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 

Abstract—Multimodal image registration facilitates the 

combination of complementary information from images acquired 

with different modalities. Most existing methods require 

computation of the joint histogram of the images, while some 

perform joint segmentation and registration in alternate 

iterations. In this work, we introduce a new non-information-

theoretical method for pairwise multimodal image registration, in 

which the error of segmentation – using both images – is 

considered as the registration cost function. We empirically 

evaluate our method via rigid registration of multi-contrast brain 

images, and demonstrate an often higher registration accuracy in 

the results produced by the proposed technique, compared to those 

by several existing methods. 

 
Index Terms—Multimodal image registration, segmentation-

based image registration. 

I. INTRODUCTION 

MPLOYING multiple imaging modalities often provides 

valuable complementary information for clinical and 

investigational purposes. Computing a spatial correspondence 

between multimodal images, a.k.a. multimodal image 

registration, is the key step in combining the information from 

such images. Since different modalities create images that by 

design do not share the same tissue contrast, the alignment of 

these images often cannot be assessed by a direct comparison 

of their local intensity values. 

In pairwise multimodal image registration, the joint 

histogram of the two images has been widely used to derive 

global matching measures, such as mutual information [1, 2], 

normalized mutual information [3], entropy correlation 

coefficient [2], and tissue segmentation probability [4, 5]. 

Histogram computation typically requires an optimized choice 

of the bin (or kernel) width [6]. Joint segmentation and 

registration of multimodal images has also been suggested to 

improve both the segmentation and registration [4, 5, 7, 8], 
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where iterative updates to segmentation and registration are 

typically performed in alternating steps. 

In this work, we introduce a new objective function for 

pairwise multimodal image registration based on simultaneous 

segmentation. Our underlying assumption is that any 

improvement in the alignment of two images leads to an 

improvement in image segmentation from them, hence a lower 

segmentation error. We propose an efficient algorithm that uses 

the intensity values of the images to divide the voxels into two 

classes, while regarding the segmentation error as the 

registration cost function. We perform the iterative registration 

and segmentation simultaneously, as opposed to existing 

methods for joint segmentation and registration [5, 7, 8] that 

alternate between the segmentation and registration steps. 

Furthermore, we do not use the joint histogram or entropy of 

images or tissue classes (contrary to  [4, 5]). In a comparison 

with several existing objective functions, we show that our 

proposed objective function often outperforms competing 

metrics in registering brain images with different contrasts. We 

stress that our goal is improved registration, and thus the 

oversimplifying assumption of only two classes is irrelevant if 

the registration produced by this procedure outperforms 

competing methods. 

We describe our methodology in Section II, including the 

segmentation score computation for a single image (Section 

II.A) and a pair of images (Section II.B), and the use of the score 

in driving the registration (Section II.C). We evaluate our 

approach experimentally in Section III, and conclude the paper 

in Section IV. 

II. METHODS 

A. Segmentation Score for a Single Image 

Let 𝐼 ∈ ℝ𝑁 be an image consisting of 𝑁 voxels, where 𝐼𝑘 

represents the intensity value of the 𝑘th voxel, 𝑘 = 1,… ,𝑁. For 
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mathematical simplicity and without loss of generality, we 

assume 𝐼 to be zero-sum, i.e. ∑ 𝐼𝑘
𝑁
𝑘=1 = 0. We denote a binary 

segmentation of 𝐼 by 𝑆 ∈ {0,1}𝑁, where 𝑆𝑘 determines whether 

voxel 𝑘 belongs to class 0 or class 1. Inspired by Otsu’s method 

for binary clustering [9], we define the following sum of 

squared error for the segmentation 𝑆, as the deviation of the 

voxel intensities in a class from the mean intensity of the class: 

𝜖 ≔ ∑(𝐼𝑘 − 𝜇𝑆𝑘)
2

𝑁

𝑘=1

 

= ∑ (𝐼𝑘 − 𝜇0)
2

{𝑘|𝑆𝑘 = 0}

+ ∑ (𝐼𝑘 − 𝜇1)
2

{𝑘|𝑆𝑘 = 1}

, 
(1) 

where 𝜇0 ≔ ∑ 𝐼𝑘{𝑘|𝑆𝑘 = 0} (𝑁 − 𝑛𝑆)⁄  and 𝜇1 ≔

∑ 𝐼𝑘{𝑘|𝑆𝑘 = 1} 𝑛𝑆⁄  are the mean intensity values of each class, 

with 𝑛𝑆 ≔ ∑ 𝑆𝑘
𝑁
𝑘=1  being the number of voxels in class 1. 

