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Abstract. The most effective treatment for Twin-to-Twin Transfusion Syndrome is laser photocoagulation of the
shared vascular anastomoses in the placenta. Vascular connections are extremely challenging to locate due to their
caliber and the reduced field of view of the fetoscope. Therefore, mosaicking techniques are beneficial to expand
the scene, facilitate navigation and allow vessel photocoagulation decision-making. Local vision-based mosaicking
algorithms inherently drift over time due to the use of pairwise transformations. We propose the use of an electro-
magnetic tracker (EMT) sensor mounted at the tip of the fetoscope to obtain camera pose measurements, which we
incorporate into a probabilistic framework with frame-to-frame visual information to achieve globally consistent se-
quential mosaics. We parametrize the problem in terms of plane and camera poses constrained by EMT measurements
to enforce global consistency while leveraging pairwise image relationships in a sequential fashion through the use of
Local Bundle Adjustment. We show that our approach is drift-free and performs similarly to state-of-the-art global
alignment techniques like Bundle Adjustment albeit with much less computational burden. Additionally, we propose
a version of Bundle Adjustment that uses EMT information. We demonstrate the robustness to EMT noise and loss of
visual information and evaluate mosaics for synthetic and phantom-based datasets.
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1 Introduction

Twin-to-Twin Transfusion Syndrome (TTTS) complicates 10-15% of monochorionic diamniotic

(MCDA) pregnancies.1 Monochorionic twins share a single placenta and their circulation due to

the presence of inter-twin anastomes. A certain unfavourable pattern may result in an imbalance

of inter-twin blood flow, leading to acute, mid-trimester TTTS. It causes overproduction of urine

(hence polyhydramnios) in the recipient, while the other fetus will have oligohydramnios. Due

to the acute overdistention of the uterus, mothers may go into labour or rupture their membranes.

TTTS can also lead to cardiac dysfunction in one or both fetuses, worsening the prognosis. If this
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condition is not treated, the outcome is nearly always fatal.2

The standard of care today is fetoscopic laser photocoagulation,3 which has been shown to

be more effective than serial removal of excessive amniotic fluid.4 The procedure consists of the

insertion of a fetoscope, identification and coagulation of all visible anastomoses, and functionally

disconnect the two circulations.

The success of this operation is dependent on many variables, some of them related to the

operative technique. The surgeon has to be able to inspect as much of the placenta and understand

its angioarchitecture. Ideally one obtains a general insight on the nature (whether the connecting

vessels are arteries or veins) and location of all anastomoses. Following this, first arterio-venous

and then veno-arterial connections are coagulated. At the end of the procedure, it is recommended

to superficially laser the area between the lasered anastomoses to avoid the persistence of flow over

non-visualized, smaller anastomoses (referred to as the Solomon or bichorionization technique2).

Fetoscopy is typically performed with 1.3 to 2.0 mm fiberendoscope and limited light. The most

limiting factor for keeping an overview of the vascular anatomy is the small field of view.

To address this limitation, the creation of a 2D mosaic of the placenta has been proposed5–7 as

a means of expanding the field of view by stitching the fetoscopic images to a common reference

frame.

The number of images needed to cover the whole placenta are an additional challenge. Clinical

imaging conditions are also restrictive due to a lack of visual texture and color contrast between

arteries and veins, in particular of small diameter, and visual artifacts such as blood, amniotic fluid

particles, the presence of the inter-twin membrane or even fetal movements, which may perturb the

vision. To leverage the use of imagery, there should be a large overlap between adjacent images to

ensure a successful registration at the expense of increasing, even more, the number of frames.
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Local vision-based mosaicking algorithms make use of pairwise transformations between im-

ages to compose a mosaic. This has a fundamental limitation; since the transformation of each

frame to the reference space is made dependent of all the previous pairwise registrations, any new

pairwise registration error is propagated through a chain of transformations. As a result, an in-

evitable, progressive drift in the reference space occurs, which can even degenerate in a rupture

of the chain of transformation if a pair of images cannot be registered. In order to illustrate this

effect on a simulated dataset, Fig. 1a shows a ground truth mosaic composed of 200 images where

the camera has moved following a circular pattern. Figure 1b shows a mosaic that has experienced

drift due to the composition of homographies.

Fig. 1 Mosaics of 200 synthetic images where the camera has moved following a circular pattern of four laps. a) The
ground truth mosaic. b) A mosaic with drift due to the accumulation of error in subsequent iterations.

To address this problem, we propose the use of an Electromagnetic Tracking system (EMT)

by attaching an EMT sensor8–13 to the tip of the fetoscope. The EMT system provides measure-

ments of the 3D pose of the sensor, which then relate to the 3D pose of the fetoscope through

a pre-computed rigid Hand-eye calibration matrix. These measurements do not provide enough
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information to create a mosaic since the geometry of the scene is unknown. In fact, even if the

geometry of the scene was known, the noise or jitter in these measurements would propagate to

the mosaic space, resulting in misregistrations in the mosaic. Hence, the generation of the mosaic

using exclusively the EMT information is infeasible (See Sec. 4.2.2). However, the fusion of these

measurements is extremely valuable in order to guide the estimation of the mosaic and prevent

it from drifting; especially in fetoscopy, where the poor quality of the pairwise registrations can

accentuate the drift.

In this paper, we present a probabilistic model that uses the complementarity between the EMT

and visual information to drive the estimation towards globally consistent mosaics i.e. that do not

suffer from drift, independently of the number of frames. Additionally, we compare our algorithm

with the state-of-the-art in global alignment14, 15 i.e. Bundle Adjustment, and show that we achieve

a similar performance to the state-of-the-art with a much lower computational burden.

The improvement in terms of computational complexity is mostly observed in two main steps:

the matching and the non-linear optimization. Since in Bundle Adjustment, the number of image

pairs where matching needs to be attempted is N
2 in the worst case, where N is the number of

images in the sequence, this stage of the algorithm has a complexity of O(N2). In the proposed

algorithm, only the images within a fixed window are considered for matching. Therefore, only

a fixed number of images proportional to N is matched (O(N)). Analogously, the visual cost

function computes the residuals for all the obtained correspondences in potentially N
2 pairs of

images (O(N2)) and estimates all the parameters at a time while our algorithm computes only the

visual residual within the window (O(N)) optimizing only for a small subset of parameters.

Finally, we show that our algorithm is robust to EMT noise and loss of visual information and

evaluate mosaics for synthetic and phantom-based datasets. Additionally, we propose a version of
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Bundle Adjustment that incorporates EMT information in an analogous manner.

The rest of the paper is structured as follows. In Sec. 2, we discuss the state-of-the-art in drift-

free mosaicking using visual information as well as sensor fusion. Section 3 details our approach

and Sec. 4 provides an experimental evaluation. Finally, we discuss the results, the limitations of

the approach, and propose future research lines to overcome them.

2 Related Work

Mosaicking algorithms have been extensively explored in computer vision for the last two decades.

Vision-based mosaicking generally relies on estimating transformations with respect to the mosaic

space by chaining transformations between adjacent images.14–16 Therefore, it inherently accumu-

lates drift. Additionally, if one of the transformations fails to be estimated, the resulting mosaic

cannot be computed further.

