no specific preprocessing steps such as
bias field correction; however, the ANTs/SyN reg-
istration algorithm has been shown to be robust to
quite severe bias field effects when the CC sim-
ilarity metric is used (Avants et al., 2008). We
note that the PICSL MALF software also pro-

3http://www.nitrc.org/projects/picsl_malf/
4http://stnava.github.io/ANTs/

vides a post-processing procedure to correct sys-
tematic segmentation errors based on corrective
learning (Wang et al., 2011); however since this is
an independent module that is equally applicable
to the other benchmark methods as well it was not
used in this study.

• FreeSurfer5 (Fischl et al., 2002) is based on a sta-
tistical atlas of neuroanatomy, along with an inten-
sity atlas in which a Gaussian distribution is associ-
ated with each voxel and class. The parameters of
these Gaussians are estimated in a supervised fash-
ion from training data. The model is completed
by a Markov random field model that ensures spa-
tial smoothness of the segmentation, which is com-
puted as the MAP estimate in a Bayesian frame-
work. We note that FreeSurfer was trained on the
same training data that we are using in this study,
which makes direct comparison with our approach
and the multi-atlas methods feasible.

• Majority Voting (Rohfling et al., 2004a; Hecke-
mann et al., 2006) is a simple multi-atlas segmen-
tation method, where the propagated training la-
belings are fused into a final segmentation by pick-
ing, in each voxel, the most frequent label across
the propagated labelings. We include this method
as a reference against which we can compare the
performance of the more sophisticated label fusion
approaches. For our implementation of majority
voting, we use the same pair-wise registrations as
for PICSL MALF.

These benchmark methods cover a wide spectrum of
modern brain MRI segmentation algorithms. Majority
voting, BrainFuse and PICSL MALF represent multi-
atlas segmentation, which is arguably the most popular
segmentation paradigm at the moment. Moreover, they
are non-parametric methods, whereas our method and
FreeSurfer represent parametric approaches.

3.3. Cross-validation experiments on training data for
parameter tuning

The free parameters of the different methods are de-
termined using the 39-subject training dataset as fol-
lows:

Proposed Algorithm. We use 20 randomly picked sub-
jects out of the available 39 to build our probabilistic at-
las. Only 20 subject are chosen, because the atlas build-
ing process is very computationally expensive (several

5http://surfer.nmr.mgh.harvard.edu/
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weeks to build an atlas with 20 subjects) and the results
show that the segmentation performance does not in-
crease any further when more subjects are added (see
Section 4.3). The remaining 19 subjects are used to
find suitable values for the free parameters in our al-
gorithm: the global stiffness of the mesh β, the number
of bias field basis functions P, the groups of structures
f that share the same GMM parameters, and the num-
ber of mixture components associated with each struc-
ture group. The parameters are tuned based on a vi-
sual inspection of the automatic segmentations in the
19 training subjects. The chosen values for the mesh
stiffness and number of bias field basis functions are:
β = 0.1 and P = 5 per dimension, amounting to a total
of P = 53 = 125 basis functions in 3D. The choice of
which sets of structures share the Gaussian mixture pa-
rameters, as well as the number of Gaussians for each
mixture, is summarized in Table 2.

BrainFuse. We use the optimal parameters listed in the
original publication (Sabuncu et al., 2010); this choice
is appropriate because the authors cross-validate the pa-
rameter values on the same training dataset as used in
this study.

PICSL MALF. For this method we need to determine
the optimal values for the patch radius over which the
intensity similarity is calculated; a constant controlling
the inverse distance function which maps the intensity
difference to the joint error; and the size of the local
search window (Wang et al., 2013). For this purpose,
we randomly select 10 subjects as test data and use the
remaining 29 subjects as training data, and perform a
cross-validation grid search using similarity patch radii
of rp = [1, 2, 3], local search radii of rs = [0, 1, 2, 3] and
inverse mapping constants of β = [0.5, 1, 1.5, 3, 6]. As
a measure of goodness we use the mean Dice overlap
score6 (which is the main performance metric used in
the experiments below) over the structures listed in Sec-
tion 3.4 below. The resulting optimal values are: rp = 1,
rs = 2 and β = 3.