Substituting for 𝜇0 and 𝜇1 in Eq. (1) and further simplification 

leads to: 

𝜖 = ‖𝐼‖
2

2
−

1

𝑁 − 𝑛𝑆
( ∑ 𝐼𝑘
{𝑘|𝑆𝑘 = 0}

)

2

−
1

𝑛𝑆
( ∑ 𝐼𝑘
{𝑘|𝑆𝑘 = 1}

)

2

. (2) 

Recall that 𝐼 is zero-sum, meaning that ∑ 𝐼𝑘{𝑘|𝑆𝑘 = 0} +

∑ 𝐼𝑘{𝑘|𝑆𝑘 = 1} = 0, thus (∑ 𝐼𝑘{𝑘|𝑆𝑘 = 0} )
2

=

(∑ 𝐼𝑘{𝑘|𝑆𝑘 = 1} )
2

, which reduces 𝜖 to: 

𝜖 = ‖𝐼‖
2

2
−

𝑁

𝑛𝑆(𝑁 − 𝑛𝑆)
( ∑ 𝐼𝑘
{𝑘|𝑆𝑘 = 1}

)

2

. (3) 

An optimal segmentation 𝑆 would minimize 𝜖, or equivalently 

maximize the following, resulting in the segmentation score 𝜓𝐼: 

𝜓𝐼 ≔ max
𝑆∈{0,1}𝑁

1

𝑛𝑆(𝑁 − 𝑛𝑆)
( ∑ 𝐼𝑘
{𝑘|𝑆𝑘 = 1}

)

2

. (4) 

As we will see, for our image registration goal, we will only 

need the segmentation score, 𝜓𝐼, but not the optimal 

segmentation itself. To solve the above maximization problem, 

we first fix the class size and maximize (∑ 𝐼𝑘{𝑘|𝑆𝑘 = 1} )
2

 for a 

constant 𝑛𝑆. To that end, we need to find 𝑛𝑆 voxels with 

maximal magnitude of sum of intensity values. This is achieved 

by sorting the voxels based on their intensity values (that can 

be negative or positive due to the zero sum), and choosing either 

the 𝑛𝑆 largest voxels or the 𝑛𝑆 smallest voxels, whichever 

results in a larger magnitude of sum. We will see shortly that 

always choosing the former (the largest voxels) works fine for 

our purpose. Consequently, we sort the intensity values of 𝐼 to 

obtain the (vectorized) image 𝐼, where 𝐼𝑘 ≥ 𝐼𝑘+1, and rewrite 

Eq. (4) as a simple maximization over the scalar 𝑛𝑆: 

 
1 The proposed segmentation is simple; it is only based on image intensities 

with no spatial regularity constraints, and it results in two classes. Nevertheless, 

as we will see, the segmentation score is effective in driving the registration, 

𝜓𝐼 = max
𝑛𝑆

1

𝑛𝑆(𝑁 − 𝑛𝑆)
(∑𝐼𝑘

𝑛𝑆

𝑘=1

)

2

. (5) 

The maximization in Eq. (5) is possible via an exhaustive 

search for all values of 𝑛𝑆 = 1,… ,𝑁 − 1, while computing 

∑ 𝐼𝑘
𝑛𝑆
𝑘=1  recursively. Given that sorting and the subsequent 

search are done in 𝒪(𝑁 log𝑁) and 𝒪(𝑁), respectively, the 

complexity of the computation of 𝜓𝐼 is 𝒪(𝑁 log𝑁).1 

Note that we consider only the top 𝑛𝑆 values (𝐼1, … , 𝐼𝑛𝑆) for a 

particular 𝑛𝑆 in the search. However, the bottom 𝑛𝑆 values 

(𝐼𝑁−𝑛𝑆+1, … , 𝐼𝑁) are also implicitly searched, because, thanks to 

the image’s zero sum, they are the top values for 𝑛𝑆
′ ≔ 𝑁 − 𝑛𝑆: 

