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Fluctuating oscillations are a ubiquitous feature of

neurophysiology. Are the amplitude fluctuations of neural

oscillations chance excursions drawn randomly from a normal

distribution, or do they tell us more? Recent empirical research

suggests that the occurrence of ‘anomalous’ (high amplitude)

oscillations imbues their probability distributions with a heavier

tail than the standard normal distribution. However, not all

heavy tails are the same. We provide canonical examples of

different heavy-tailed distributions in cortical oscillations and

discuss the corresponding mechanisms that each suggest,

ranging from criticality to multistability, memory, bifurcations,

and multiplicative noise. Their existence suggests that the brain

is a strongly correlated complex system that employs many

different functional mechanisms, and that likewise, we as

scientists should refrain from methodological monism.
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Introduction
The human brain is a complex dynamical system par

excellence, with organizational principles spanning

a hierarchy of scales. Oscillations feature at all

scales — from high frequency neural bursting through

to diurnal neuroendocrine rhythms [1] — and thus

may be considered an archetype for understanding

and modeling phenomena that span multiple scales.

In pursuing this objective, should one pursue detailed

neurophysiological models for each scale-specific
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example of oscillatory activity, or instead seek a single

unifying framework? The issue often divides research-

ers along ideological lines. Proponents of the former

(‘divide and conquer’) approach argue that customized

models are required to elucidate specific biophysical

mechanisms of oscillations and their functional corre-

lates. Unifying models, by necessity of abstraction, may

then be seen as guilty of pursuing tractability at the

expense of the very thing they were proposed to explain,

namely a particular context-specific phenomenon.

Others, however, argue that unnecessarily detailed

models overfit conceptual nuances, generalize poorly,

and give little additional insight than was already in the

details of their construction.

Here we argue for a middle ground: that there indeed exist

unifying principles that unite apparently diverse oscillatory

phenomena, yet there also exist clear and distinct mech-

anisms that operate on different occasions even in the

same system. Thus there is room for theories that unify

phenomena across scales — or even across different

physical systems — as well as opportunities to disambig-

uate competing mechanisms through empirical research.

Where are the footholds here? Let us suppose that

neural spikes hold a privileged position regarding the

computational principles of the brain and that detailed

models are thus needed to link spike trains, whether

they be stochastic or oscillatory, to the specific compu-

tations that they subserve. According to this approach,

there exists a spatial scale above which ‘interesting’

computational processes cease to emerge. Signals

recorded above this limiting scale, such as fMRI and

EEG, merely reflect the aggregate linear superposition

of activity at smaller scales. In the limit of sufficiently

large scales, the central limit theorem informs us that no

matter how interesting the small-scale phenomena may

be, the large-scale signal fluctuations arising from their

passive summation are drawn randomly from an under-

lying Gaussian probability distribution (see Box 1) and

hence hold no further information than is available in

their mean and variance.

The contention between detailed microscopic mechan-

isms and systems-level processes can thus be re-framed:

Do the fluctuations of macroscopic oscillations conform to

Gaussian probability distributions? Evidence for fluctu-

ations conforming to non-Gaussian distributions would

thus refute this view. The consequences of such a refu-

tation are that correlations amongst neuronal systems
www.sciencedirect.com
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Box 1 Central limit theorem (CLT): The connection between

correlations and Gaussian variables can be visualized by examining

natural images across a range of scales. The ‘schema’ columns

illustrate the effect of coarse-graining: moving to a coarser scale,

direct interactions among units are averaged and replaced by their

ensemble average. Left box: If that ensemble average interaction is

sustained after iterative coarse-graining and down-sampling, the

tenets of the CLT will be violated. Natural scenes (middle columns)

exhibit power-law spatial spectra and strong interactions that persist

between and within all scales (e.g., the woman’s high frequency facial

features coincide with the low frequency contours of her cheeks). The

amplitude histogram is non-Gaussian at all scales. Right box: By

contrast, if the coarse-grained interactions weaken at larger scales,

then the system eventually decorrelates and there exists a scale

above which the CLT holds. This is simulated by randomizing the

scale-scale relationships of a multiscale wavelet decomposition

(middle and right columns; [78]). Apparent detail at the fine scale (top

row) is associated with a non-Gaussian amplitude PDF. But at coarser

scales, the image decorrelates toward featureless colored noise and

the amplitudes sum to a Gaussian. In the absence of inter-scale

correlations, the only apparent order is very short-range, even though

the spectra remains a power law. Lower box: Gaussian statistics.

