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The full reference tissue model (FRTM) is a PET analysis framework that includes both free and specifically
bound compartments within tissues, together with rate constants defining association and dissociation
from the specifically bound compartment. The simplified reference tissue model (SRTM) assumes instanta-
neous exchange between tissue compartments, and this “1-tissue” approximation reduces the number of
parameters and enables more robust mapping of non-displaceable binding potentials. Simulations based
upon FRTM have shown that SRTM exhibits biases that are spatially dependent, because biases depend
upon binding potentials. In this work, we describe a regularized model (rFRTM) that employs a global esti-
mate of the dissociation rate constant from the specifically bound compartment (k4). Themodel provides an
internal calibration for optimizing k4 through the reference-region outflow rate k2′, a model parameter that
should be a global constant but varies regionally in SRTM. Estimates of k4 by rFRTM are presented for four
PET radioligands. We show that SRTM introduces bias in parameter estimates by assuming an infinite
value for k4, and that rFRTM ameliorates bias with an appropriate choice of k4. Theoretical considerations
and simulations demonstrate that rFRTM reduces bias in non-displaceable binding potentials. A two-
parameter reduction of the model (rFRTM2) provides robust mapping at a voxel-wise level. With a struc-
ture similar to SRTM, the model is easily implemented and can be applied as a PET reference region analysis
that reduces parameter bias without substantially altering parameter variance.

© 2016 Elsevier Inc. All rights reserved.
Introduction

Reference tissue models (RTMs) have been developed and
employed in PET analyses for over two decades. Under the assumption
that a reference region in the brain is devoid of specific binding of PET
radioligand, RTMs enable calculation of non-displaceable binding po-
tentials (BPND) in each brain voxel by comparing the tissue time-
activity curve (TAC) to the reference region, which serves as a surrogate
of the plasma TACwhile also providing an index of non-specific binding
(Gunn et al., 2001: Slifstein and Laruelle, 2001). This approach obviates
arterial blood sampling by providing a surrogate for plasma radioligand
concentrations.

Various RTM approaches have been developed in the literature to
address the balance between parameter variance and parameter bias.
A full reference tissue model (FRTM) fits four parameters for each TAC
(Cunningham et al., 1991; Lammertsma et al., 1996), which may repre-
sent a relatively noiseless brain region of interest (ROI) or a much nois-
ier image voxel. The sensitivity of FRTM to noise motivated the
eville).
simplified reference tissue model (SRTM), which reduces the number
of model parameters to three (Lammertsma and Hume, 1996; Gunn
et al., 1997). However, even SRTM lacks robustness to noise at the
voxel-wise level, and so a two-parameter variant (SRTM2 or MRTM2)
often is employed that uses a global value for thewashout time constant
in the reference region (Wu and Carson, 2002; Ichise et al., 2003). SRTM
and SRTM2 have become standard PET analysis strategies and form the
foundation of several extended methods that modify basis functions to
describe dynamic changes in binding due to within-session functional
challenges (Alpert et al., 2003; Zhou et al., 2006; Normandin et al.,
2012).

SRTM is predicated upon an assumption of instantaneous equilibra-
tion between the free and bound compartments in all tissues.While this
assumption is never strictly accurate, the model produces excellent fits
to experimental data for many radioligands. Analyses of simulated data
that conform to FRTM have found that SRTM generally provides rela-
tively accurate estimation of BPND, with errors typically below 10% for
selected radioligands when fitting a full 90-min TAC (Slifstein et al.,
2000, Salinas et al., 2015), as commonly done when using a compound
labeled by 11C. Three-parameter variants of SRTM overestimate BPND in
low-binding regions (Salinas et al., 2015) and exhibit a relatively high
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variance in the presence of noise (Wu and Carson, 2002). The model
provides a separate estimate of the washout rate constant (k2′) in the
reference region for each voxel or ROI, which motivated a reduced
model that provides regularization by fixing the value of k2′ as a global
parameter. However, many investigators have noted that different re-
gions provide different values for this rate constant, and the method
for defining a global value is not standardized; various reports have sug-
gested using the value in a high binding region (Seneca et al., 2006), or
themedian or average across either the brain (Wu and Carson, 2002) or
a series of ROIs (Ichise et al., 2003; Seo et al., 2015). In contrast to the
three-parameter SRTM, the two-parameter variant generally underesti-
mates BPND in low-binding regions (Schuitemaker et al., 2007), and bias
in high-binding regions is smaller and depends upon a subjective choice
for k2′.

Though SRTM biases suggested by previous studies are not large for
many radioligands, this level of accuracy is comparable with typical
test-retest reproducibility (Cropley et al., 2008; Lee et al., 2013), sug-
gesting that model error cannot be discounted as a source of variance
even for studies of basal receptor concentrations. In occupancy studies
that measure modulations of available receptors, model bias in BPND
produces bias in estimates of occupancy. In displacement studies
using either a drug or tasks that modulate neurotransmitter levels, a
10% error can be significant, because changes in true occupancy can be
subtlewhen usingbehavioral tasks or lowdrug doses. Following admin-
istration of large agonist challenges, some PET radioligands exhibit little
or no change in apparent occupancy, or even paradoxical increases in
binding potential (Laruelle, 2000). Behavioral tasks that attempt to de-
tect changes in dopamine efflux using [11C]raclopride have reported
positive or negative changes in BPND below 10% (Zald et al., 2004;
Hakyemez et al., 2008; Martin-Soelch et al., 2011), a regime where
model error can play a major role in drawing scientific inferences.