1

𝑛𝑆′(𝑁 − 𝑛𝑆′)
(∑𝐼𝑘

𝑛𝑆′

𝑘=1

)

2

=
1

(𝑁 − 𝑛𝑆)𝑛𝑆
( ∑ 𝐼𝑘

𝑁−𝑛𝑆

𝑘=1

)

2

=
1

𝑛𝑆(𝑁 − 𝑛𝑆)
(− ∑ 𝐼𝑘

𝑁

𝑘=𝑁−𝑛𝑆+1

)

2

=
1

𝑛𝑆(𝑁 − 𝑛𝑆)
( ∑ 𝐼𝑘

𝑁

𝑘=𝑁−𝑛𝑆+1

)

2

. 

(6) 

B. Segmentation Score for a Pair of Multimodal Images 

Next, we attempt to segment two images 𝐼, 𝐽 ∈ ℝ𝑁 with a 

single segmentation 𝑆 ∈ {0,1}𝑁. Without loss of generality, we 

assume that the images (in addition to being zero-sum) are 

normalized, ‖𝐼‖
2
= ‖𝐽‖

2
= 1. This not only will simplify the 

calculations, but will ensure that different scaling in the 

intensity values of the two images will not bias the 

segmentation towards one of the images. Following Section 

II.A, we arrive at a segmentation score similar to Eq. (4), 
𝜓𝐼,𝐽 ≔ 

max
𝑆∈{0,1}𝑁

1

𝑛𝑆(𝑁 − 𝑛𝑆)
[( ∑ 𝐼𝑘

{𝑘|𝑆𝑘 = 1}

)

2

+ ( ∑ 𝐽𝑘
{𝑘|𝑆𝑘 = 1}

)

2

], 
(7) 

and proceed by initially fixing 𝑛𝑆. This time, however, we 

cannot find the exact optimal segmentation simply by sorting, 

because a sorted voxel order for one of the images is not 

necessarily a sorted order for the other image. Therefore, to 

compute an approximate sorted order, we reduce this problem 

from two-image segmentation to single-image segmentation by 

synthesizing an image, �⃑⃑⃑� ∈ ℝ𝑁, the segmentation of which 

helps us to best approximate Eq. (7). Expanding Eq. (7) leads 

to: 

𝜓𝐼,𝐽 = max
𝑆∈{0,1}𝑁

1

𝑛𝑆(𝑁 − 𝑛𝑆)
[(𝑆T𝐼)

2
+ (𝑆T𝐽)

2
] 

= max
𝑆∈{0,1}𝑁

1

𝑛𝑆(𝑁 − 𝑛𝑆)
𝑆T(𝐼𝐼T + 𝐽𝐽T)𝑆. 

(8) 

To best approximate the above equation, �⃑⃑⃑� needs to satisfy 

�⃑⃑⃑��⃑⃑⃑�T ≅ 𝐼𝐼T + 𝐽𝐽T; so we find such �⃑⃑⃑� by minimizing ‖�⃑⃑⃑��⃑⃑⃑�T −

which is our goal. As can be seen in Eq. (1), this score is globally derived from 
all image areas, not just those with high intensities. 

http://doi.org/10.1109/LSP.2017.2754263
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𝐼𝐼T − 𝐽𝐽T‖
𝐹

2
. Using trace properties such as ‖𝐴‖𝐹

2 = tr(𝐴𝐴T) 

and tr(𝐴𝐵) = tr(𝐵𝐴), this leads to the following minimization: 

�⃑⃑⃑�∗ = argmin
�⃑⃑⃑�

[‖�⃑⃑⃑�‖
2

4
− 2(𝐼 ⋅ �⃑⃑⃑�)