Michaelsen17 observed that a translation-based mosaic accumulates less drift since no mul-

tiplicative effect applies. He presented a patch-wise algorithm where the normal vector to the

imaged patch is used to correct the homography between the first and last image in the patch such

that only x-y translation components are used to stitch the patch into the global reference frame.

As an alternative strategy, Sawhney et al.18 explored the idea of iteratively finding the topology

of the images. First using a translation-based registration, the authors check for overlapping images

to determine the neighborhood of a given image. Then, they use a projective mapping to estimate

locally consistent patches within the neighborhood. Finally, a global refinement of the mosaic is

performed to avoid local minima due to the local refinement of the patches. Given that the EMT

system provides the position of the cameras, we directly have information about the topology and

we aim for a sequential estimate that is globally consistent.
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Given that the accumulation of error leads to non-matching image positions when revisiting

the same scene, so-called loop-closing strategies propose to identify and add the loop closure

overlapping frames as an additional constraint19–21 and then correct for the accumulation of error

in the rest of the loop. Civera et al.22 keep track of the observed features and optimize for all

the camera poses in every iteration, having a natural loop closing effect since the whole loop is

optimized for. This has the additional cost of having to compare all images to a growing map in

each iteration. The creation of this map is not trivial in our scenario given the poor fetoscopic

image quality: the lack of visual texture and color contrast between arteries and veins, amniotic

fluid particles, the presence of the inter-twin membrane and fetal movements.

Another cause of this accumulation of error in a planar scenario is over-parametrization.23 In

a planar scenario, the family of homographies that defines the motion of a monocular camera can

be minimally parametrized by six parameters for each camera pose and the three global parame-

ters representing the plane whereas in classic mosaicking every pairwise relation is parametrized

by a full homography. There exists then a restricted group of homographies that can each be de-

composed into the camera motion and global plane. This decomposition has been used by several

authors, for example, Benhimane and Malis24 used it for visual servoing and some authors used it

for mosaicking as well.7, 17, 23, 25

Closely related to the last idea, Olsson and Eriksson26 showed an increased performance in

the estimation of the plane by minimizing the reprojection errors as a function of the plane as

opposed to using a plane fitting procedure after triangulating the 3D points. Given that depth is an

unobserved quantity, if there is not enough observability and baseline, depth estimates of the 3D

points may not be accurate and therefore fitting a plane leads to poorer performance than estimating

an underlying plane modeling the structure. While they assume that the camera positions are
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provided, we estimate them from visual information and noisy EMT measurements.

The state-of-the-art in terms of drift-free alignment is the well-known Bundle Adjustment.14, 15

This is a batch non-linear optimization that minimizes the reprojection residuals in all images. As

an example close to our application, Atasoy et al.27 proposed a vision-based version of Bundle

Adjustment for fibroscopic video mosaicking that weights the images with the number of matched

features found in each pair. In Sec. 3, we introduce a problem-specific version of Bundle Adjust-

ment that fuses the visual and EMT data.

Mur-Artal et al.19 showed that it is possible to meet real-time performance requirements with

the use of a windowed iterative approach also known as Local Bundle Adjustment. Under the

assumption that the global minimum is too expensive to reach and that the information is provided

in an incremental fashion, this algorithm computes the estimates in a window with the underlying

idea that cameras outside the window provide little information about the current estimates. There-

fore, the estimated cameras are considered fixed in the following iteration and only new cameras

are to be estimated. This yields accurate estimates, usually close to the Bundle Adjustment.28

Consequently, we use it in our application to achieve sequential yet accurate mosaics.

The use of an external sensor in our framework aims to constrain the global pose estimates in

order to bound the drift. Similar to ours is the work of Agrawal et al.,29 who explored the idea

of using an inexpensive Global Positioning System (GPS) combined with a stereo vision system.

They used a Kalman filter limiting the drift in translation for long robot trajectories. In our scenario,

the fetoscope is close to the tissue and its movement follows a hand-held pattern, which implies

additional complications.

Vyas et al.12 also integrated an EMT system in a mosaicking pipeline. In their system, the

camera movement is restricted to fronto-parallel motion. The registration consists of two steps:
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first, the images are placed according to the EMT measurements and then, a pairwise adjustment

is performed using a cross-correlation. This method does make optimal use of the available infor-

mation since it only enforces pairwise consistency and the optimization does not take into account

the electromagnetic data. In contrast, our probabilistic integration leverages the fact that the EMT

measurements are centered in the true camera position and uses jointly either all or a larger subset

of information available.

There has been extensive work on the fusion of other types of sensors. The integration of

gyrometers,30 accelerometers and Inertial Measurement Units (IMU)31 with visual data has been

shown to achieve better accuracy and robustness in the estimation of homographies. Additionally,

in,31 an IMU combined with visual keypoints are integrated in a fully probabilistic manner in

order to improve the robustness and accuracy of the estimation in a SLAM system. Another idea

exploited by some authors is to use predictions of the camera poses and the inertial measurements

to re-calibrate the bias term32–34 inherent in inertial measurement systems in order to eliminate the

drift. To our knowledge, it is not currently possible to fit an inertial system into a clinical fetoscope

due to its dimensions.

In our previous work,7 we proposed a preliminary model to reduce the drift using the EMT and

visual information jointly. In the current work, we extend our framework and validate the complete

elimination of the drift.

3 Methods

First, we present preliminaries in mosaicking in Sec. 3.1. Then, Sec. 3.2 introduces the EMT

measurements and the relationships used to incorporate them into the mosaicking pipeline. In

Sec. 3.3, we detail our main contribution; the formulation of a probabilistic model that achieves
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a sequential drift-free estimate of the mosaic independently of the number of frames using the

complementarity between visual and EMT information. We then state the assumptions of the

model and explain the parametrization used. Finally, we introduce the two proposed algorithms to

do inference in Sec. 3.4.

3.1 Preliminaries in Mosaicking

Given a sequence of 2D images I = {Ik}
N
k=1 of a planar scene acquired by a hand-held monocular

camera with limited field-of-view, where ⇡ 2 R
3 denotes the plane, we seek to find a representation

of the scene, the mosaic M : ⌦M ! R
3 where ⌦M ⇢ R

2, that captures the entire observed area

into a two-dimensional space where each coordinate is associated with the RGB components of a

pixel in the mosaic.

Provided that the structure is a plane, a homography h(·) : R
2
! R

2, which can also be

expressed as a matrix H 2 R
3x3 in homogeneous coordinates, maps the location of any point

p =


px py

�T
in an image to its corresponding point p0 =


p
0
x p

0
y

�T
in a second image

p
0
x =

H1,1px,+H1,2py +H1,3

H3,1px,+H3,2py,+H3,3

p
0
y =

H2,1px +H2,2py +H2,3

H3,1px +H3,2py +H3,3
.

(1)

If expressed as a matrix, Eq. (1) can be written as p̃
0
/ Hp̃ where H is known up to a scale

factor.35 We use a tilde in an image point to indicate homogeneous coordinates.