The goal of this work was to develop a reference tissue model that
reduces parameter bias relative to SRTM without substantially altering
parameter variance. Our search for an alternative model began with
the observation that SRTM2 analyses of occupancies often exhibit a
characteristic spatial pattern in the limit of low displacement, with ap-
parent displacement in the highest binding regions and apparent para-
doxical increases in BPND in surrounding low-binding regions. These
patterns are most evident in multi-session averages or spatially
smoothed data and suggest a source of bias in these studies that varies
monotonically with BPND. To devise an alternative model to SRTM, we
developed a basis-function approach to FRTM, and we regularize the
model by employing a global estimate for the dissociation rate constant
from the specifically bound compartment. SRTM is one solution to the
model in the limit of infinite k4, but this solution imparts a bias in the es-
timate of model parameters relative to FRTM. We describe a method to
empirically estimate a global value of k4 to minimize parameter bias,
and we employ simulations to demonstrate that our method reduces
bias in the estimation of BPND and receptor occupancies.
Fig. 1. The full reference tissuemodel (a) and simplified reference tissuemodel (b) use a single
so that the plasma concentration (CP) is not needed in analysis. FRTMpartitions other tissue con
exchange between these compartments and thus approximates all tissues using a single comp
Methods

Fig. 1a shows FRTM and the reduction of the model to SRTM. Both
models assume that the reference region exhibits one-compartment ki-
netics representing non-displaceable PET radioligand that is either free
or non-specifically bound. FRTMmodels the target region as a compart-
mental summation of non-displaceable and specific binding (Gunn
et al., 2001), whereas SRTM assumes “1-tissue” kinetics in the limit of
fast exchange between free and bound compartments. Eq. (A1) presents
the differential equations describing FRTM.

Regularized FRTM (rFRTM)

Eq. (A6) provides an exact expression for FRTM in a formdesigned to
mimic the basis-function approach to SRTM. To derive this formula, we
replaced the SRTM approximation of instantaneous equilibriumwith an
expression (Eq. (A3)) relating the time dependence of the bound con-
centration to the total tissue concentration and its derivative. In this
way, we model the true bound fraction in the tissue as a function of
time. The FRTM model has four parameters, including two rate con-
stants (k2, k4), a ratio of rate constants (R1 = k2/k2′), and a parameter
that depends upon BPND (k2a = k2/(1 + BPND). The model incorporates
convolution by an exponential equilibration function E(t)= exp(−k4
(1+BPND)t) to account for non-equilibrium conditions that are
reflected by a change in the tissue concentration.

CT ¼ R1CR þ k2

Z
CR− _CT⊗E
� �

−k2a

Z
CT− _CT⊗E
� �

ð1Þ

The solution to this equation previously has been approached two
different ways. The literature approach to FRTM attempts to derive all
four parameters for each voxel or ROI, a strategy that is limited by con-
vergence problems, high parameter variance, and long computational
times (Lammertsma et al., 1996; Slifstein and Laruelle, 2001). As an al-
ternative to FRTM, SRTM employs the approximation that k3 and k4 ap-
proach infinity (equivalently, the time constants 1/k3 and 1/k4 approach
zero) in order to reduce the number of parameters from four to three
and produce an equation that is linear in all parameters. In this limit,
the convolution terms vanish. This approach reduces parameter vari-
ance (Lammertsma and Hume, 1996) but introduces bias in parameter
estimates by failing to accurately model the specifically bound fraction
of the tissue radioligand concentration. Bias will be more pronounced
for slower radioligands (smaller k4) and for low-binding regions
(smaller BPND), because the effective rate for equilibration to a steady
state in Eq. (1) is k4(1+BPND).

Wepropose a newapproach (rFRTM)using a globally constant value
of k4 that is selected in order to minimize regional bias in k2′. We show
below that k2′, which should take the same value irrespective of the tis-
sue region under analysis, cannot be regionally invariant in SRTMwhen
compartment to describe the concentration of PET radioligand in the reference region (CR)
centrations into free (CF) and specifically bound (CB) fractions, whereas SRTM assumes fast
artment model.
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association and dissociation rates constants are finite. Within the con-
text of FRTM, bias reduction in k2′ is accompanied by bias reduction in
BPND, which is the main parameter of interest.

Solution of rFRTM: overview

Application of the proposed model requires two steps: 1) a method
to solve Eq. (1) provided that the best global value for k4 is known, and
2) a method to determine the best global value for k4. Although these
steps could be combined in principle by simultaneously fitting many
voxels or regions of interest, we employed a procedure in which the
model first was applied multiple times in a region-of-interest analysis
using different values of global k4 in each analysis, and subsequently
the best value of k4 was identified and used for a final analysis of all re-
gions and voxels. The steps for solving Eq. (1) and identifying the best
global k4 are described in the following two sections.

Solution of rFRTM for individual TACs

Given an a priori estimate of the global value for k4, Eq. (1) can be
solved either bynon-linearfitting or by an iterative approach that incor-
porates repeated application of a linear model; our approach used the
latter method. To avoid using the relatively noisy convolution term in
basis functions, our implementation rearranged Eq. (1) to add the con-
volution integral to the dependent variable.

CT þ k i−1ð Þ
2 −k i−1ð Þ

2a

� �Z
_CT⊗E i−1ð Þ ¼ R ið Þ

1 CR þ k ið Þ
2

Z
CR−k ið Þ

2a

Z
CT ð2Þ

Specifically, we used the following steps to solve Eq. (2).

1. Create three basis functions with “n” time points for CR, ∫CR, and ∫CT.
These basis functions form a 3-by-n designmatrix X. Using an n-by-n
diagonal weighting functionW to represent the time-changingmag-
nitude of signal variance, compute the 3-by-n matrix M=(XTW−-

1X)−1XTW−1 for use in all iterations. Initialize parameters by SRTM
using theweighted least squares estimateβ=M CT, where the vector
β=[R1 k2 k2a].

2. Compute BPND = k2 / k2a − 1 using parameter estimates from the
previous iteration. Compute the convolution of the tissue derivative
with E(t)= exp(−k4

global(1+BPND)t) for each time point, where
k4
global is a fixed value used for all iterations and all regions. Create a

modified tissue vector (CT′) equal to the left hand side of Eq. (2). Up-
date parameter values as β=M CT′.