FreeSurfer. We use the standard processing pipeline
with default parameters. No cross-validation needs to
be performed as FreeSurfer is trained on the same train-
ing dataset (using all 39 subjects) we use in this study.

Majority Voting. Given the pre-computed registrations,
majority voting has no parameters to tune.

6Dice = 2|lA ∩ lM |/(|lA | + |lM |), where lA and lM are the automatic
and manual segmentations respectively and | · | is the cardinality of a
set.

Table 2: Details of the parameter sharing between structure classes. The groups
of structures that share their Gaussian mixture parameters are shown in the first
column, and the corresponding amount of Gaussians in the mixture in the second
column.

Structures with shared parameters Number Of Gaussians

Non-brain tissues 3

L/R Cerebral White Matter (WM)
L/R Cerebellum White Matter (CWM)
Brain Stem (BS) 2
L/R Ventral Diencephalon
Optic Chiasm

L/R Cerebral Cortex (CT)
L/R Cerebellum Cortex (CCT)
L/R Caudate (CA) 3
L/R Hippocampus (HP)
L/R Amygdala (AM)
L/R Accumbens Area

L/R Lateral Ventricle (LV)
L/R Inferior Lateral Ventricle
3rd Ventricle
Cerebro-Spinal Fluid (CSF) 3
5th Ventricle
4th Ventricle
Vessel
L/R Choroid Plexus

L/R Thalamus (TH) 2

L/R Putamen (PU) 2

L/R Pallidum (PA) 2

3.4. Experimental setup

We perform a comprehensive evaluation consisting of
four sets of experiments:

I. In a first experiment, we use models trained on
the training dataset to segment the scans from
the intra-scanner and the cross-scanner datasets,
comparing each method’s segmentations with the
corresponding manual annotations using the Dice
overlap score. This experiment enables us not
only to compare the performance of the differ-
ent methods, but also to assess how much their
performance degrades when the image intensity
properties of the training and test datasets are not
matched.

10



II. In a second experiment, we evaluate the compu-
tational efficiency of the various methods on the
intra- and inter-scanner datasets. We compute the
running time of the different algorithms on a clus-
ter where each node has two quad-core Xeon 5472
3.0GHz CPUs and 32GB of RAM; we only use
one core in the experiments in order to make fair
comparisons, even though all the algorithms can
potentially be parallelized. We also record the ex-
ecution time of a multi-threaded implementation
of our method, using 8 cores on a computer with 8
dual-cores with 3.4Ghz CPU and 64GB of RAM.
This setup represents a realistic scenario that en-
ables us to compare the running time of our algo-
rithm with those reported by other studies in the
literature.

III. In a third experiment, we study the effect of the
number of training subjects on the segmentation
performance. To achieve accurate segmentations,
a representative training set is needed to capture
all the structural variation one might see within
the subjects to be segmented (Aljabar et al., 2009).
However, some algorithms require less training
data than others to approach their asymptotic per-
formance, which represents a saving in manual la-
beling effort. We therefore randomly pick 5 sets
of 5, 10 and 15 subjects from the training data,
and re-evaluate the segmentation performance of
the proposed method, BrainFuse, PICSL MALF
and majority voting on the intra- and cross-scanner
datasets.

IV. In a final experiment, we evaluate the ability of the
proposed algorithm to segment non-T1-contrast
and multi-contrast MR scans using the multi-echo
and the test-retest datasets. Given a training set
consisting only of T1-weighted scans, using multi-
contrast or non-T1-contrast information is out of
reach for the four specific benchmark methods we
compare against in this article, although we note
that several multi-atlas label fusion techniques ex-
ist that could potentially be used in this context
(cf. discussion in Section 5). For the multi-echo
dataset we first run the proposed method using
only the T1-weighted images (i.e., flip angle 30◦),
then only the PD-weighted images (i.e., flip an-
gle 3◦), and finally using both the T1- and PD-
weighted images simultaneously. The resulting
automated segmentations are then compared to the
expert segmentations using Dice scores. For the
test-retest dataset, we first segment the two time
points using only the T1-weighted images, and
subsequently using both T1- and T2-weighted im-

ages together. Because no manual segmentations
are available for this dataset, we use absolute sym-
metrized percent change (ASPC) (Reuter et al.,
2012) to quantify the differences in the automatic
segmentations between the two time points. This
metric is defined as the absolute value of the differ-
ence in volume, normalized by the mean volume:

ASPC =
2|V2 − V1|

V1 + V2
,

where V1,V2 are the volumes at the two time
points. Ideally this number should be small, as the
subjects are all healthy and the time between the
scans is not so long.