We can relate image k to image j of the sequence with a chain of homographies as follows:

Hj,k =
j�1Y

l=k

Hl+1,l (2)
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where the product operator denotes the left matrix multiplication. To build a mosaic, we need to

define the common space ⌦M where all images are stitched. Without loss of generality, if we

choose the space of the first image as the mosaic space, then Eq. (2) with k = 1 expresses the

relation between any image j in the sequence and the mosaic space. Throughout this manuscript,

a homography with only one sub-index relates an image j to the mosaic space e.g. Hj = Hj,1

whereas a homography with two sub-indexes relates two images e.g. Hj,k = HjH
�1
k relates image

k to image j.

A pairwise homography Hj,k can be directly obtained if a part of the scene is present in both im-

ages. In this work, we use a landmark-based approach36–38 to find correspondences in the images.

Once the correspondences are computed, an approximation of the homography can be estimated

using the DLT algorithm and further refined through a non-linear optimization.39 However, the

estimation of a homography between two images inevitably carries error, which leads to accumu-

lation of error when propagated through the chain in Eq. (2). We propose to tackle this problem by

incorporating measurements given from an EMT system.

3.2 Incorporation of the EMT System

We propose to bound the drift in the mosaic by relying on a set of camera pose measurements

Z = {zk}
N
k=1 provided by the EMT system. In order to use EMT measurements in conjunction

with visual information, we must establish a link between them. To this end, we place a virtual

camera at the origin of an arbitrary global coordinate system, whose image plane can be set to

coincide with the mosaic space ⌦M . Then, the image plane from the camera pose at time k is

related to the image plane of the virtual camera by its homography Hk as illustrated in Fig. 2.
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camera k

virtual camera

camera k-1

image plane k
image plane k-1

virtual image plane

_

Fig. 2 A virtual camera is placed at the origin of an arbitrary global coordinate system. The relation between images
and cameras is defined in Eqs. (3) and (5).

Therefore, we can establish the relation

Hk,k�1 = HkH
�1
k�1. (3)

Moreover, a 3D point p3D on the imaged plane satisfies

n
T

d

�
2

664
p3D

1

3

775 = 0 where the unit

vector n =


nx ny nz

�T
and the distance d from the virtual camera to the plane are seen from

the point of view of the virtual camera. Let T 2 SE(3) be a camera pose expressed as rigid body

transformation in 3D space

T =

2

664
R t

0 1

3

775 (4)
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where R is a rotation matrix in SO(3) and t is a translation vector in R
3. Provided that we want

to incorporate camera pose measurements, we establish the link between the true camera poses

(Tk,Tk�1) that induce the homographies (Hk,Hk�1) through the plane24, 35 as

Hk = K(Rk � tk
n
T

d
)K�1 (5)

where K is the pre-calibrated intrinsic camera matrix.

If the plane ⇡ was known, then we could compose a mosaic only using the EMT measurements

and the images. However, the EMT noise in the camera pose measurements propagates to the

mosaic space causing a jitter effect that translates into misregistrations in the composition. More

importantly, we do not know ⇡ a priori. Therefore, while the guidance of the EMT system is

of crucial importance for global positioning consistency, it is necessary to combine both EMT

and visual information to integrate knowledge of the scene, implicitly estimating the plane, and

obtain pairwise registrations that are as accurate as possible. To this end, we propose a generative

probabilistic model that seeks the set of camera poses X = {xk}
N
k=1 and plane ⇡ that generated the

sequence of images I and the EMT measurements Z , which are then used to project the images to

the mosaic space ⌦M and create the mosaic M

(X̂ , ⇡̂) = argmax
(X ,⇡)

P (X , ⇡|Z, I). (6)

We now detail the notation, assumptions, and parametrization used in the probabilistic model.
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3.3 The Probabilistic Model

3.3.1 Notation and modeling assumptions

Consider two images. Let image A be the source image and image B be the target image. These

images each contain a set PA
l,m and P

B
l,m of Nl,m corresponding landmarks found from image m to

image l. For each set, let us define the ith corresponding landmark in the set as {pA,i
l,m 2 R

2
|P

A
l,m =

{p
A,i
l,m}

Nl,m

i=1 } for image A and {p
B,i
l,m 2 R

2
|P

B
l,m = {p

B,i
l,m}

Nl,m

i=1 } for image B. For simplicity, we

assume that landmarks in an image are independent. Additionally, for different pairs of images,

we consider independence of all the sets in source images in P
A =

S
l,m2L

P
A
l,m, and target images

P
B =

S
l,m2L

P
B
l,m, where L is the set of all possible corresponding image indexes. Figure 3 depicts

a schematic of the nomenclature of the correspondences.

Ik

Ik+1

Ik+2

Fig. 3 Schematic of the nomenclature of the correspondences. P
A
k+1,k (green empty circles) is the set of points of

image A for which Nk+1,k = 4 correspondences from image k to k + 1 are available, being P
B
k+1,k (green colored

circles) the corresponding landmarks in image B. PA
k+2,k (blue empty triangles) is the set of points of image A for

which Nk+2,k = 5 correspondences from image k to k + 2 are available, being P
B
k+2,k (blue colored triangles) the

corresponding landmarks in image B. As an example, the landmark pA,1
k+1,k corresponds to the point pB,1

k+1,k and the
point pA,5

k+2,k corresponds to the point pB,5
k+2,k.
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In terms of the parametrization, we use a scaled normal vector ⇡ = n/d 2 R
3 to parametrize the

plane. Compared to other parametrizations,23 this has the advantage of encoding the inverse depth

(1/d) in each of the components, reducing the non-linearity and thus accelerating the convergence.

We use a minimal parametrization of six parameters for the camera poses xk =


r
T
k t

T
k

�T
with

the orientation r =


rx ry rz

�T
being the Euclidean vector in R

3 identified with the skew-

symmetric matrix S 2 so(3) for which R = e
S
2 SO(3)

S =

2

6666664

0 �rz ry

rz 0 �rx

�ry rx 0

3

7777775
. (7)

This parametrization ensures valid rotation matrices and is valid for all angles as the exponential

map in so(3) is surjective. Furthermore, the camera is guaranteed to look downwards, towards

the placenta, and therefore the exponential map is bijective for all angles of interest as long as the

camera does not complete a full rotation around its z axis, which is very unlikely.

Once the notation has been defined, we state the main modeling assumptions:

1. We consider the imaged object to be a plane.7

2. Every EMT measurement zk is modeled as a Gaussian random variable centered on the

true camera pose xk with diagonal covariance ⌃EMT , that is zk|xk ⇠ Nzk(xk,⌃EMT ).

Even though the EMT measurements are actually not strictly Gaussian,40, 41 this is a com-

mon assumption40 that simplifies the problem. We account for modeling errors in the EMT

measurements by enlarging its standard deviation.

3. The locations of corresponding points between adjacent images match the same visual con-
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tent but they are imperfect; each pair of corresponding points has a matching error defined as

the distance between a point in an image and its correspondence propagated from the other

image. For simplicity, we assume this error to have zero mean and diagonal covariance ma-

trix �
2
vI. This is equivalent to saying that a 2D point in image B is a Gaussian measurement

generated from a true 2D point in image A, that is pB,i
l,m|xl,xm, ⇡,p

A,i
l,m ⇠ NpB,i

l,m
(µi

v, �
2
vI) in

which the mean µ
i
v(xl,xm, ⇡,p

A,i
l,m), detailed later in Eq. (13), is the projected location of

the point in image A. See the discussion section for more comments about this modeling

assumption.