2
− 2(𝐽 ⋅ �⃑⃑⃑�)

2
], (9) 

where “ ⋅ ” is the dot product. By equating the derivative of the 

above expression with respect to �⃑⃑⃑� to zero, one can verify that 

the optimal �⃑⃑⃑� lies on the plane defined by 𝐼 and 𝐽, i.e. �⃑⃑⃑�∗ =

𝛼𝐼 + 𝛽𝐽, with 𝛼, 𝛽 ∈ ℝ. Next, by further equating the 

derivatives with respect to 𝛼 and 𝛽 to zero, the minimizer in Eq. 

(9) is calculated as: 

�⃑⃑⃑�∗ =
𝐼 + sign(𝐼 ⋅ 𝐽) 𝐽

√2
. (10) 

Therefore, we sort the values of �⃑⃑⃑�∗ (that is also zero-sum) 

and apply the computed sorting order to (vectorized) 𝐼 and 𝐽 to 

obtain 𝐼 and 𝐽. We then estimate the segmentation score of the 

two images, 𝜓𝐼,𝐽, similarly to Section II.A, as: 

𝜓𝐼,𝐽 ≅ max
𝑛𝑆

1

𝑛𝑆(𝑁 − 𝑛𝑆)
[(∑𝐼𝑘

𝑛𝑆

𝑘=1

)

2

+ (∑𝐽𝑘

𝑛𝑆

𝑘=1

)

2

]. (11) 

As in Section II.A, we preform the maximization by an 

exhaustive search while computing the sums recursively, 

resulting in the same complexity of 𝒪(𝑁 log𝑁).2 
Note that the proposed segmentation score is distinct from 

the correlation ratio [10] (and other similar measures). 𝜓𝐼,𝐽 is 

symmetric with respect to the two images, and its computation 

is based on simultaneous segmentation of the two images and 

includes finding a class size that optimizes the segmentation. In 

contrast, the correlation ratio is asymmetric, and its 

computation does not make use of segmentation and requires 

dividing the image intensities into pre-defined bins. 

C. Registration Based on the Segmentation Score 

Let 𝐼, 𝐽 ∈ ℝ𝑁 be the two multimodal input images to be 

registered. We want to compute the transformation 𝑇 that, when 

applied to 𝐽, makes 𝐼 and 𝑇𝐽 aligned with each other. For that, 

we choose the segmentation score 𝜓𝐼,𝑇𝐽 (defined in Section 

II.B) as an objective function, which we will maximize with 

respect to 𝑇: 

𝑇∗ = argmax
𝑇

𝜓𝐼,𝑇𝐽 . (12) 

We implemented our new objective function in Matlab and 

incorporated it in the spm_coreg function of the SPM12 

software package [11], which performs rigid registration of 

three-dimensional images.3 This function already includes 

several information theoretical objective functions for 

multimodal image registration, which it optimizes using 

Powell’s method [12]. Note that the proposed registration 

objective function inherently includes the simultaneously 

computed segmentation error, as opposed to most existing joint 

segmentation and registration methods [5, 7, 8] that perform 

 
2 The proposed binary segmentation produces two classes, each containing 

possibly multiple tissue types; e.g., one class including the background and the 
dark regions of the brain, and the other including the bright regions. Even so, 

the segmentation score is expected to be highest when all the corresponding 

segmentation and registration in alternate steps. 

To avoid resampling artifacts, we first generate a set of 

spatially uniform quasi-random Halton points [13], and sample 

the fixed image 𝐼 on them using trilinear interpolation. We then 

zero-sum and normalize the vector of sampled intensity values 

of 𝐼, by subtracting its mean from it and dividing it by its L2 

norm. Subsequently, at each iteration, we transform the sample 

points using the current value of the transformation 𝑇, sample 

the moving image 𝐽 on them, and zero-sum and normalize the 

sampled values of 𝑇𝐽. We then use the sampled values of 𝐼 and 

𝑇𝐽 to compute the score 𝜓𝐼,𝑇𝐽. 