3. Repeat step #2 until a stopping criterion is reached: 1) the change in
BPND does not exceed some predefined tolerance, 2) the number of
iterations exceeds some predefined limit, 3) or BPND is negative.

Intuitively, this formulation can be viewed as amodel that estimates
the tissue concentration profile that would be required to conform to
SRTM by adding a correction to the dependent variable to account for
overestimation of the bound fraction due to the SRTM approximation
of instantaneous equilibrium. Relative tomodification of basis functions
as suggested by Eq. (1), or alternatively a non-linear fitting approach,
this strategy has the additional advantage of simplicity and speed be-
cause it proceeds by repeated application of the same linear model for
all iterations.

Estimation of global k4 using post hoc analysis

Implementation of rFRTM requires a global value k4, and this param-
eter can be estimated from a post hoc analysis of regional trends in a de-
rived parameter, the reference-regionwashout rate constant (k2′= k2 /
R1). Although k2′ is evaluated repeatedly for every voxel or region of in-
terest, it should take the same value irrespective of the region under
analysis. However, k2 cannot in general be the same for both rFRTM
and SRTM because it multiplies different basis functions in each
model. If rFRTM represents ground truth and the value of k4 is finite
and global, then SRTM biases the k2 basis function by ignoring the con-
volution term. Under these conditions, SRTMbiases both k2 and k2′, par-
ticularly at low values of BPND where the convolution term becomes
larger. More generally, values of k2′ and BPND derived from rFRTM will
be biased with dependencies upon the local binding potential through
the convolution termunless the value of k4 assumed in analysismatches
the true value. Within the context of rFRTM, reducing bias in k2′ is
equivalent to reducing bias in BPND, because an inaccurate estimate of
k4 biases both parameters through the convolution term. This claim is
evident from Eq. (1) and also is demonstrated in simulations in this
report.

In this work, we estimated k4
global as the value thatminimized the de-

pendence of k2′ upon
BPND. After defining a series of regions with different values of BPND,
we performed a series of analyses on these regions with a different
value of k4global used in each analysis. This process generates Q different
relationships between k′2(qr) and BPND

(qr) across the R regions. Rather
than perform a purely graphical analysis to determine the value of
k4
global that minimizes the dependence of k2′ upon BPND, we automated
analysis using two differentmethods that produced very similar results:
1) minimize themean squared error between k2′ and the average value
of k2′ using a grid search for k4global, or 2) employ an approximate func-
tional form to simultaneously fit all curves of k2′ versus BPND for a series
of stepped values for k4global. For the latter method, we employed an ad
hoc functionality designed to satisfy these criteriawithin the framework
of rFRTM:

1. k2′ should become independent of BPND when k4
(q) matches the opti-

mal value (denoted k4
global), because then the model matches the as-

sumed ground truth. The sign of bias in k2′ should depend upon the
relative magnitude of k4(q) in relation to k4

global, because the sign of
bias depends upon the magnitude of the convolution term.

2. Higher values of BPND should be associated with less biased values of
k2′, because the convolution term tends toward zero in high-binding
regions (i.e., SRTM becomes a more accurate approximation).

According to these principles, we fit the dependencies of k2′ on BPND
for all Q values of k4(q) as a constant value plus a decreasing exponential
function that introduces bias with a sign dependent upon the relative
magnitude of k4global and k4

(q). For convenience, we employed time con-
stants (1/k2′ and 1/k4) rather than rate constants in the fit:

1=k0qr2 ¼ 1=k0global2 þ A 1=kglobal4 −1=kq4
� �

exp − R0 þ R1=k
q
4

� �� �
BPqr

ND ð3Þ

Theparameters of interest in thisfit are the two global rate constants
(k′2global , k4

global). This functionality produces an approximate form
across a wide range of values for k4(q).

Reduction to rFRTM2

Ultimately, the goal of rFRTM is to enable accurate parameter map-
ping at a voxel-wise level, and so further regularization is required. Spe-
cifically, the goal is to fix two global parameters (k4global, k′2global) in order
to reduce the model to the same two local parameters used for SRTM2
(k2, k2a). Fixing k2′ in SRTM2 changes the structure of model bias, be-
cause k2′ is not invariant in SRTM. Conversely, rFRTM2 should maintain
accuracy while reducing parameter variance, provided that we can ac-
curately identify the value of k4global that produces invariance in k2′. The
two-parameter reduction of rFRTM2 follows the same strategy used to
reduce SRTM2 to two parameters and two basis functions (Ichise
et al., 2003).

CT ¼ k2
CR

k0
global
2

þ
Z

CR− _CT⊗E
� � !

− k2a

Z
CT− _CT⊗E
� �

: ð4Þ
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Note that solution of rFRTM2 follows an approach similar to the one
described by Eq. (2) for the 3-parameter implementation of rFRTM.
Also, thesemodels needmodification to describe a functional challenge,
as in a drug occupancy study or a behavioral studyusing a single synthe-
sis of a radioligand such as raclopride. Such paradigms can be analyzed
by applying a temporal dependence to the k2a parameter (Alpert et al.,
2003; Zhou et al., 2006), so that values of k2a after the functional chal-
lenge are associated with a change in BP. To compute changes in occu-
pancy for the simulated data in this report, we use this same strategy
such that k2a → k2a + Δk2a f(t), where f(t) in this report is modeled as
a rapid change to a new state using a sigmoidal “step function” begin-
ning at time t0 with f(t′)= t ′ /sqrt(1+ t′2) and t′=(t− t0)/τ, where
the time constant (τ) was set to a value of 1 min.
Forward-model simulations

Simulationswere used to confirmpredictions of theory and to deter-
mine bias and variance properties of kinetic models. Simulationswithin
the framework of FRTM tested these hypotheses: 1) an inaccurate esti-
mate of k4 biases both k2′ and BPND, and reducing bias in k2′ is equivalent
to reducing bias in BPND; 2) in the presence of noise, analyses based
upon SRTM and rFRTM produce similar variances in estimates of BPND,
and analyses based upon SRTM2 and rFRTM2 produce similar variances
that are lower than the 3-parameter versions of thesemodels; 3) due to
bias introduced into BPND, estimates of occupancy using within-scan
challenges are biased in SRTM and SRTM2, and biases can be mitigated
using rFRTM.