4. We assume that the camera is moving smoothly and therefore model the relation between

camera poses with a constant velocity motion model42 with mean µp(xk�1,xk�2), which

is described later in Eq. (15), and diagonal covariance matrix ⌃p, that is xk|xk�1,xk�2 ⇠

Nxk
(µp,⌃p). This model expresses that the velocity at time k must be the same as the

velocity at time k � 1 plus a perturbation.

Within this probabilistic framework, the estimation of the mosaic can be cast as a Bayesian infer-

ence problem, in which the posterior P (X , ⇡|Z,P
A
,P

B) is maximized with respect to the camera

poses X and plane ⇡

(X̂ , ⇡̂) = argmax
(X ,⇡)

P (X , ⇡|Z,P
A
,P

B) (8)

in which the posterior probability factorizes as

P (X , ⇡|Z,P
A
,P

B) / P (Z,P
B
|X , ⇡,P

A)P (X , ⇡|P
A)

/ P (Z|X )| {z }
(a)

P (PB
|X , ⇡,P

A)| {z }
(b)

P (X )P (⇡)| {z }
(c)

. (9)
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First, we applied Bayes Theorem and dropped the constant factor. Second, if the true cameras X

are given, then the EMT measurements Z are independent of the visual terms PB and therefore,

P (Z,P
B
|X , ⇡,P

A) can be separated as (a) and (b). Furthermore, in (a), we applied the fact that

the EMT measurements are independent of the plane ⇡ given X so that P (Z|X , ⇡) = P (Z|X ).

In the prior term identified as (c), we have first considered independence of PA and ⇡ and then

independence of ⇡ and X , i.e. P (X , ⇡|P
A) = P (X , ⇡) = P (X )P (⇡). We assume that we do

not have prior information about the plane and that its distribution is bounded, considering thus

P (⇡) / 1. The graphical model of the proposed probabilistic framework is presented in Fig. 4.

Circles represent random variables, which can be either latent (white background) or observed

(shaded). Parameters of the model are depicted as a point.

⇡ , Plane

X = {xk}
N
k=1 , True camera poses

Z = {zk}
N
k=1 , EMT measurements

P
A =

[

l,m2L

P
A
l,m , All sets of corresponding points in images A

P
B =

[

l,m2L

P
B
l,m , All sets of corresponding points in images B

zk|xk ⇠ Nzk(xk,⌃EMT )

p
B,i
l,m|xl,xm, ⇡,p

A,i
l,m ⇠ NpB,i

l,m
(µv, �

2
vI)

xk|xk�1,xk�2 ⇠ Nxk
(µp,⌃p)

Fig. 4 Graphical model of the proposed probabilistic framework. Circles represent random variables, which can be
either latent (white background) or observed (shaded). Parameters of the model are depicted as a point.

Next, we incorporate the assumptions and present the factorization of the likelihood and prior

terms.
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3.3.2 The likelihood and prior

The likelihood combines the EMT term P (Z|X ) and visual term P (PB
|X , ⇡,P

A). In particular,

the EMT term contains the relation between the EMT measurements and the true cameras, which

assuming independence of the EMT measurements, can be expressed as

P (Z|X ) =
NY

k=1

P (zk|xk). (10)

The visual term comes from the correspondences between images and it enforces visual pairwise

consistency. Applying the assumption that sets of corresponding points are independent of each

other, we can simplify this term by factorizing it as

P (PB
|X , ⇡,P

A) =
Y

{m,l}2L

P (PB
l,m|xl,xm, ⇡,P

A
l,m) (11)

In every image, we also assume every landmark to be independent. Therefore, we can further

decouple the points as

P (PB
l,m|xl,xm, ⇡,P

A
l,m) =

M l,mY

i=1

P (pB,i
l,m|xl,xm, ⇡,p

A,i
l,m). (12)

We assume every point in image B to be p
B,i
l,m|xl,xm, ⇡,p

A,i
l,m ⇠ NpB,i

l,m
(µi

v, �
2
vI) with

2

664
µ
i
v(xl,xm, ⇡,p

A,i
l,m)

1

3

775 / HlH
�1
m p̃

A,i
l,m = (Rl � tl

n
T

d
)(Rm � tm

n
T

d
)�1

p̃
A,i
l,m (13)
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For convenience, we redefine every point p̃ directly in the normalized image space through p̃ =

K
�1
q̃ being q̃ a homogeneous point in the image space.

The number of correspondences has a strong impact on the estimation. A high number em-

phasizes the visual term, unbalancing the fusion with the EMT information. This effect is related

to the simplifying independence assumption between landmarks. The solution adopted has been

to normalize and manually adapt the visual variance �
2
v to ensure good inter-frame registrations,

which can be seen as a pragmatic correction factor. A more detailed explanation of this problem is

covered in the discussion section.

The prior term P (X ) on the camera poses is approximated by using a second order Markov

process which accounts for a constant velocity of the camera. We assume no prior knowledge of

the joint probability on a bounded region of the space, i.e. P (x2,x1) / 1

P (X ) = P (x1, ...,xN) = P (x2,x1)
NY

k=3

P (xk|xk�1,xk�2, ...,x1)

⇡ P (x2,x1)
NY

k=3

P (xk|xk�1,xk�2) /
NY

k=3

P (xk|xk�1,xk�2). (14)

We assume the new camera motion xk|xk�1,xk�2 ⇠ Nxk
(µp,⌃p), where

µp(xk�1,xk�2) =


r̄
T
k t̄

T
k

�T
(15)

is decomposed from the rigid transformation T̄k into rotation and translation

T̄k =

2

664
R̄k t̄k

0 1

3

775 = Tk�1,k�2Tk�1 (16)
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with R̄k = exp(r̄k). This simply says that the last camera pose Tk�1 is composed with the last

available pairwise velocity Tk�1,k�2 = Tk�1T
�1
k�2, giving an approximate idea of where the current

estimate should be.

3.4 Inference

By applying a negative logarithm to the posterior probability distribution, we can express the pro-

posed model as the minimization of a cost which contains three terms, the visual cost Cv, the EMT

cost CEMT and the cost associated with the temporal model Cp as

(X̂ , ⇡̂) = argmin
(X ,⇡)

(Cv + CEMT + Cp) (17)

where

Cv =
X

l,m2L

Nl,mX

i=1

1

�2
v

||p
B,i

� µ
i
v(xl,xm, ⇡,p

A,i
l,m)||

2
2 (18)

CEMT =
NX

k=1

(zk � xk)
T
⌃

�1
EMT (zk � xk) (19)

Cp =
NX

k=3

(xk � µp(xk�1,xk�2))
T
⌃

�1
p (xk � µp(xk�1,xk�2)). (20)

This is a large scale non-linear least squares problem, which can be solved using a Gauss-Newton

method, for which the EMT measurements can be used for initialization.

If only the visual cost is used, the problem results in Bundle Adjustment. Therefore, the pro-

posed algorithm is an adapted version of Bundle Adjustment that also incorporates the EMT mea-

surements and temporal consistency of the camera motions. These algorithms require to have all

the information beforehand, i.e. they are offline. This is prohibitive in our case since we aim for
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a sequential estimate. Consequently, we move towards local methods. However, we do consider

the incorporation of the EMT information in Bundle Adjustment and propose it as an additional

contribution, since it can be used for refinement at the end of the scanning procedure and can serve

as a reference.