We report the Dice scores and the ASPC on a rep-
resentative subset of 23 relevant structures that is also
used in other studies (e.g., (Fischl et al., 2002; Sabuncu
et al., 2010)): left and right cerebral white matter (WM),
cerebellum white matter (CWM), cerebral cortex (CT),
cerebellum cortex (CCT), lateral ventricle (LV), hip-
pocampus (HP), thalamus (TH), putamen (PU), pal-
lidum (PA), caudate (CA), amygdala (AM) and brain
stem (BS). We will refer to these structures as the “re-
gions of interest” (ROIs); note that for clarity of presen-
tation we report the average Dice score of the left and
right hemisphere for all structures except for the brain
stem.

4. Results

4.1. Intra-scanner and cross-scanner segmentation
performance

The Dice scores between the manual and automated
segmentations of the ROIs, obtained using the different
methods, are shown for the intra-scanner dataset in Fig-
ure 6 (top). Table 3 (first column) summarizes the scores
in average over the ROIs and subjects, and reports statis-
tically significant differences between the methods. The
significance testing was done using paired, two-sided t-
tests, by stacking the individual Dice scores in each ROI
and subject for a given method. Corresponding scores
and significant differences for each ROI separately are
reported in Supplementary Material, Table 1. All of
the methods perform well on the intra-scanner dataset,
which was expected, as the contrast properties of the
training data are identical to those of this dataset. The
multi-atlas segmentation methods achieve the highest
mean scores, with PICSL MALF being the best method
for this dataset. Majority voting also obtains a very high
mean score despite its simple fusion strategy. This is
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likely due to the accurate ANTs/SyN registration frame-
work, which has been shown to perform very well on
intra-scanner data (Klein et al., 2009). We note that each
of the benchmark methods is specifically trained for this
type of data, whereas the proposed method is not.

For the cross-scanner data, where the contrast prop-
erties of the target data are different from the training
data, the ROI Dice scores are shown in Figure 6 (bot-
tom) and the mean scores over the ROIs and subjects
in Table 3 (third column). Corresponding scores and
significant differences for each ROI separately are re-
ported in Supplementary Material, Table 2. Compared
to the intra-scanner dataset, the overall segmentation ac-
curacy of all methods decreases, which is likely due to
the lower intrinsic image contrast of the SPGR pulse se-
quence as noted in (Han and Fischl, 2007) and as also
visible from Figure 3. In this dataset, the proposed
method achieves the highest mean score, demonstrat-
ing its robustness against changes in contrast. Although
FreeSurfer explicitly encodes the contrast properties of
the training scans, its performs relatively well on this
un-matched data; this can be explained by its in-built
renormalization procedure for T1 acquisitions, which
applies a multi-linear atlas-image registration and a his-
togram matching step to update the class-conditional
densities for each structure (Han and Fischl, 2007). In
contrast, the label fusion methods, which directly rely
on the image intensities of the training data in their reg-
istration and fusion steps, are clearly affected by the
changes in the MRI contrast. The pair-wise registrations
are especially more challenging for this dataset, leading
to misregistrations that are the principal error source in
multi-atlas segmentation.

The segmentation accuracy of BrainFuse, which uses
FreeSurfer-preprocessed images, varies between differ-
ent structures. In general it seems to perform well on
some of the larger structures (LV, BS), whereas the per-
formance is not so good on some of the smaller struc-
tures (AM, HP, PA). This is likely explained by the
choice of registration algorithm and especially the SSD
similarity measure, which is not invariant against small
intensity changes. Although the PICSL MALF and ma-
jority voting methods use the more robust CC similar-
ity measure in the ANTs/SyN registration framework,
there are some subjects in the cross-scanner dataset for
which computing the registrations without preprocess-
ing is very difficult, resulting in the segmentation out-
liers shown in Figure 6. We note that although major-
ity voting does not rely on intensity information when
fusing the labels, its usage of CC in the registration
step indirectly assumes that the training and target scans
have similar properties (linear local intensity transfor-

mation). Compared to PICSL MALF, its simple fusion
rule makes majority voting much more dependent on
the quality of the pair-wise registrations, as the effect of
poorly registered subjects can not be downplayed.