Forward-model simulations with and without noise employed the
system of differential equations in Eq. (A1) to iteratively compute pro-
files of PET radioligand concentration versus time for selected experi-
mental conditions. Simulations focused on two commonly used
radioligands of dopamine receptors that often employ SRTM for analy-
sis. [11C]NNC-112 targets D1 receptors and can detect extra-striatal
binding, which emphasizes the need to accurately model binding pa-
rameter across a wide range of binding potentials. [11C]raclopride is a
D2/D3 selective ligand that is widely used in applications that character-
ize changes in basal ganglia dopamine levels in response to behavioral
cues or other stimuli. For each of Figs. 2–4, input parameters for simula-
tions are shown in Table 1. The temporal shape and magnitude of
plasma concentrations were adjusted to roughly match experimentally
measured reference-region TACs from the cerebellum of non-human
primates (NHP) using the forward model specified by Eq. (A1). Occu-
pancy maps in Fig. 4 were simulated as instantaneous reductions in k3
that were localized to the right nucleus accumbens and occurred at
40 min into the scan.
Fig. 2. a) Simulated time-activities of a reference region (gray) and target region (black) for rela
of bound to total concentration of PET ligand in the target region versus time (black points) is
25 min.
Data presented in Figs. 3d and 4 included a standard model of syn-
thetic noise in which signal variance is proportional to signal multiplied
by an exponentially increasing decay correction (Logan et al., 2001); for

the uniform time bins used in simulations, noise was modeled as σ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S∙C∙eλt

p
, where C is the time-dependent concentration of radioligand,

λ is the rate of radioactive decay, and S is a scale factor specifying the
level of noise. For Fig. 3d, the reference-region curve was assumed to
have a relatively low level of noise (S = 2 Bq/cm3), and the level of
noise in tissue regions was increased from zero to a large value (S =
200 Bq/cm3) that corresponded to a fractional standard deviation in
the TAC of about 35% at 90 min. For each level of noise, 50,0000 TACs
were generated to define standard deviations in estimates of BPND.

Experimental NHP data

Data were collected in NHP in order to demonstrate that 1) the de-
pendence of k2′ on BPND is consistent with the proposed model, and
k2′ becomes invariant with an appropriate global choice of k4; 2) the
spatial relationship between BPND values suggested by SRTM and
rFRTM is consistent with simulations; 3) the proposed rFRTM method
produces robust voxel-wise maps. All NHP experimental procedures
compliedwith the regulations of the Subcommittee on ResearchAnimal
Care at Massachusetts General Hospital. Data were collected from anes-
thetized NHP using simultaneous PET/fMRI according to methods de-
scribed previously (Mandeville et al., 2013; Sander et al., 2013; Sander
et al., 2015).

Analysis of simulations and NHP data

Analyses of simulated and real data employed SRTM, SRTM2, rFRTM,
or rFRTM2. Parameterswere solved byweighted least squares assuming
a noise-free approximation to Poisson weights (Thiele and Buchert,
2008), with convergence for rFRTM and rFRTM2 defined to be a change
in BPND less than 0.1%. Analyses of simulated occupancy incorporated a
sigmoidal regressor to model a change in the parameter k2a (Alpert
et al., 2003, Zhou et al., 2006). To define the value of k4 to use in
rFRTM analyses, analyses of k2′ versus BPND were fit using Eq. (3).
When describing simulation results, we denote true binding potentials
as BP, defined as the ratio of k3 to k4 values that were used as inputs
for the forward-model simulations, and BPND is a derived quantity
from analyses of data. Within simulations, bias in BPND was assessed
as a percentage relative to the known value of k3/k4.

All NHP data were aligned to the INIA19 rhesus macaque brain atlas
(Rohlfing et al., 2012) using T1-weighted MRI data, and the known
transformation between PET and MRI defined the atlas-based region
tively low-binding regions using (a) BP=1 and 1/k4= 15min. b) The corresponding ratio
compared to the model estimate for SRTM (red) and FRTM using values of 1/k4 from 5 to

Image of Fig. 2


Fig. 3.Analyses of simulated data. (a) An offset time constant 1/k4 equal to the true value (15min) removes the variation of the derived reference-region outflow time constant 1/k2′ versus
BPusing rFRTM. A value of 1/k4=0 corresponds to SRTM(red). (b) Bias in BPND for the same set of k4 values used in panel (a). (c) Bias in BPND for 2-parameter reductions SRTM2 (red) and
rFRTM2 (black) using values for 1/k2′ of 16.5 min (long dashes) or 17 min (short dashes). (d) The percent standard deviation of BPND values at varying levels of noise.
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for the right nucleus accumbens (cyan region, Fig. 4b) in a manner that
was spatially consistentwith the PET BPNDmap (colored image, Fig. 4b).
To define a set of regions that varied systemically versus BPND, NHP data
were analyzed initially by SRTM2 to generate a map of BPND. Brain
voxels then were sorted by BPND values so that they could be efficiently
grouped into less noisy ROIs for further analyses based upon BPND sim-
ilarity. To minimize bias from noise in low-binding regions, ROIs were
excluded below a BPND threshold, which generally was set to 1 or 2.
ROIs were analyzed by rFRTM using five values for k4, and all data
were then fit by Eq. (3) to define the global value of k4 to use in a final
analysis.