We use Local Bundle Adjustment (LBA), an approximation of Bundle Adjustment in which

only the components within a temporal window of size W are considered. This reduces drastically

the computational burden of the algorithm and allows for sequential estimation. We slightly modify

this approach following these two main assumptions: (i) The cameras far from the current window

provide little information about the new cameras to be estimated, yet they provide information

about the plane given visual measurements. (ii) The cameras that have already been estimated are

considered fixed in the next iteration. These assumptions are further commented in the discussion

section.

Let Xe = {x
e
k}

�e

k=1 be the subset of cameras to be estimated where �e is the number of cameras

in the subset, Xg = {x
g
k}

�g

k=1 the set of cameras already estimated and fixed within the window, with

�g being the number of cameras in the subset as well as the index of the most recent fixed camera

such that W = �e + �g. Additionally, let Xo be the subset of cameras already estimated outside

the window such that X = {Xe,Xg,Xo}. Analogously, let Ze be the set of EMT measurements

corresponding to the camera poses to be estimated.

We now seek to maximize the posterior probability of the new camera motions Xe and plane ⇡

given all the estimated cameras that have been fixed, and the EMT and visual measurements such

that

(X̂e, ⇡̂) = argmax
(Xe,⇡)

P (Xe, ⇡|Xg,Xo,Ze,P
A
,P

B). (21)
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In this case, the posterior factorizes as

P (Xe, ⇡|Xg,Xo,Ze,P
A
,P

B) / P (Ze,P
B
|X , ⇡,P

A)P (Xe, ⇡|Xg,Xo,P
A) (22)

/ P (Ze|X )P (PB
|X , ⇡,P

A)P (Xe|Xg,Xo)P (⇡).

Provided that Ze are independent of the rest of the camera poses given Xe, then P (Ze|X ) /

P (Ze|Xe). Additionally, we approximate P (Xe|Xg,Xo) with the assumption that the cameras out-

side the temporal window do not influence the estimation of the new ones as

P (Xe|Xg,Xo) ⇡ P (Xe|Xg) ⇡

P (xe
2|x

e
1,x

g
�g
)P (xe

1|x
g
�g
,x

g
�g�1)

�e�3Y

k=0

P (xe
�e�k|x

e
�e�(k+1),x

e
�e�(k+2)) (23)

where all the terms have been further approximated as a Markov process of second order in the

same way as before.

However, operating only in a temporal window may not provide enough baseline between

camera poses to capture the depth of the plane accurately. Therefore, we have enhanced the mea-

surement set with evenly-distributed visual measurements that cover the available space explored

at every iteration. In order to sparsely select sets of landmarks throughout the observed area, we

project the image corners using the available camera poses and plane estimated at a given iteration.

Provided that drift has not been accumulated during the estimation, we can use the projection of the

image corners to determine the location of the image in the mosaic space. To this end, we compute

the centroids of the reprojected corners and use K-means (Fig. 5b) to cluster the centroids into

different regions of the space. Finally, we randomly pick a consecutive subset of camera motions
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in each cluster to be taken into account together with their corresponding landmarks. Figure 5

depicts the proposed algorithm.

\$ ]$ ^$

Fig. 5 a) The estimated cameras and plane produce drift-free estimates of the projected images in the mosaic space.
We project the image corners (dotted contour) and compute the centroids (black dots). b) The centroids have been
clustered using K-means. c) A consecutive subset of centroids has been randomly selected from each cluster. These
centroids correspond to fixed camera poses as well as visual measurements, which are then used to leverage the visual
pairwise relations in different areas of the space.

In a similar way as before, we can formulate the problem

(X̂e, ⇡̂) = argmin
(Xe,⇡)

(Cv + CEMT + Cp) (24)

where

Cv =
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where W ⇢ L is the subset of corresponding images that has been sparsely selected as well as the

ones within the temporal window. This results in much smaller non-linear least squares problems

that can be solved using Gauss-Newton.

LBA produces a slightly different version of the plane in every iteration. The task of com-

posing consistent homographies from these estimates is not trivial. For simplicity, we have opted

to compose the new homographies with the estimated set of cameras and plane obtained in every

iteration by using Eq. (5). This may lead to slight misregistrations in the mosaic between estimates

with different planes when the camera has not explored enough area. Eventually, the estimate of

the plane is going to converge and could potentially be assumed fixed, simplifying the optimization

problem.

4 Experiments and Results

In this section, we introduce the algorithms to compare to, the datasets, and the metrics used to

then present a suite of experiments where we evidence that our approach is drift-free, robust to

EMT noise as well as robust to loss of visual information.

4.1 Algorithms, Datasets and Evaluation Metric

Algorithms: We name our proposed algorithm LBAVis+EMT. We compare it against the pair-

wise solution (PairVis) of the mosaicking pipeline that Brown et al.14 proposed as initialization

for a further global refinement step. We also compare it against the algorithm established as

the state-of-the-art in global alignment, so-called Bundle Adjustment16 (BAVis). However, rather

than using homographies to parametrize the problem, we used the same parametrization as in
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LBAVis+EMT to avoid over-parametrization. We also compare LBAVis+EMT against the pro-

posed version (BAVis+EMT) of Bundle Adjustment that incorporates the EMT information.

Datasets: We introduce a synthetic (SYN, 3370 frames), a phantom-based (PHB, 902 frames), and

an ex vivo human placenta (EX, 366 frames) datasets, which are composed of a set of EMT mea-

surements as well as a sequence of images from which correspondences have been obtained using

SIFT and RANSAC.14 Experimental procedures for the acquisition of the ex vivo human placenta

were approved by Bloomsbury National Research Ethics Service Committee and by University

College London Hospital Research and Development (REC Reference number 133888). The SYN

is a xy-translation synthetic dataset in which the camera motion follows a circular pattern. It con-

tains EMT information synthetically generated following the assumptions made on the EMT and

visual information (See 2 and 3). The sequence of images was generated by selecting image re-

gions (368x378) of a large image, representing the imaged plane, observed by the ground truth

cameras. The PHB (783x782) and EX (806x779) are hand-held datasets. The PHB is recorded

by imaging a printed version of a placenta taped onto a planar surface. Example images for all

datasets are shown in Fig. 6.

\$ ]$ ^$

Fig. 6 a) The synthetic (SYN), b) phantom-based (PHB), and c) ex vivo human placenta (EX) datasets.

The PHB and EX datasets were recorded using the following setup: A camera head IMAGE1
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H3-Z SPIES mounted on a 3 mm straight scope 26007 AA 0 (Karl Storz Endoskope, Tuttlingen,

Germany), an EMT system NDI Aurora with a planar field generator and a Mini 6 DoF sensor. Ac-

cording to Franz et al.,9 the MSE in the accuracy of the system is 0.9� in the rotation and 0.25mm

in the translation in laboratory conditions. However, since the accuracy of the EMT system can

vary due to external factors such as metal in the working area or position in the working volume,

dynamic electromagnetic tracking errors, synchronization errors, and hand-eye calibration errors,

we arbitrarily take larger9 standard deviations of 1� and 1mm as default values in our experiments.