Many interesting systems exhibit power law spectra: Both the original

(black) and resampled (blue) natural scenes exhibit a broad linear

regime in double logarithmic coordinates. However, by decorrelating

the scales, the resampled scene has a Gaussian PDF. This principle

applies also to time series, where the variable of interest is often the

envelope of the power (amplitude squared). For linear Gaussian

fluctuations, this envelope yields a simple exponential PDF, which is

thus the null distribution when testing for trivial decorrelated noise in

macroscopic variables. Examining the exponential PDF in double

logarithmic coordinates (rightmost panel) allows detection of

anomalous statistics with heavy right hand tails (Figure B1).

Figure B1
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must survive through to the largest scales of the brain, and

that there is hence no privileged scale.

The analysis of anomalous events, and the underlying

distributions from which they are drawn, plays a crucial

role in the study of many complex systems [2], including

exceptional weather events [3], crises in financial markets

[4] and forest fires [5]. Whilst anomalous amplitude
www.sciencedirect.com 
fluctuations have been anecdotally noted in recordings

of neuronal oscillations [1], neuroscientists have only

recently sought to draw on this field to understand

large-scale cortical oscillations [6]. Although preliminary

analyses have been promising [7], a systematic approach

has not yet been forthcoming. Here we review the current

evidence for non-Gaussian statistics in brain activity, with

a focus on cortical oscillations.
Current Opinion in Neurobiology 2015, 31:164–172



166 Brain rhythms and dynamic coordination
Bistability and scale invariance in the alpha
rhythm
Alpha oscillations dominate electrical recordings at the

largest scale of the brain, namely intracranial ECoG and

scalp EEG. The traditional view of the alpha rhythm —

that its ‘waxing and waning’ are featureless random

fluctuations — is thus a clear test case of the discussion

at hand. In fact, recent analyses have revealed that the

scalp EEG alpha rhythm jumps erratically between low-

power and high-power modes [8]. These two modes

appear as distinct peaks in the distribution of instan-

taneous power, violating the traditional view that alpha

wanders back and forth around a unimodal distribution

(Figure 1). Important information is also carried in the

switching times — namely in the distributions of times

that the system dwells in each mode. A stochastic process

without memory (i.e., an uncorrelated process) would

exhibit exponential distributions. On the contrary, the

switching times here exhibit trapping (Figure 1b), follow-

ing heavy-tailed stretched-exponential distributions [8,9].

This means that the alpha rhythm dwells in each mode for
Figure 1
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longer than would be expected for Gaussian fluctuations

in a two-state bistable system. The trapping (the system is

less likely to jump the longer it has been in either mode)

implies that the alpha rhythm has memory.

Another important feature of the bimodal distribution is

that the mode width scales with the mean — the high

power mode exhibits an order of magnitude increase in

mean power and an order of magnitude increase in

standard deviation. The relative width (i.e., coefficient

of variation) is thus scale invariant (as apparent in double

logarithmic coordinates, Figure 1a). Scale invariance is a

ubiquitous feature of human perception: disparate ‘laws’

of human behavior posit scale-invariance in uncertainty,

such as the Weber-Fechner law governing uncertainty in

perceptual discrimination [10] and Fitts’ law governing

uncertainty in movement precision [11].