In order to further analyze the relative performance
of the various methods without the influence of out-
lier subjects in majority voting and PICSL MALF, we
performed an additional, post hoc analysis with the ex-
plicit aim of avoiding ANTs/SyN registration failures
in the cross-scanner data. For this purpose, we re-ran
majority voting and PICSL MALF, as well as the pro-
posed method, on data that had been preprocessed with
the FreeSurfer pipeline (which includes skull-stripping,
bias field correction, intensity normalization, and re-
sampling to a 1mm3 grid), although we note that this
preprocessing is not part of the default implementations
of these algorithms.

The resulting average Dice scores for the intra- and
the cross-scanner data are shown (in italics) in the sec-
ond and the fourth column of Table 3 – note that Brain-
Fuse already depends on FreeSurfer so that all five
methods effectively use the same preprocessing pipeline
in this scenario. The Dice scores obtained this way
for each ROI individually are also displayed in Fig-
ure 6. Comparing the results obtained with and with-
out FreeSurfer preprocessing, it can be seen that the
additional preprocessing effectively avoids ANTs/SyN
registration failures in the cross-scanner data, result-
ing in a strong performance for majority voting with
only a relatively minor improvement for the more ad-
vanced label fusion of PICSL MALF, which obtains the
strongest overall segmentation accuracy. Unlike in the
intra-scanner data, however, majority voting no longer
outperforms the proposed method in the cross-scanner
data even though all its pair-wise registrations are suc-
cessful. It can also be seen that the proposed method
does not benefit from FreeSurfer preprocessing in either
the intra-scanner or the cross-scanner data, an indirect
demonstration of its intrinsic bias field correction and
skull stripping performance.

Finally, Tables 3 and 4 of the Supplementary Material
list the Dice scores and significant differences for each
ROI separately for the intra- and cross-scanner data pre-
processed with FreeSurfer. It can be seen that, although
after preprocessing PICSL MALF outperforms other
techniques in seven structures on the cross-scanner data,
the proposed technique remains the best method for four
other structures, especially those in cortical areas (WM,
CT, CWM).

A limitation of the comparisons presented in this Sec-
tion is that the proposed method uses an atlas built from
20 randomly selected subjects, potentially introducing a
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Figure 6: The Dice scores of the different methods for the intra-scanner (top) and cross-scanner (bottom) data. The proposed method = green, BrainFuse = blue, PICSL
MALF = magenta, FreeSurfer = red and Majority Voting=black. Additional results, obtained by preprocessing the input data using the FreeSurfer pipeline, are also
shown (filled boxes with broken lines). On each box, the central horizontal line is the median, the circle is the mean, and the edges of the box are the 25th and 75th
percentiles. Data points falling outside of the range covered by scaling the box four times are considered outliers, and are plotted individually. The whiskers extend to
the most extreme data points that are not considered outliers. See Section 3.4 for the acronyms.

Intra-scanner data Cross-scanner data
Method Native Preprocessed Native Preprocessed
Proposed (P) 0.863FS 0.865FS 0.807BF,PM,FS ,MV 0.806BF,FS

BrainFuse (BF) 0.868FS 0.868FS 0.744MV 0.744
PICSL MALF (PM) 0.895P,BF,FS ,MV 0.895P,BF,FS ,MV 0.760BF,MV 0.822P,BF,FS ,MV

FreeSurfer (FS) 0.853 0.853 0.799BF,PM,MV 0.799BF

Majority Voting (MV) 0.883P,BF,FS 0.885P,BF,FS 0.698 0.808BF,FS

Table 3: Mean Dice scores of the different methods over the ROIs for the intra-scanner (first column) and cross-scanner (third column) datasets. Additional results,
obtained by preprocessing the input data using the FreeSurfer pipeline, are also shown (in italics, second and fourth columns). The superscript lists the methods that
obtain significantly lower scores compared to a given method. The significance was tested using a paired two-sided t-test with a 5% significance level.
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Mean time per subject (single core)
Method Reg. Fusion Full Time