III. EXPERIMENTAL RESULTS 

We compared the proposed segmentation-based (SB) 

objective function with mutual information (MI) [1, 2], 

normalized mutual information (NMI) [3], entropy correlation 

coefficient (ECC) [2], and the normalized cross correlation 

(NCC) [14], all already implemented in the spm_coreg 

function of SPM12 [11]. We chose the default parameters of 

spm_coreg, such as the optimization sample steps of 4 and 2. 

We used the same number of quasi-random sampling points for 

our method as for the rest of the methods in each of the two 

levels of (quarter and half) resolution. 

A. Retrieval of Synthetic Transformations 

In our first set of experiments, we used the BrainWeb 

simulated brain database [15, 16]. We generated a pair of T1- 

and T2-weighted (pre-aligned) images of a normal brain with 

1-mm³ isotropic voxels and image size of 217×181×181. We 

first shifted one image along its first dimension with Δ𝑥 ∈
[−100,100] voxels and assessed the evolution of the 5 

objective functions, plotted in Fig. 1. The proposed SB 

objective function was significantly less convex than the 

entropy-based ones (MI, NMI, and ECC, which behaved 

similarly to each other), therefore providing a stronger gradient 

when the initial point is far from the maximum. The NCC 

objective function is the only one that was not maximized at 

Δ𝑥 = 0, probably due to its (here invalid) assumption that the 

intensities of the corresponding voxels in the two images have 

a linear relationship. 

Next, we synthesized 10,000 rigid transformations, each with 

six parameters drawn randomly from zero-mean Gaussian 

regions between the two images are well aligned. Recall that our goal (and the 

output of the algorithm) is accurate registration, whereas computation of the 
automatic segmentation score is only auxiliary. 

3 Our code is available at: www.nitrc.org/projects/sb-reg 

 
Fig. 1.  Evolution of different objective functions with respect to translation. 

The values of each objective function have been normalized to be in [0,1]. 

http://doi.org/10.1109/LSP.2017.2754263
http://www.nitrc.org/projects/sb-reg
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distributions with the standard deviation of 20 voxels for each 

of the three translation parameters and 20º for each of the three 

rotation parameters. With each synthetic transformation, 

𝑇synth, we transformed the second image4 and then registered 

the pair of images using the 5 methods. To evaluate the results 

of each experiment, we computed the registration error, 𝑒 ≔

∫ ‖𝑇−1𝑇synth�⃑� − �⃑�‖
2
d�⃑�

Ω
|Ω|⁄ , where 𝑇 is the obtained 

transformation matrix, and Ω is the image domain with |Ω| 
being its size. The cumulative distribution function of 𝑒 is 

plotted for each method in Fig. 2 (left), along with a zoomed 

version (right). Table I shows, for each method, the percentage 

of the experiments that resulted in an error smaller than a 

threshold. The proposed SB method converged to subvoxel-

accuracy solutions (𝑒 < 1) more often than the competing 

methods did. However, in the experiments where the entropy-

based methods (MI, NMI, and ECC, again performing similarly 

to each other) produced subvoxel-accuracy results, their error 

was lower (𝑒 < 0.1) than that of the SB method. This may 

suggest that, for better capture range, one could use the results 

of SB registration as initial value for entropy-based registration. 

The NCC method never achieved subvoxel accuracy. 

B. Cross-Subject Registration of Labeled Images 

We performed a second set of experiments on a human brain 

MRI dataset of 8 subjects [17], including (for each subject) a 

T1-weighted image, a proton-density image, and a manual-label 

volume for 37 neuroanatomical structures (each subject’s three 

images were pre-aligned). All images had been preprocessed in 

FreeSurfer [18] and resampled to the size 256×256×256 with 1-

mm³ isotropic voxels. For all of the 8×7=56 ordered pairs, we 

registered the T1-weighted image of the first subject to the 

proton-density image of the second subject using the 5 

methods.5 To score the results of each experiment, we 

computed the portion of the voxels with matching labels 

between the two images after registration. The cross-

 
4 To ensure that no part of the brain is cropped out of the bounding box of 

the image, we applied the transformation only to the header of the NIFTI file, 
while keeping the image data intact.  