A biophysical mechanism for these features of switching

dynamics was proposed using a corticothalamic neural

field model with multiplicative noise and bistability near
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m long recordings of EEG time series exhibit a low (black) and a high

m (white), and not by a unimodal fit (blue). Logarithms are base e. (b)

d exponentials (white), and not by the simple exponential (gray). (c)

de modes highlighted. (d) Corresponding power fluctuations of 10 Hz
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a sub-critical nonlinear instability [9]. This is in fact an

example of a more general switching mechanism of wide

applicability in natural systems [12�,13].

Thus the characteristic bistable dynamics of the domi-

nant oscillation at the brain’s largest scale cannot be

reduced to the collective sum of uncorrelated spiking

units, but instead reflects behavior emergent at the

macroscopic scale. Contrary to the principle of linear

superposition, this finding suggests that large-scale alpha

oscillations ‘enslave’ activity at smaller scales (including

individual spikes [14]), analogous to the enslavement of

electron spins in coherent laser phenomena [15]. We

return to this issue below.

Heavy-tailed beta rhythms
Applying the above analysis to beta rhythms reveals that

while the power envelopes of beta activity are unimodal,

they nonetheless depart from the exponential distribution

(Figure 2) [8]. The right tail is ‘fatter’ than an exponen-

tial, closely following a Fisher-Tippett (double-exponen-

tial) distribution. This means that large-amplitude events
Figure 2
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occur by chance more often than expected for an expo-

nential distribution because they are drawn from a hea-

vier right hand tail. Although the deviation of the beta

rhythm from a unimodal exponential PDF is less specta-

cular than alpha, the functional significance of beta oscil-

lations to human motor output in health [16,17] and

disease [18] underlines the importance of identifying

generative mechanisms. Fisher-Tippett heavy tailed

distributions are typical of highly-correlated complex

systems, where the core assumptions of independence

for Gaussian fluctuations are violated [19]. Heavy-tailed

Fisher-Tippett distributions describe extreme events in

financial [4] and climate [20] systems. Generative mech-

anisms for their appearance in human beta oscillations are

yet to be established, although stochastic perturbations at

the point of a Hopf bifurcation in a cortical neural mass

model is a possible scenario [21].

Non-Gaussian statistics are seen in other measures

derived from EEG amplitude envelopes. Band-pass fil-

tering EEG leads to low-frequency ‘beats’ that modulate

the amplitude stochastically [6]. Transient drops to
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antaneous beta power (blue) with fits to exponential (black) and Fisher-

neous beta power in phase-randomized surrogate data. (c) Bursts in

ed surrogate data. Figure adapted from Ref. [8].
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near-zero amplitude are spaced in time with intervals

distributed according to the heavy-tailed Rayleigh or Rice

distributions for most frequency ranges. It has been

suggested that the brain may exploit this general feature

of band-passed signals: a population of neurons sensitive

to inputs over a limited frequency band would have

reduced background noise, increasing the likelihood of

a response to a well-timed stimulus [7].

Scale-free dynamics
One of the most striking departures from Gaussian stat-

istics is the power-law distribution [22], a hallmark of

scale-free dynamics. Scale-free distributions have gar-

nered significant attention across the physical and bio-

logical sciences as a signature of criticality — a state in

many-bodied systems poised between order and disorder.

In the brain, criticality is seen as a powerful paradigm for

explaining optimal information transfer [23–25], storage

capacity [24–26], and flexibility [26,27] (for recent

reviews, see [28,29,30��,31,32]).

Scale-free critical dynamics arise in space and/or in time.

Spatial scale-free activity, termed neuronal avalanches, is

well-studied in slice preparations [23,33��], in vivo local-

field potentials [27,34–37], fMRI [38,39], and magne-

toencephalographic recordings [40]. Here ‘avalanches’

are events spanning multiple electrodes/channels across

space, with event size quantified  by the number of

channels active. Calculated in this way, event sizes
Figure 3
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exhibit power-law distributions indicative of scale-free

dynamics and long-tailed non-Gaussian statistics. The

essential feature of these dynamics is that events have no

characteristic scale — although small events are the most

common, events up to two orders of magnitude larger

(spanning up to the entire sensor array) are much more

likely than would be expected with Gaussian statistics.