Results

Fig. 2 provides an intuitive window into assumptions underlying
SRTM and rFRTM and how these assumptions bias measurements of
BPND. Noiseless simulated time-activity curves for a reference region
and a target region are shown in Fig. 2a for a relatively low-binding re-
gion (BP = 1) using a PET radioligand that has an offset time constant
from the bound compartment of 1/k4 = 15 min. Fig. 2b compares the
true fraction of the target tissue concentration that is specifically
bound (black points) versus values assumed by SRTM (red line) and
by rFRTMusing different analysis values for 1/k4. The bound radioligand
fraction does not reach the SRTMapproximation until about 30min into
the scan, and SRTM also does not match the true value at the end of the
scan. Because the goal of reference models is to estimate specifically
bound tissue fractions in order to define BPND, inaccurate estimates of
k4 produce bias in BPND. When the analysis value of k4 matches the
true value, the analytical estimate for the bound fraction (Eq. (A3))
matches the simulated value.

Fig. 3a and b demonstrate that an inaccurate estimate of k4 used in
analysis introduces bias into both k2′ and BPND, and that this bias is a
function of BP. An assumption of instantaneous equilibrium (SRTM,
red curves) causes positive bias in both BPND and the time constant 1/
k2′. Conversely, both parameters exhibit negative bias when kinetics
are assumed be slower than reality (blue and purple curves). The de-
rived parameter k2′ becomes an invariant quantity only when the
value of k4 used in rFRTM analysis matches the true value used for the
forward-model simulation. Note that Fig. 3a provides a graphical moti-
vation for the fitting method of Eq. (3).

When SRTM2 employs a global value for k2′, bias in BPND is similar in
magnitude to SRTM, as shown in Fig. 3c. If one defines k2′ to be the
projected asymptotic value in the limit of high BP (long dashes), then
SRTM2 (red) underestimates BPND at all values of BP. However, litera-
turemethods define the value of k2′ for SRTM2 using analyses of regions
with a finite BPND (Wu and Carson, 2002, Ichise et al., 2003); in this case,
SRTM2will produce a positive bias in the highest-binding regions and a
negative bias in low-binding regions (short dashes). Conversely,
rFRTM2 (black) shows very little residual bias (long dashes) when
Eq. (3) identifies global values of k4 and k2′. Additionally, the figure de-
picts the effect an incorrect value of k2′ at the correct value of k4 (black
curve, short dashes). Because rFRTM2 has a model structure similar to
SRTM2, it exhibits a similar sensitivity to errors in k2′.

Parameter bias is not the only criteria for selecting PET kinetic
models; parameter variance is another important quantity. Fig. 3d com-
pares percentage standard deviations in estimates of BPND at different
noise levels. SRTM2 is used as the reference, and so the SRTM2 curve
in the figure is the line of identity. As expected, SRTM2 exhibits small
variance in BPND relative to SRTM. rFRTM2 and SRTM2 have similarly
noise sensitivities that are small compared to the three-parameter
models.

Inaccuracies in SRTM become problematic in the context of func-
tional studies that attempt to characterize small changes in receptor oc-
cupancy; in particular, spatial variations in binding potentials can

Image of Fig. 3


Fig. 4. a)Noiseless simulations of [11C]raclopride bias in occupancy for SRTM, SRTM2using twodifferent values of k2′ (see text), and rFRTM2as calibrated using Eq. (3). b) A typical TAC for
simulations of a localized 10% increase in occupancy occurring at 40min in the right nucleus accumbens (cyan); the image shows basal BPND values used in simulations. c)Maps of change
in BPND using different analysis methods; clockwise from top left: SRTM, SRTM2, SRTM2 using a BI infusion, and rFRTM2.
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potentially bias inferences about changes in occupancy. Fig. 4a reports
analyses of simulated data for a radioligand like [11C]raclopride. SRTM
exhibits a positive bias in occupancy (solid red line, Fig. 4a), while
SRTM2 (dashed lines) shows a strong monotonic dependence of occu-
pancy on BP with bias dependent upon the global value for 1/k2′,
which was chosen to be 3.8 min from a high-binding region (BP = 6)
for the long dashed line or 4.4 min from a lower binding region
(BP = 4). Bias in occupancy for rFRTM was reduced to a few percent
using Eq. (3) to estimate the value of k4 (black line).

Results of Fig. 4a suggest that spatial variations in BPwill yield occu-
pancy valueswith a regional bias, and other panels in Fig. 4 illustrate the
potential for reference tissue approaches to exhibit spatial variations in
bias that produce false positive results or mask real changes in occu-
pancy. A simulated 10% change in occupancy was localized to the right
nucleus accumbens (cyan region, Fig. 4b), with the magnitude of noise
in each voxel illustrated by the TACs in Fig. 4b. Analysis of these data
by SRTM suggested an increase in occupancy throughout basal ganglia,
Table 1
Parameters used in simulations.

Fig. K1′ (ml/ml/min) 1/k2′ (min) 1/k4 (min) k3/k4 (BP) R1 Noise model

2 0.05 16.5 15 1 0.85 None
3a–c 0.05 16.5 15 Variable 0.85 None
3d 0.05 16.5 15 1 0.85 (**)
4 0.15 3.5 10 (*) (*) (**)

(*) spatial distribution measured across NHP basal ganglia.
(**) noise followed a standard model (Logan et al., 2001).
albeitwith high noise in themapdue to the inherent instability of three-
parameter fits (Fig. 4c). Maps produced by SRTM2 showed a character-
istic pattern of apparent positive changes in occupancy in the highest-
binding regions surrounded by apparent decreases (Fig. 4c, top right).
This pattern was altered either by choosing a different global value of
k2′ or by changing the infusion paradigm; a bolus plus continuous infu-
sion (BI) simulation designed to achieve a stead-state just prior to the
challenge showed a different regional pattern of bias (Fig. 4c, bottom
right). Conversely, using the fitting method of Eq. (3) to calibrate
rFRTM, a change of about the correct magnitude was observed in the
correct location with little bias in other areas of basal ganglia (Fig. 4c,
bottom left), and this pattern was maintained for either a bolus or a BI
injection of radioligand (not shown). Note that the cyan oval curves in
these figures demark the lateralized change in simulated occupancy,
and other apparent changes in binding potential are artifacts of analysis.