BrainFuse 16h 1h 17h
Majority voting 143.9h 0.1h 144h
PICSL MALF 143.9h 3.8h 147.7h

FreeSurfer - - 9.5h
Proposed - - 1.4h

Table 4: Mean computational time for the different methods (single core). For
label fusion methods the computation times for registration (Reg.) and label
fusion (Fusion) are listed separately.

bias when comparing to benchmark methods that use all
39 subjects without selection as training set. However,
as shown in Section 4.3, PICSL MALF, BrainFuse and
majority voting all benefit from using all the available
training subjects compared to random subsets of various
sizes, whereas the proposed method saturates around 10
subjects with very little further gains from larger train-
ing sets.

4.2. Running time
The approximate mean computation time for a single

scan using the different methods is shown in Table 4.
The proposed method is approximately 7 times faster
than FreeSurfer, 12 times faster than BrainFuse and 100
times faster than PICSL MALF and majority voting.

In general, the parametric methods (i.e., FreeSurfer
and the proposed method) are significantly faster than
the label fusion approaches. This is because only a
single non-linear registration is needed, as opposed to
the multiple pair-wise registrations used in the non-
parametric methods. Moreover, in PICSL MALF the
local search is especially time consuming with large
search windows. Compared with FreeSurfer, which is
also parametric, our method is faster due to the sparse
encoding of the mesh prior. Encoding this sparsity is
computationally expensive, but needs to be done only
once (in an offline fashion). Furthermore, in the pro-
posed approach, no special post or preprocessing of the
target scans is needed.

In its multi-threaded setup, the proposed method has
an execution time of 23.5 minutes per scan on aver-
age. The fastest whole-brain segmentation method to
our knowledge is presented in (Zikic et al., 2014) with
execution times in the range of 5 to 13 minutes; however
this method is not designed to handle image contrast dif-
ferences.

4.3. Effect of the number of training subjects
Figure 7 shows the effect on each method’s Dice

scores, averaged across all ROIs, of training on ran-

Number of subjects Average number of vertices
5 33,606

10 44,614
15 51,258

Table 5: Average number of vertices in the proposed atlas mesh for different
numbers of training subjects.

domly selected subsets of the entire training pool, both
for the intra-scanner and the cross-scanner datasets. In
order to compare the different methods’ performance
without the influence of gross registration failures in
majority voting and PICSL MALF, results obtained af-
ter preprocessing the data with FreeSurfer are also pro-
vided. The figure shows that adding more training sub-
jects generally yields more accurate segmentations for
all methods, but that the proposed method reaches its
maximum performance faster than the multi-atlas meth-
ods: Already with 10 training subjects the segmentation
accuracy of the proposed method is above 99% of its
maximal performance in all experiments, regardless of
the specific subjects included in the training set. This
is especially useful for populations where expert seg-
mentations are expensive or difficult to obtain, such as
infants. The fact that the performance of the proposed
method is not more dependent on the specific subjects
included in the training set is likely due to the atlas
construction process that explicitly avoids over-fitting
to training data (Van Leemput, 2009), yielding sparser
tetrahedral meshes (and therefore blurrier probabilistic
atlases) when fewer training subjects are available. This
effect is illustrated in Table 5, where the average num-
ber of mesh vertices for the 5, 10 and 15 training subject
groups are reported.

The effect of FreeSurfer preprocessing appears to be
minimal for the proposed method across the different
training set sizes, showing a similar performance in both
the intra-scanner and the cross-scanner data compared
to when no preprocessing is applied. In contrast, prepro-
cessing is crucial for both majority voting and PICSL
MALF in the cross-scanner setting, as ANTs/SyN regis-
tration failures otherwise severely compromise segmen-
tation performance. Compared to the other multi-atlas
methods working on the same (i.e., preprocessed) data,
as well as the proposed method (with or without prepro-
cessing), BrainFuse appears to be much more sensitive
to small training datasets, both in terms of the average
Dice scores that it obtains as well as its sensitivity to the
specific random subjects that are used for training.
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Figure 7: Mean Dice scores over the ROIs for the intra-scanner (left) and the cross-scanner (right) data when the different methods are trained using randomly picked
subsets of only 5, 10 and 15 training subjects. The error bars correspond to the lowest and highest obtained mean Dice score across the random subsets. The score
obtained when all subjects in the training pool are used is also shown for reference (fourth bar of each method). The proposed method (P) is shown in green, BrainFuse
(BF) in blue, PICSL MALF (PM) in magenta and majority voting (MV) in black. Additional results, obtained by preprocessing the input data using the FreeSurfer
pipeline, are also shown (filled bars with broken lines).