5 Note that for inter-subject registration, a non-rigid (affine or deformable) 

transformation model is more suitable than the rigid one used here, as the 
former allows for volume changes when aligning the image of one subject to 

that of another. Nonetheless, care should be taken to prevent the optimization 

experiment mean and standard error of the mean (SEM) of the 

label-matching scores are shown in Table II. In addition, the 

percentage of the experiments where our SB method 

outperformed each other method is shown in Table II, along 

with the corresponding p-values obtained by two-tailed paired 

Student’s t- and sign rank tests. As can be seen, the proposed 

SB method resulted in a significantly higher label-matching 

score than the rest of the methods did (p < 10-6). 

C. Retrospective Image Registration Evaluation (RIRE) 

Lastly, we used the publicly available RIRE dataset [21, 22] 

to evaluate the methods through CT-MR and PET-MR 

registration, where many-to-one intensity mappings are present. 

algorithm from exploiting the symmetry-breaking influence of the volume 

change on the objective function. In fact, the algorithm can manipulate the 
volume change to optimize the objective function without improving the image 

alignment [19], which may happen even if a mid-space is used to avoid 

asymmetry [20]. Devising a multi-modal registration method that allows for the 
volume change while avoiding this issue is part of our future work. 

TABLE I 

PERCENTILE RANKS FOR THE REGISTRATION ERROR, 𝑒 

 pre-regist. MI NMI ECC NCC SB 

𝑒 < 0.1 0% 61.85% 61.96% 61.37% 0% 0.02% 

𝑒 < 1 0% 63.20% 62.35% 62.60% 0% 66.91% 

𝑒 < 10 0.01% 63.25% 62.41% 62.64% 64.88% 72.89% 

 TABLE II 

LABEL-MATCHING SCORE AVERAGED ACROSS EXPERIMENTS 

 
pre-

regist. 
MI NMI ECC NCC SB 

Mean(Score) 0.9304 0.9538 0.9563 0.9563 0.9582 0.9586 

SEM(Score) 0.0028 0.0013 0.0010 0.0010 0.0008 0.0008 

% times SB 

outperformed 
100% 100% 95% 95% 84% - 

t-test: p 9×10-14 3×10-7 6×10-9 2×10-8 7×10-8 - 

sign rank: p 8×10-11 8×10-11 1×10-10 1×10-10 4×10-8 - 

 

 
Fig. 2.  Left: Cumulative distribution function of the registration error, 𝑒, for different methods. Right: A zoomed version, with 𝑒 ∈ [0,10]. 

TABLE III 

REGISTRATION ERROR IN MILLIMETERS 

 
pre-

regist. 
MI NMI ECC NCC SB 

Mean(error) 26.3 6.9 3.1 2.9 14.0 6.2 

SEM(error) 1.5 1.9 0.9 0.8 2.6 0.6 
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For each of the 18 subjects and each of the 5 methods, we ran 

at most 12 experiments, registering a CT image and a PET 

image to 6 MR images (T1, T2, PD, and their rectified 

versions), resulting in a cross-subject mean error based on 

manual markers. Table III shows the cross-experiment average 

of these mean errors for each method. The proposed SB method 

performed better than NCC and MI, but worse than ECC and 

NMI. The inferior performance of SB in the latter case may be 

because the images here (as opposed to those used in the 

previous experiments) have different fields of view. The SB 

approach, however, is not inherently invariant to the overlap of 

the fields of view. 

IV. CONCLUSION 

We have introduced a new cost function for multimodal 

image registration, which is essentially the error obtained by 

simultaneously segmenting the two images. For simplicity and 

as a proof of concept, we considered rigid registration in our 

experiments. We have demonstrated that, compared to several 

existing methods, the proposed method more often converges 

to the correct (subvoxel-accuracy) solutions, and also often 

results in better manual-label matching. Future directions 

include extending our registration method to be: overlap-

invariant, group-wise, deformable, and using more 

segmentation classes. 
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