Theoretically, the variance of a scale-free process is

infinite (assuming the power law has exponent <2),

although in practice the finite size of the system inevi-

tably imposes an upper bound.

The brain also exhibits scale-free temporal dynamics —

indeed the durations of some of the aforementioned spatial

avalanches are power-law distributed (e.g., [33��]). But

scale-free dynamics can even be observed in single-chan-

nel data [41], as exemplified by Barkhausen noise in

magnets [42,43]. This is because even though the micro-

scopic dynamics may be inaccessible (e.g., single neurons

in humans in vivo, or magnetic domains in ferromagnetic

samples), near the critical point their bulk activity yields

macroscopic signals that can be detected with EEG (or in

the case of Barkhausen noise, a pickup coil). Recently it

was shown that human neonatal EEG following hypoxia at

birth exhibits bursty activity with lengthy power laws

spanning several orders of magnitude (Figure 3a) [44�].
In this context, size is not a spatial property but rather a

measure of the energy released in an event. The scale-free

properties extend also to distributions of burst durations
(c)
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 area (BA) with fits to candidate distributions: power law (red),

 stretched exponential (magenta), and exponential (light blue). (b)

 exponent 1.56). (c) Relationship between BD and BA with least-

ower with threshold overlaid (red). Figure adapted from Ref. [44�].
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(Figure 3b) and to the relationship between burst size and

duration (Figure 3c). The various exponents obey scaling

relations in line with the theory of crackling noise [42] and

experimental results in spatial neuronal avalanches [33��].

We have focused on the scale-free distributions of

directly-observable system fluctuations in the temporal

domain. Power-law scaling regimes are also frequently

observed in Fourier spectra [45–47], although the

relationship to scale-free activity in the underlying system

is not straightforward [48]. Neural field models success-

fully explain the ‘1/f spectra’ typical of various arousal

states as arising from linearly filtered white noise without

needing to impose any non-Gaussian statistics onto the

noise input [49]. In general, a linear scaling of the power

spectra with frequency in double logarithmic coordinates

is only indicative of scale-free activity when the slope is

shallow (e.g., <1.5) and the scaling regime covers several

orders of magnitude. Otherwise, particularly for slopes

>2, the fluctuations can be well described by uncorre-

lated Poisson-like spiking [46,48]. Detrended fluctuation

analysis (DFA) has also been used to highlight scale-free

statistics in myriad neurophysiological recordings [50]

including the amplitude envelope of macroscopic cortical

rhythms [51,52,53�] and measures of system correlations

[54]. DFA exponents indicate the presence or absence of

correlations in time series, and are linearly related to

slopes of power spectra. However, DFA essentially offers

no additional information beyond that already in the

power spectrum [55], so the caveats highlighted above

still apply.

Finally, we reconcile the apparent paradox regarding

oscillations — which by definition have a characteristic

time scale — and their possible scale-free statistics. The

key point is that their amplitude fluctuations can still

exhibit scale-free statistics. In neural field models, critical

amplitude fluctuations arise from the real part of the

model’s eigenspectrum, specifically when the system is

close to an instability [56–58]. The oscillatory content

arises from the imaginary component of the eigenspec-

trum.

Log normal
The near-ubiquity of Gaussian statistics derives from the

central limit theorem: independent processes added

together, whatever their distributions, asymptotically

yield Gaussian statistics. Similarly, log–normal distri-

butions are ubiquitous from multiplicative processes.

Because Si log(xi) = log(Pi xi), summing logarithms of

independent variables xi yields Gaussian statistics, imply-

ing that the product of independent variables Pi xi

exhibits log–normal statistics. Log–normal distributions

occur in many neurophysiology data — including spiking

neurons in rat [59] and human [60] cortex — and in

human behavior — such as durations of active periods

[61] and the velocity of fixational eye movements [62].
www.sciencedirect.com 
Although we are not aware of log–normal statistics in

rhythmic activity in very large-scale recordings, we in-

clude them in our inventory because they complete the

list of candidate heavy-tailed probability distributions of

relevance to empirical neuroscience. We direct the reader

to Ref. [63��] for a very recent detailed review.