4.4. Multi-contrast performance

Figure 8 shows the Dice scores of the proposed
method on the multi-echo dataset, for various combi-
nations of single- (T1-weighted only or PD-weighted
only) and multi-contrast (T1- and PD-weighted simul-
taneously) input data. The results are very similar be-
tween T1-weighted only and multi-contrast input data,
whereas using the PD-weighted contrast alone often
yields reduced performance. This indicates that the PD-
weighted contrast does not add much useful informa-
tion to the T1-weighted scan when healthy brains are
segmented. Example segmentations of the multi-echo
dataset using T1-weighted only and multi-contrast scans
are shown in Figure 9.

The volume differences between the two time points
in the 39 subjects of the T1/T2 test-retest dataset are
shown in Figure 10. In general, they are quite similar
and small for both single- (only T1) and multi-contrast
(both T1 and T2) segmentations, with the median ASPC
in the 1-2% range. There are some larger differences –
especially in the thalamus and pallidum – when using
multi-contrast data. This appears to be mostly due to
imaging artifacts in the T2-scans, an example of which
is shown in Figure 11. We note that this dataset has
the lowest resolution of all the datasets we tested the
method on, and therefore is affected the most by partial
volume segmentation errors.

In order to put the ASPC test/retest results of Fig-
ure 10 in perspective, we also report the ASPC scores
for the benchmark methods when applied to the T1-
weighted scans of the two time points. Because of

the heavy computational burden of some of the meth-
ods (e.g., PICSL MALF occupies a CPU core for more
than six days per scan, cf. Table 4), we only report the
results on 10 randomly chosen subjects (20 scans in
total) out of the available 39. The benchmark meth-
ods’ ASPC scores are shown in Figure 12, along with
those obtained with the proposed method on the same
subjects (both T1-only and multi-contrast). The fig-
ure shows that the proposed method, PICSL MALF
and majority voting perform most reliably across the
time points, while BrainFuse and FreeSurfer have more
variance in their segmentations. As discussed before,
the weaker performance of BrainFuse compared to the
other label fusion methods is likely a combination of the
chosen registration framework and sub-optimal similar-
ity measure used for the registrations; the reasons for
FreeSurfer’s weaker performance are not immediately
clear. On the selected 10 subjects we did not observe
problems with the pair-wise registrations when using
the ANTs/SyN registration framework, leading to a ro-
bust performance of the PICSL MALF and majority vot-
ing methods in this experiment.

5. Discussion and conclusion

In this paper we have validated a whole-brain seg-
mentation method that builds upon the parametric, un-
supervised intensity clustering models commonly used
in tissue classification. We have demonstrated that these
type of models are capable of achieving state-of-the-art
segmentation performance, while being very fast, adap-
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Figure 8: Dice scores for the multi-echo dataset. Performance on T1-weighted data is shown
in dark green, on PD-weighted data in orange, and on multi-contrast input data in light green.
The box plots are drawn in the same way as explained in Figure 6.

Figure 9: Top row: target scans, T1-weighted on the left and PD-weighted on
the right. Bottom row: automatic segmentation using only the T1-weighted
scan on the left, automatic segmentation using both scans on the right.
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Figure 10: The ASPC scores for the test-retest dataset. Volume differences
between the time points on multi-contrast input data is shown in light green,
and on T1-weighted data only in dark green. The box plots are drawn in the
same way as explained in Figure 6. The outlier marked by an arrow is the
one shown in Figure 11.