If rFRTM provides a realistic biological model, then application of
rFRTM to experimental data should identify and remove correlations
between k2′ and BPND that arise in SRTM, in agreement with the simu-
lated data of Fig. 3a. Fig. 5 applies rFRTM analyses to representative ex-
perimental data collected in anesthetized NHP using four different
radioligands. Points in Fig. 5 represent analyses of ROIs created by
grouping voxels with similar BPND values from a first-pass analysis.
Each set of differently colored points in a figure panel represent an anal-
ysis using a different global value of k4. As the analysis time constant 1/
k4 increases from 0 (SRTM, red) to larger values, curves first become
flatter until the curvature reverses at low values of BPND. The best
value of k4 to use in a final rFRTM analysis is the one that produces

Image of Fig. 4


Fig. 5. Data obtained in isoflurane-anesthetized NHP using different PET radioligands. Fitting the BPND functionality of the reference region washout time constant (1/k2′) for different
values of the dissociation time constant (1/k4) facilitated model identification using Eq. (3). Red data points correspond to SRTM analysis (1/k4 = 0), and other sets of data points used
analysis values of 1/k4 that were progressively stepped by either 3 min (a–c) or 15 min (d).
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invariance of k2′. Lines in Fig. 5 illustrate application of Eq. (3) to simul-
taneously fit all the data points for all values of k4. Optimal values of
global 1/k4 estimated by the fit for these specific experiments were
10.4, 10.6, 11.6, and 56 min for the scans using [11C]raclopride, [11C]
AZ-10419369, [11C]NNC-112, and [18F]fallypride, respectively. In eight
repeated measurement in a single NHP using [11C]raclopride, estimates
were reproducible with values of 1/k4 = 9.7 ± 1.0 min (mean ± st.
dev.).

Fig. 6 demonstrates ROI and voxel-wisefits of the rFRTMtoNHP data
using [11C]NNC-112. Fig. 6a compares the two terms on the left-hand
side of Eq. (2) in order to demonstrate that the convolution term,
which is missing in SRTM, has much less noise than the tissue concen-
tration in a single voxel. Analysis of bilateral putamen by SRTM yields
an excellent fit to data (Fig. 3b, gray curve and points), and rFRTM pro-
duces a fit of similar quality to the “corrected” data of Eq. (2) (black
curve and points). SRTM reports a BPND value that is 9% higher than
rFRTM in this region. The SRTM value for R1 is 15% lower than for
rFRTM, consistent with the expectation that SRTM underestimates R1
values (Muzic and Christian, 2006; Thiele and Buchert, 2008).

Simulations suggest the rFRTM should enable robust voxel-wise
mapping with parameter variance similar to SRTM, and Fig. 6c shows
amap of BPND obtainedwith rFRTM2 in order to illustrate this point. Ad-
ditionally, relative BPNDmagnitudes obtained by rFRTM2 and SRTM2 are
compared as a ratio in Fig. 6d using a percent deviation map, with the
blue-green color scale indicating lower BPND values for SRTM2 relative
to rFRTM2. The map generated by SRTM2 used a global value for k2′
from putamen following the method that suggests obtaining this
value from a high-binding region (Seneca et al., 2006). The selected
value (1/k2′ = 15.5 min) was higher than the asymptotic value of
14.3 min in Fig. 5c, and so the simulations of Fig. 3c suggest that
SRTM2 should underestimate BPND in low-binding regions but overesti-
mate BPND in the highest-binding regions. The map demonstrates the
expected relationship between the two methods and is consistent
with simulations.

Voxel-wise analyses using a linear-model formulation of rFRTM2
(Eq. (2)) reached convergence inmost brain areas after about 5–10 iter-
ations using a 0.1% tolerance on BPND, and accordingly the processing
time surpassed a linear-model implementation of SRTM2 by a factor
of about 5–10. For a typical NHP dataset with 95 frames and 350,000
voxels, processing time increased from 2.5 min using SRTM2 to
15 min using rFRTM2. Relaxing the tolerance will reduce the number
of required iterations and the computational time. The iterative linear-
model implementation of rFRTM2 converged much faster than non-
linear damped least-squares minimization using a Levenberg-
Marquardt algorithm, which increased computation time by a factor of
about 100 over linear model iteration.

Discussion

SRTM has become a common PET analysis strategy for reversible
radioligands that can be appropriately analyzed by reference region
methods, and this method has a number of distinct advantages, includ-
ing deterministic solutions and simple implementation. Formany appli-
cations that map receptor densities or investigate pharmacological
challenges that produce large changes in receptor occupancy, SRTM of-
fers sufficient accuracy while also guarding against instabilities and po-
tentially larger errors that can arise in more complicated models. For
ROI analyses, the three-parameter SRTM requires no subjective param-
eter estimates and generally produces small bias in the highest-binding
regions. The two-parameter SRTM2 requires a subjective assignment of
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Fig. 6. a) A time-activity curve for [11C]NNC-112 from a single voxel in putamen (black) and the rFRTM correction term of Eq. (2) (blue). b)Whole putamen (gray dots) together with an
SRTMfit (gray solid line) and the reference-region (cerebellum) scaled byR1 (gray dashes); the corresponding black points and curves are the rFRTMmodified data (Eq. (2)), the rFRTM fit,
and theR1 contribution. c)Amapof BPNDproducedby rFRTM2analysis of [11C]NNC-112 inNHP. d) Thepercent differenceofBPND values produced by SRTM2 relative to rFRTM2,with blue-
green colors indicting smaller SRTM2 values and red-yellow colors indicating larger SRTM2 values.
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oneglobal parameter (k2′) but increases robustness to noisewhile offer-
ing a level of bias comparable to SRTM. As testament to the popularity of
SRTM, two early papers describing the method (Lammertsma and
Hume, 1996; Gunn et al., 1997) have garnered about one thousand cita-
tions over the past decade (see (Salinas et al., 2015)).