Discussion
In summary, several striking examples of non-Gaussian

PDFs have been found in neurophysiological oscillations

since attention recently turned in this novel direction.

Stretched exponential, power law, Rayleigh, double

exponential and lognormal PDFs each arise through

specific underlying dynamical mechanisms, including

state-dependent and multiplicative noise; criticality and

multistability; trapping and memory [12�,64,65]. Such

insights place important constraints on the analytic form

of generative models, including (1) the balance of exci-

tation and inhibition [24,44�,66,67�]; (2) the analytic form

of stochastic influences [9,12�]; (3) the coupling of fast

neuronal and slow metabolic variables [68,69]; (4) the

proximity of the system to a critical instability [58,65,67�];
and (5) the nature of that instability [9,12�]. Crucially,

different examples of these processes can occur in the

same system (as in the preceding examples of alpha and

beta cortical oscillations). Likewise, when these same

core processes occur in different physical systems, they

become united by the behavior they exhibit — regardless

of the physical substrate in which they arise — a phenom-

enon known as universality. For example, stretched

exponential dwell times characterize the human alpha

rhythm, wave-interactions in semi-conductors [70], and

activity patterns of behavior in humans [61] and fruit flies

[71]. Oscillations are a hallmark of neurophysiological

recordings, few of which have been studied using the

preceding principles. It may be that anomalous statistics

are the norm and not the exception, and that methodo-

logical pluralism should therefore reign in this field.

An important implication of anomalous statistics in large-

scale neurophysiological recordings is the violation of the

principle of independence. This argues against the notion

that any scale might yield a privileged description of the

brain, in favor of a framework of pervasive causal corre-

lations across scales [72]. It further implies that activity at

small scales can be enslaved to mean field oscillations

arising at larger scales [14,15,73]. This is a stronger

ontological position than that of ‘joining the dots’ [74],

which remains wedded to the salience of the component

pieces. In highly correlated systems, macroscopic effects

exert a pervasive influence on the behavior and inter-

actions of local elements. These effects (which to some

extent define the nature of those units) can fundamen-

tally re-organize following a phase transition [75]. Another

possible viewpoint is of correlated microscopic units

observed ‘from afar’, such that the macroscopic signal

exhibits non-Gaussian statistics without any feedback
Current Opinion in Neurobiology 2015, 31:164–172
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from the large scales to the small. Indeed while it is

unlikely that the scalp potential itself directly influences

the neurons, the mean-field activity of the neurons (which

the scalp potential reflects) likely does feed back onto the

individual spike times [14]. The process that achieves this

may be a simple as a random sparse sampling of the mean

field by each neuron through its extensive dendritic

arbors. In this way, a substantial subset of neurons in

any region receive a coherent, if weak, common input

sufficient to partially enslave their activity. This is a

purely dynamic process, akin to recasting the Kuramoto

model in terms of a population (Fokker Planck) descrip-

tion [76], and hence does not require recourse to any

additional physical mechanism such as ephaptic coupling.

More broadly, linking spiking-neuron models to mean-

field models remains an active area of research [77]. As the

neuroscience community moves deeper into the era of

very large international projects, the presence of heavy-

tailed statistics in macroscopic neurophysiological oscil-

lations argues for the need to understand these dynamic

and organizational principles, avoiding a selective

engagement in one scale, approach, technology or meth-

odology.
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1. Buzsáki G: Rhythms of the Brain. New York: Oxford University
Press; 2006.

2. Chapman SC, Rowlands G, Watkins NW: Extremum statistics: a
framework for data analysis. Nonlinear Processes Geophys
2002, 9:409-418.

3. Sornette D: Critical Phenomena in Natural Sciences. edn 2nd.
Berlin: Springer; 2006.
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