Figure 11: An example of an outlier subject marked by the arrow in Figure 10. Top
row from left to right: a T1-weighted scan with no visible artifacts, a T2-weighted scan
with a line-like artifact in the pallidum and thalamus area marked by red arrows, and an
automated segmentation of pallidum and thalamus showing the segmentation error caused
by the artifact. The bottom row shows zoomed figures of the affected area, highlighting
vertical lines in the T2-scan that cause jagged borders in the automatic segmentation,
resulting in a poor ASPC score for this subject.
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Figure 12: The ASPC scores of the different methods for 10 randomly chosen subjects from the test-retest dataset. The performance of the proposed method when using
only T1-weighted data in dark green and when using both T1- and T2-weighted scans in light green, BrainFuse in blue, PICSL MALF in magenta, FreeSurfer in red
and Majority Voting in black. The box plots are drawn in the same way as explained in Figure 6.

tive to changes in tissue contrast, and able to handle
multi-contrast data. We emphasize that the exact same
algorithm was used for all datasets in this paper, with-
out any parameter retuning or configuration changes,
demonstrating the robustness of the approach.

Our experiments indicate that, in the general cross-
scanner scenario, the proposed method yields a robust
segmentation performance on par with the very best
competitors, while being orders of magnitude faster
and without requiring any form of preprocessing. The
method’s accuracy is outperformed only when the im-
age intensities of the training and test data are perfectly
matched; however we believe this scenario will seldom
occur in practice because manual whole-brain segmen-
tation is so time-consuming (e.g., taking hundreds of
days for the training data used in this paper) that the
available training data will seldom be acquired on the
exact same imaging system as the images being seg-
mented.

Since the method we have validated here combines
Gaussian mixture modeling with MRI bias field correc-
tion and probabilistic atlas deformation, it is closely re-
lated to the unified segmentation framework described
in (Ashburner and Friston, 2005); however only ba-
sic tissue classification on T1-weighted images was at-
tempted in that work. A related method based on
fuzzy c-means clustering and a topological atlas was
described in (Bazin and Pham, 2008), but that only seg-
mented a handful of structures, and relied on the avail-
ability of pre-defined centroid initializations for each
type of MRI sequence the method is expected to en-
counter.

An early attempt at whole-brain segmentation using

a deformable probabilistic atlas combined with unsu-
pervised intensity clustering was described in (Babalola
et al., 2009); however, the atlas registration was per-
formed independently of the segmentation process, us-
ing relatively coarse deformations, and the resulting
segmentation performance was found to trail that of la-
bel fusion methods. Subsequent methods showing bet-
ter performance (Ledig et al., 2012a, 2015; Makropou-
los et al., 2014; Iglesias et al., 2013b; Tang et al.,
2013) have used the non-parametric paradigm instead,
where a probabilistic atlas is computed in the space of
the target scan, i.e., after warping each of the training
scans onto the target image using pairwise registration.
We note that well-known majority voting methods (Ro-
hfling et al., 2004a; Heckemann et al., 2006) using mu-
tual information (Maes et al., 1997; Wells et al., 1996b;
Studholme et al., 1999) as registration criterion also im-
plicitly combine the non-parametric paradigm (multi-
atlas label fusion) with unsupervised intensity cluster-
ing, since mutual information-based registration can be
understood as jointly estimating registration parameters
and class-conditional densities (Roche et al., 2000). In
general, however, such non-parametric approaches are
computationally much more expensive than the para-
metric method we evaluated here.

In the current paper, we only analyzed images of
healthy subjects, and our experiments on multi-contrast
images showed no benefit in terms of segmentation
accuracy compared to when only T1-weighted scans
are used. However, the ability to seamlessly han-
dle multi-contrast data becomes essential when ana-
lyzing diseased populations, since many brain lesions
are much better visualized in T2-weighted and FLAIR
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scans than in T1-weighted contrast. In future work
we will therefore include models of pathologies in
the proposed framework, enabling simultaneous whole-
brain segmentation and pathology detection (Puonti and
Van Leemput, 2016).

The proposed method has been evaluated on a set of
structures in which the cerebral cortex was considered a
single structure, without attempting to further parcellate
it into neuroanatomical subregions. However, we note
that the volumetric white matter segmentations gener-
ated by the method can be used to build and label corti-
cal surface models using FreeSurfer (Dale et al., 1999;
Fischl et al., 2004a). Exploring this direction remains
as future work.

The segmentation software used in this paper, includ-
ing the source code, the sparse probabilistic atlases and
the code to build such atlases from training data, will be
made publicly available.
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