Synchronized video (25fps) and EMT data (40Hz) were obtained using the NifTK43 software with

a maximum synchronization error of 12.5ms. The fetoscope was pre-calibrated using the Mat-

lab Camera Calibration Toolbox 1. We also pre-computed and applied the Hand-eye Calibration44

matrix from a sequence of images of a checkerboard as well as synchronized sensor poses. The

reference plane was obtained by fitting a plane to a large sweep of 3D points collected by scan-

ning the surface with an EMT sensor. We obtained the ground truth homographies by manually

registering the fetoscopic images directly to the original image of the placenta. The entire setup is

shown in Fig. 7.

To provide quantitative results in terms of the accuracy of a mosaic with respect to the ground

truth, we need to define the metrics.

Metrics: We parametrize a mosaic as a collection of homographies. Therefore, comparing two

mosaics becomes equivalent to comparing two collections of homographies. Starting by comparing

individual homographies, we define the error between any homography H and the ground truth

homography HGT as the mean residual error of a projected grid of points {⇢i}
Ng

i=1 2 ⌦I from the
1https://uk.mathworks.com/help/vision/ug/camera-calibration.html
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Fig. 7 The setup is composed of an EMT field generator and fetoscope in which an EMT sensor has been assembled
at its tip.

image space ⌦I ⇢ R
2 to the mosaic space ⌦M

ej =
1

Ng

NgX

i=1

||w(H�1
j , ⇢i)� w(H�1

GT , ⇢i)||2 (28)

where w(H, ⇢) projects the point ⇢ from the image space ⌦I to the mosaic space ⌦M through H

by propagating the point and converting it to Cartesian coordinates. Specifically, we have used a

grid of Ng = 1002 points for each comparison.

To further compare two collections of homographies, we take the mean of the error associated

to each of the homographies with respect to the ground truth and define the error eM that represents

the average reprojection error in pixels

eM =
1

N

NX

j=1

ej. (29)
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4.2 Experimental Suite

In the first experiment, we show that LBAVis+EMT is not affected by long-term drift in the SYN

and PHB datasets. In the second experiment, we demonstrate that the complementarity between

EMT and visual information makes the system robust to the jitter effect caused by the EMT noise

on the SYN dataset. In the third experiment, we evidence how the loss of visual information does

not impede the creation of the mosaic in the SYN dataset. Finally, we present a set of videos for

all datasets showing accurate sequential drift-free creation of the mosaics from long sequences.

The choice of parameters has been the following: W = 5, �e = 3 and K = 3 each of

which we take 5 consecutive cameras for SYN, W = 3,�e = 1 and K = 3 each of which we

take 3 consecutive cameras for PHB, and W = 12,�e = 6 and K = 3 each of which we take 12

consecutive cameras for EX. The covariance matrix ⌃p has been estimated through an independent

dataset with similar motion characteristics. ⌃EMT has been conservatively chosen to account for

other sources of error while �
2
v has been set to �v = 1 pixel. ⌃EMT and ⌃p are shown in the

appendix.

Once the alignment has been performed, we use a linear blending15 with a thin circular black

border in each image to clearly show where it has been stitched. The use of linear blending allows

for clearly distinguishing the misregistrations and it is, therefore, more interesting for demonstra-

tion purposes. However, we also use multi-band blending15 to provide more appealing results for

all datasets (Video1.mp4, Video2.mp4, Video3.mp4).

4.2.1 Drift-free mosaicking

The goal of this experiment is to show that LBAVis+EMT does not drift over time. Figure 8

shows the curves for the PairVis (blue dashed), LBAVis+EMT (green), BAVis (yellow dotted)
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and BAVis+EMT (green dotted) in the SYN (Fig. 8a) and PHB (Fig. 8b) datasets. The x-axis

is the number of frames and the y-axis is the error ej in pixels corresponding to a homography

Hj . Note that in the case of PairVis, this homography is created through a composition of pairwise

homographies and therefore a point in the curve shows the cumulative error up to the corresponding

frame. Both experiments show a similar trend; the growing tendency in the PairVis is expected due
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Fig. 8 Assessment of the accuracy of the PairVis (blue dashed), LBAVis+EMT (green), BAVis (yellow dotted) and
BAVis+EMT (dark green dash-dotted) in a) SYN and b) PHB.

to small misregistrations in subsequent images, which leads to this long-term drift. In contrast,

LBAVis+EMT maintains an approximately constant tendency over time, which demonstrates the

absence of long-term drift. Additionally, the accuracy of the proposed approach is very close to

that of BAVis and BAVis+EMT. This shows the feasibility of sequential methods for mosaicking

in a planar scenario in terms of accuracy, when the EMT system is guiding the estimation.

We have used a relatively small number of frames (152 frames in SYN and 155 in PHB)

to evidence the long-term drift in PairVis while being able to compute BAVis and BAVis+EMT.

However, we emphasize that after a certain number of frames, which will depend on the quality

of the pairwise registrations, the accumulated error can lead to projections of unnatural size (See

Fig. 1), which may result in memory problems when creating the mosaic image. In contrast, we
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Algorithm Dataset #Images #Pairs #Avg. Corr. Matching (s) Optimization (s)
PairVis SYN 152 151 86 49.811 3.145
LBAVis+EMT SYN 152 350 67 178.766 38.567
BAVis SYN 152 1094 76 4286.259 521.819
BAVis+EMT SYN 152 1094 76 4350.518 321.928
PairVis PHB 155 154 222 88.192 3.333
LBAVis+EMT PHB 155 449 184 519.447 50.638
BAVis PHB 155 2030 105 15064.135 1488.251
BAVis+EMT PHB 155 2030 105 15394.628 1103.748

Table 1 Runtimes for both SYN and PHB datasets for PairVis, LBAVis+EMT, BAVis and BAVis+EMT. The second
column indicates the number of images in the dataset. The third column corresponds to the number of matched pairs.
The fourth column is the average number of correspondences in all pairs. The fifth column is the matching runtime in
seconds. Note that it includes unsuccessful matching attempts. The last column is the optimization runtime in seconds.

show in Fig. 11 how LBAVis+EMT can cope well with long sequences.

In Table 1, we show the runtimes for both SYN and PHB datasets. We report the runtimes of the

steps that differ between algorithms: matching and optimization. The experiments were performed

in a MacBook Pro with an Intel Core I7 at 2.5GHz with 4 cores and 16GB of RAM memory and the

algorithms were implemented in Matlab using VLFeat version of SIFT and matching algorithm.46

While PairVis is the fastest method, LBAVis+EMT shows similar performance to the gold standard

Bundle Adjustment with much less computational burden. We also highlight the fact that the

computational times of BAVis+EMT are smaller than BAVis. Since we provide direct, albeit noisy

measurements of the latent variables to estimate, the problem is better posed. Therefore, faster

convergence is expected.