Based upon simulations that assumed a finite rate for k4 that was
consistent with literature estimates (Farde et al., 1989; Pappata et al.,
2002), we showed that biases inherent to SRTM can obscure detection
of subtle changes in BPND, as illustrated by the inability of SRTM-based
analyses to accurately identify the simulated BPND changes of Fig. 4. Spa-
tially varying patterns of SRTM biasmake interpretation difficult even if
using a fast radioligand like raclopride. Using SRTM2, estimates of occu-
pancy will vary depending upon a subjective selection of the reference
region k2′ value,which is not globally invariant in thatmodel.Moreover,
the degree of apparent occupancy can change dramaticallywith the size
of an ROI, due to spatial variations in bias. In general, both SRTM and
SRTM2 exhibit a positive bias in estimates of occupancy in high-
binding regions (e.g., Fig. 4), and so analyses based upon these models
can produce false positive results.

In order to reduce bias due tomodel topology using a RTMapproach,
the SRTM approximation of instantaneous equilibrium must be aban-
doned, a step that requires inferences about rate constants associated
with the specifically bound compartment. Prior versions of FRTM have
employed a methodology that attempts to fit four parameters for each
voxel or ROI (Lammertsma et al., 1996). PET analyses rarely use this ap-
proach, and it is impractical for voxel-wise mapping for several reasons.
High-binding regions have little intrinsic sensitivity to the absolute
values of k3 or k4, as illustrated by the convergence of curves in Fig. 3a,
whereas low-binding regions have limited sensitivity to specific binding
parameters in the presence of noise. Fitting a simple TAC becomes un-
stable with four parameters, as the two local parameters used in
SRTM2 generally are sufficient for good fits. Relative to FRTM as used
in the literature, SRTM reduces parameter variance at the expense of in-
creased parameter bias.

The model proposed here (rFRTM) offers an alternative to SRTM-
based approaches, with the potential to ameliorate parameter bias
without substantially altering parameter variance. In fact, SRTM is really
just one solution of rFRTM in which the offset time constant is assumed
to be zero, as illustrated by Fig. 3. rFRTM2 fits the same two local param-
eters as SRTM2, but it first requires a step of model identification to se-
lect optimal global values for k2′ and k4. The former parameter is a
property of the reference region that is fit repeatedly for each TAC, a
process that conveniently provides a method to calibrate the model by
selecting a value of k4 that produces invariance in k2′. As shown by sim-
ulationswithin the FRTMmodel, bias reduction in k2′ is accompanied by
bias reduction in estimates of BPND and occupancy.

One of the features of rFRTM is the ability to determine a value for k4
using a large of portion of data, and our expectation is that estimates
provided by this method will exhibit reduced variability relative to
existing literature methods that obtain a value from each kinetic analy-
sis. Using rFRTM, our results for k4 generally compare well to literature
results subject to the limitations of large error bars in the literature and
relatively few results reported here in anesthetize NHP. For [11C]
raclopride, two different kinetic approaches estimated 1/k4 values in
the range 9 to 15 min in human subjects (Farde et al., 1989), which
are comparable to our result. Our estimate for [11C]AZ-10419369 falls
within a reported range of 0 to 16 min (Varnas et al., 2011). A human
study reported values of 18 to 50 min for [11C]NNC-112. The large 1/k4
value of nearly 1 h for [18F]fallypride in our NHP study is consistent
with the long scan duration required to obtain reliable estimates of
BPND using this tracer in humans (Vernaleken et al., 2011).

There is scant literature on the magnitude of in vivo biological vari-
ations in k4 across brain regions, subjects, or physiological states. If this
rFRTM approach proves to increase precision in estimates of this
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parameter, even though estimates are global, it might serve an impor-
tant function by providing in vivo estimates of shifts in the dissociation
rate constant,whichmight differ across subject populations, in response
to allosteric modulators (Wootten et al., 2013), or as a consequence of
agonist-induced internalization, which has long been suspected as a
source of confound in the interpretation of PET occupancies (Chugani
et al., 1988; Laruelle, 2000; Ginovart, 2005).

Potential limitations

Compared to FRTM,which attempts to determine a value for k4 from
each TAC, a potential criticism of rFRTM is that k4 might not be region-
ally invariant. However, rFRTM is predicated upon the assumption
that the best average value of k4 can be identified even in the presence
of local variations. Experimental data conform to this assumption
(Fig. 5) by enabling identification of self-consistent models with invari-
ant values of k2′ at some selected value for the average offset time con-
stant from the bound compartment. Conversely, using simulations it is
easy to show that attempts to estimate k4 directly from TACs using
FRTM can succeed in the absence of noise but will produce severely bi-
ased results with evenmodest amounts of noise, and bias becomes par-
ticularly pronounced at high values of BPND where FRTM becomes
insensitive to k4. The inability of FRTM to accurately determine local
values for k4 limits our ability to address the appropriateness of using
a global average value for this parameter.

The proposedmethod for estimating the global value of k4 requires a
range of BPND values and a threshold on BPND to reduce noise-induced
variations in k2′ and BPND that arise at low BPND. Ligands like [11C]
NNC-112 and [18F]fallypride have striatal and extra-striatal binding to
generate a wide distribution of BPND values using relatively large ROIs,
which simplifies the identification of rate constants. Conversely, [11C]
AZ-10419369 generally has BPND values below 2, which makes identifi-
cation of k4 more difficult. This issue could limit applications of the
model using very low-binding radioligands. Alternatively, the model
could be employed using a fixed value of k4 for a given radioligand,
just as SRTM uses a value of 1/k4 = 0, with similar methods employed
for choosing k2′ for voxel-wise mapping.