4.2.2 Robustness to EMT noise

Inherently, the use of EMT information produces a jitter effect in the mosaic due to the noise in the

camera pose measurements. The goal of this experiment is to assess the accuracy of LBAVis+EMT

and show that when EMT information is fused with visual information, the jitter effect is mitigated

in the creation of the mosaic. For this purpose, we created seven synthetic datasets, each with
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different EMT noise statistics. We have denoted the scalar ⌫ to be the standard deviation of the

EMT noise in the camera poses. We chose a small subset of only 17 frames since we are now only

interested in the quality of pairwise registrations.

For every SYN dataset, we assessed the accuracy of the resulting mosaic for LBAVis+EMT and

compared it against the jittery baseline composition of the mosaic using only EMT information and

the ground truth plane. Figure 9a displays the graphs for both algorithms. The x-axis represents

the different datasets from best to worse EMT noise statistics ⌫ while the y-axis corresponds to the

average error in the mosaic eM measured in pixels. We can see how while the EMT-based compo-

Fig. 9 a) In the x-axis, the multiplier ⌫ defines the standard deviation of the rotation and translation in degrees and
millimeters respectively of seven versions of the SYN dataset. In the y-axis, the error in pixels eM in the mosaic.
Every point in the graph represents the error in a mosaic created by using either LBAVis+EMT (green) or EMT (blue
dotted) with the ground truth plane (EMT+GT Plane). b) LBAVis+EMT mosaic for ⌫ = 1. c) EMT+GT Plane mosaic
for ⌫ = 1.

sition shows an approximately linear tendency with the increase of ⌫, LBAVis+EMT outperforms
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it by showing an approximately constant accuracy. This stands to reason since, after ⌫ = 1, the

quality of the EMT information is really bad and thus barely used. Then, the visual information

plays a major role in the estimation. We have highlighted the case ⌫ = 1 and displayed the mosaics

corresponding to ⌫ = 1 since it is the value of choice in other experiments. Figure 9b shows an ac-

curate mosaic created with LBAVis+EMT while Fig. 9c shows the jitter effect of EMT information

in the mosaic.

4.2.3 Robustness to sudden loss of visual information

In this experiment, we test our approach when no corresponding landmarks can be found between

pairs of frames. We created an alternative dataset in the same manner than the SYN dataset was

created. This new dataset contains 62 frames of which 12 randomly selected ones were replaced

by black frames to simulate lack of visual content. The black frames are: 7, 11, 12, 23, 24, 37,

38, 42, 43, 45, 51 and 54. Then, we ran LBAVis+EMT to assess its accuracy with missing visual

information. Figure 10a shows how despite loss of visual information, when PairVis would fail,

LBAVis+EMT has been able to successfully create a mosaic. Black circles in the mosaic (Fig. 10a)

represent the reprojection of the missing frames in the mosaic space. Figures 10b and 10c show the

estimated plane and six components of the camera pose (green); rotation (rx, ry, rz) and translation

(tx, ty, tz), the EMT measurements (blue crosses) and their ground truth (red) respectively for each

frame. We convert the plane to azimuth, elevation, and distance for an easier interpretation and

detail the conversion in the appendix. Therefore, when no landmarks are available, the estimation

can continue successfully and provide a reasonable estimate of the camera poses and plane.
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Fig. 10 a) LBAVis+EMT mosaic of a synthetic dataset where some random frames have been replaced by black
frames to simulate the lack of visual content (7, 11, 12, 23, 24, 37, 38, 42, 43, 45, 51 and 54). Black circles in the
mosaic represent the reprojection of the missing frames in the mosaic space. b) Estimation of the plane (green) and
ground truth (red). c) Estimation of the camera pose (green); rotation (rx, ry, rz) and translation (tx, ty, tz), EMT
measurements (blue crosses) and ground truth (red).

4.2.4 Sequential creation and blending of the mosaics

Figures 11a, b, and c show the results of running LBAVis+EMT in the SYN (3770 frames), PHB

(902 frames), and EX (366 frames) datasets respectively. Figure 12 shows the graph corresponding
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to the error ej in every frame of the SYN dataset. We provide videos (Video 1, MP4, 5.1MB, Video

2, MP4, 3.4MB, Video 3, MP4, 3.1MB) that illustrate the sequential creation of the mosaics by

showing the subsequent blending of every new image into the mosaic image. We recommend the

reader visualize the videos for a better understanding of the results. In this experiment, the goal is

to demonstrate that our approach can create accurate long mosaics in a sequential fashion.

Fig. 11 Mosaic using LBAVis+EMT in the a) SYN (Video 1, MP4, 5.1MB), b) PHB (Video 2, MP4, 3.4MB), and c)
EX (Video 3, MP4, 3.1MB) datasets.
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Fig. 12 Error ej in pixels of LBAVis+EMT in the SYN dataset.
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5 Discussion

Our results confirm that the fusion between the EMT and visual information using the proposed

probabilistic model in a sequential fashion does not accumulate drift. However, there exists an

error within the acceptable range of camera poses in which estimates can lay. We believe that the

major cause of this error is the use of previous estimates as fixed camera poses, which encourages

continuity on subsequent estimations. The effect of this error can be clearly appreciated in Fig. 11a.

In contrast to the PairVis, which in Fig. 8 has drifted after approximately 20 frames, our approach

is able to create a consistent mosaic after 3770 frames. However, a fixed point in one of the circular

loops does not necessarily match to the exact same point when the scene is revisited (Fig. 11a). The

range of error experienced corresponds to the spread where the EMT system allows the estimates

to be as long as there is pairwise consistency. To further highlight this fact, we can see that when

the estimation exceeds the range of error allowed by the model, an occasional pull towards the

true value can be observed (e.g. see frames 18-19). We did not include a version of the Local

Bundle Adjustment using only visual information in our results since it would still use exclusively

pairwise visual measurements and therefore, it would drift.

When the scene is revisited, images are not necessarily stitched in an exactly consistent loca-

tion. This is a limitation of our approach, we do not constrain the revisited positions to match.

However, an immediate extension that can tackle this problem would consist of the use of a spa-

tiotemporal window to consider also regions of the space that are being revisited. While the prob-

abilistic formulation would remain valid, the spatial window would optimize for loop closures, yet

avoiding the computational cost associated with re-estimating the cameras within the loop, since

we would rely on the EMT information to situate the loop roughly in a correct location from the
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beginning.

Our results show how, despite the inherent noise in the EMT system, its measurements can

be used to produce accurate pairwise registrations. However, since independence between corre-

sponding points has been assumed in the model and the number of points can be high, if not dealt

with, it translates into underestimated uncertainty in the visual information, thus leading to less re-

liance on the EMT information. Nonetheless, our setup does not yet fully simulate clinical images;

the matching process in our datasets is in general easier than in clinical videos, with an increased

number of matches, which accentuates the imbalance between both modalities.

The placenta is not completely planar, the violation of this assumption will inevitably produce

misregistration errors in those areas where the non-planarities are more prominent. Figure 11c

demonstrates that these errors are small enough to consider the assumption of planarity valid in an

ex vivo scenario. However, further research should be conducted on in vivo data.

Additionally, we see how the feature-based and outlier removal strategy do not perform op-

timally in ex vivo tissue (Fig. 11c), which leads to misregistrations in the mosaic. We believe

that further research in registration of pairwise images must be done for ex vivo and in vivo data.

However, this is out of the scope of this paper.

If we closely analyze how the noise in the corresponding points is propagated, we see that

there are two error terms playing a role in a point pi,B in image B; the corresponding point pi,A in

image A gets propagated through the homography, which makes one error term highly correlated

between points, and another one is additive, i.e. p
i,B = H(pi,A + ✏

i,A) + ✏
i,B . Therefore, the

distribution already undergoes a non-linear function, and there can be other non-linear factors such

as distortion errors that can complicate even more the resulting distribution. For this reason, we

opted to approximate such distribution as a Gaussian, which works well in practice.
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We have also demonstrated how our approach can perform adequately even when visual infor-

mation is missing. The reason for this is that we have strong information about missing camera

poses: For each empty frame, we have an EMT measurement that tells us the approximate location

of the camera, and a temporal model that also provides prior knowledge of its location. Further-

more, the fact that some images are missing does not impede the estimation of the plane as long as

the visual information has enough baseline between images.

Our approach estimates the distance d from the reference camera to the surface, which is di-

rectly related to the distance between the camera and the surface. This distance can be a powerful

cue for the surgeon since photocoagulation must be done at a certain fixed distance from the pla-

centa. However, neither the EMT nor visual information in isolation can estimate such distance.

Actually, if no EMT information is provided, the distance becomes a free parameter due to the

inherent scale ambiguity in monocular cameras. For this reason, its estimation is not straightfor-

ward and further assessment of the accuracy needs to be conducted. Additionally, the Hand-eye

calibration is in general problematic; a set of images of a known object, e.g. a checkerboard, must

be taken with the fetoscope and the attached EMT sensor in controlled conditions. One may also

need to apply some heuristics to achieve an acceptable accuracy.

6 Conclusions

We have presented a probabilistic model for robust drift-free sequential mosaicking that fuses im-

agery and data from an EMT system in the case where a planar or quasi-planar object is imaged

in a hand-held motion. We have shown that our method does not accumulate error; a problem

that affects all monocular pairwise mosaicking systems which use exclusively visual informa-

tion. Therefore, we have been able to create long mosaics obtaining an accuracy comparable to
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the state-of-the-art Bundle Adjustment. In spite of the inherent noise in EMT systems, we have

demonstrated that our approach can still generate accurate mosaics while leveraging its guidance.

Furthermore, we have shown its feasibility even when there is a loss of visual information.

In terms of future work, we are considering the following research lines: (i) Clinical fetoscopic

datasets present a challenge in terms of obtaining a set of valid matches. In this work, we have not

addressed this problem; however, this is clearly a limitation towards fetoscopic mosaicking that we

plan to address. (ii) In order to eliminate the error within the EMT bounds, we could consider the

use of Weighted Local Bundle Adjustment (WLBA). This would soften the effect of fixed cameras

and reconsider already estimated cameras according to their uncertainty in the current estimation.

(iii) To further avoid a normalization in the corresponding points, modeling the fact that the errors

in the points are correlated is an interesting idea, which could avoid the normalization process. (iv)

The inclusion of the visual and Hand-eye matrix in the model is an attractive research line, which

if successful, would remove a tedious step in the operating room. (v) Last, this study serves as a

proof of concept to a future real-time version of the approach. We believe this is possible given

that algorithms with similar computational load have been successfully implemented in real-time.

Given the low quality of fetoscopic images, we believe that the inclusion of the EMT system

in the mosaicking process is fundamental to achieve a robust and accurate mosaic, independently

of the number of frames.
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7 Appendix

7.1 Covariance matrices

⌃EMT = diag([0.017, 0.017, 0.017, 1, 1, 1]) (30)

⌃p = diag([0.0044, 0.0044, 0.0044, 15.2178, 15.2178, 15.2178])

where diag(·) denotes a diagonal matrix.

7.2 Conversion from Cartesian coordinates to azimuth, elevation and distance

tan(az) =
y

z
(31)

tan(elev) =
xp

z2 + y2

d =
p
z2 + y2 + z2

List of Figures

1 Mosaics of 200 synthetic images where the camera has moved following a circular

pattern of four laps. a) The ground truth mosaic. b) A mosaic with drift due to the

accumulation of error in subsequent iterations.
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2 A virtual camera is placed at the origin of an arbitrary global coordinate system.

The relation between images and cameras is defined in Eqs. (3) and (5).

3 Schematic of the nomenclature of the correspondences. P
A
k+1,k (green empty cir-

cles) is the set of points of image A for which Nk+1,k = 4 correspondences from

image k to k+1 are available, being P
B
k+1,k (green colored circles) the correspond-

ing landmarks in image B. PA
k+2,k (blue empty triangles) is the set of points of

image A for which Nk+2,k = 5 correspondences from image k to k + 2 are avail-

able, being P
B
k+2,k (blue colored triangles) the corresponding landmarks in image

B. As an example, the landmark p
A,1
k+1,k corresponds to the point pB,1

k+1,k and the

point pA,5
k+2,k corresponds to the point pB,5

k+2,k.

4 Graphical model of the proposed probabilistic framework. Circles represent ran-

dom variables, which can be either latent (white background) or observed (shaded).

Parameters of the model are depicted as a point.

5 a) The estimated cameras and plane produce drift-free estimates of the projected

images in the mosaic space. We project the image corners (dotted contour) and

compute the centroids (black dots). b) The centroids have been clustered using

K-means. c) A consecutive subset of centroids has been randomly selected from

each cluster. These centroids correspond to fixed camera poses as well as visual

measurements, which are then used to leverage the visual pairwise relations in

different areas of the space.

6 a) The synthetic (SYN), b) phantom-based (PHB), and c) ex vivo human placenta

(EX) datasets.
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7 The setup is composed of an EMT field generator and fetoscope in which an EMT

sensor has been assembled at its tip.

8 Assessment of the accuracy of the PairVis (blue dashed), LBAVis+EMT (green),

BAVis (yellow dotted) and BAVis+EMT (dark green dash-dotted) in a) SYN and

b) PHB.

9 a) In the x-axis, the multiplier ⌫ defines the standard deviation of the rotation

and translation in degrees and millimeters respectively of seven versions of the

SYN dataset. In the y-axis, the error in pixels eM in the mosaic. Every point in

the graph represents the error in a mosaic created by using either LBAVis+EMT

(green) or EMT (blue dotted) with the ground truth plane (EMT+GT Plane). b)

LBAVis+EMT mosaic for ⌫ = 1. c) EMT+GT Plane mosaic for ⌫ = 1.

10 a) LBAVis+EMT mosaic of a synthetic dataset where some random frames have

been replaced by black frames to simulate the lack of visual content (7, 11, 12,

23, 24, 37, 38, 42, 43, 45, 51 and 54). Black circles in the mosaic represent the

reprojection of the missing frames in the mosaic space. b) Estimation of the plane

(green) and ground truth (red). c) Estimation of the camera pose (green); rota-

tion (rx, ry, rz) and translation (tx, ty, tz), EMT measurements (blue crosses) and

ground truth (red).

11 Mosaic using LBAVis+EMT in the a) SYN (Video 1, MP4, 5.1MB), b) PHB (Video

2, MP4, 3.4MB), and c) EX (Video 3, MP4, 3.1MB) datasets.

12 Error ej in pixels of LBAVis+EMT in the SYN dataset.
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