The specific fittingmethodwe employed in this study for estimating
the best global value of k4 (Eq. (3)) was designed to accomplish the
more general goal of producing invariance in the parameter k2′, but
other approaches might accomplish the same end with equal or better
accuracy. For instance, global k4 can be selected as the value that mini-
mizes the slope of a simple linearfit of k2′ versus BPND across regions. Al-
ternative approaches, including methods that obviate the need for a
threshold on BPND, are subjects for continued research.

Achieving a level of accuracy better than 10% in BPND or occupancy is
challenging, and this study addresses only one source of bias. A recent
report discussed other SRTM biases associated with an imperfect refer-
ence region, mismatched distribution volumes between reference and
target regions, and the failure of reference models to account for blood
volume contributions (Salinas et al., 2015). Other sources of bias in
BPND include time-dependent errors that can arise from image recon-
struction, attenuation correction, or radioactivemetabolites. Occupancy
studies in principle could be affected by modulation of cerebral blood
flow and volume, effects that can be addressed experimentally using si-
multaneous fMRI to measure CBF or CBV during PET (Sander et al.,
2014).

Finally, it is important to note that we did not investigate all possible
variations of SRTM or other alternative approaches to estimating bind-
ing potentials or changes in occupancy. For instance, a study that at-
tempts to measure dopamine release from a within-scan behavioral
challenge using a bolus plus continuous infusion of [11C]raclopride
might ignore much of the data prior to the challenge to avoid bias
from early time points in a weighted-least squares SRTM analysis; this
strategy presumably will reduce bias but also sacrifice detection
power. While other potential approaches and contributions to
parameter bias warrant further study, the SRTM “1-tissue” approxima-
tion can be addressed directly with this proposed model.

Conclusions

We described a regularized FRTM approach for analysis of PET bind-
ing potentials and changes in occupancy. We demonstrated that the
model can be calibrated using invariance in the reference-region out-
flow rate as an internal standard, and that mapping using the two-
parameter rFRTM2 produces robust voxel-wise parameter estimates.
Simulations and underlying principles suggest an improved level of ac-
curacy of rFRTMrelative to SRTM,without an increase in parameter var-
iance. The main applications of this model are likely to be in functional
studies that investigate small changes in occupancy, and potentially
also in vivo estimates of the dissociation rate constant.
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Appendix A. Appendix

The first-order differential equations that define the FRTMmodel in
Fig. 1a are:

_CR ¼ K 0
1CP−k02CR

_C F ¼ K1CP−k2C F−k3C F þ k4CB
_CB ¼ k3C F−k4CB
CT ¼ C F þ CB

ðA1Þ

If R1 is defined as the ratio K1/K1′ and the distribution volume of non-
specifically bound tracer is equal in all tissues (K1/K1′= k2/k2′), then the
plasma concentration can be eliminated to produce an equation for the
target tissue that depends upon the reference region and either the free
or bound concentrations:

_CT ¼ R1
_CR þ k2CR−k2 CT−CBð Þ ðA2Þ

The bound concentration in this equation is not directly measurable.
SRTM (Fig. 1b) addresses this problem by positing fast exchange within
the target tissue to produce a “1-tissue model” (Lammertsma and
Hume, 1996). As an alternative to the SRTM approximation, one can
solve the time dependence of the bound compartment. Eq. (A1) pro-
vides the differential equation for the bound concentration, and the so-
lution is subject to the initial condition that tissues are devoid of
specifically bound PET radioligand at time zero.

_CB ¼ − k3 þ k4ð ÞCB þ k3CT

CB ¼ k3e− k3þk4ð Þt
Z t

0
e k3þk4ð Þt0CT t0ð Þ dt0

ðA3Þ

A more convenient expression can be obtained using integration by
parts to write the solution of Eq. (A3) in terms of the tissue concentra-
tion and derivative, while also defining BPND=k3/k4 and using notation
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of a convolution integral (⊗):

CB ¼ k3e− k3þk4ð Þt
Z t

0
CTe k3þk4ð Þt0dt0 ¼ k3e− k3þk4ð Þt e k3þk4ð Þt

k3 þ k4
CT−

Z t

0

_CT
e k3þk4ð Þt0

k3 þ k4
dt0

� �

¼ BPND

1þ BPNDð Þ CT− _CT⊗e−k4 1þBPNDð Þt
h i

ðA4Þ

Eq. (A4) can be substituted into Eq. (A2) to write a reference tissue
model that no longer depends upon explicitly upon the bound concen-
tration:

_CT ¼ R1
_CR þ k2CR−k2CT þ k2 1−

1
1þ BPND

	 

CT− _CT⊗e−k4 1þBPNDð Þt
h i

¼ R1
_CR þ k2 CR− _CT⊗e−k4 1þBPNDð Þt

� �
−

k2
1þ BPND

CT− _CT⊗e−k4 1þBPNDð Þt
� �

ðA5Þ

We can employ the same definition for k2a (=k2/(1+BPND)) used
in SRTM (Lammertsma and Hume, 1996) and integrate both sides of
Eq. (A5) to produce a form for FRTM that mimics common representa-
tions of SRTM.

CT ¼ R1CR þ k2

Z
CR− _CT⊗e−k4 1þBPNDð Þt
� �

−k2a

Z
CT− _CT⊗e−k4 1þBPNDð Þt
� �

ðA6Þ

Note that Eq. (A6) becomes SRTM in the fast-exchange limit when
the rate constants k3 and k4 approach infinity, or when the tissue con-
centration maintains a true steady state, for then the convolution
terms disappear. Computation of BPND is performed identically for
SRTM or rFRTM: BPND = k2 / k2a − 1.
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