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AD is the leading cause of dementia worldwide and prevalence 
is expected to double in the next 20 years1. At autopsy, AD 
presents with diffuse extracellular and neuritic amyloid-β 

(Aβ) plaques and intracellular neurofibrillary tangles and neuropil 
threads of hyperphosphorylated tau, along with extensive neuro-
degeneration2,3. Leading hypotheses have postulated that these two 
hallmark proteins, Aβ and tau, either alone or in combination, are 
causative agents in disease etiology and progression4,5. Cortical tau 
colocalizes with cortical atrophy and predicts future neurodegen-
eration6, while the appearance of tau in specific cognitive networks 
leads to domain-specific cognitive impairments7. Recently, the 
focus of treatment discovery has shifted to tau and many therapeu-
tic interventions are currently undergoing research and develop-
ment. Therefore a better understanding of tau pathophysiology is 
of imminent need to aid the development of these interventions.

Tau tangles are thought to exhibit a stereotypical pattern of 
cortical spread, which has been formalized into the Braak stag-
ing system8,9. The six Braak stages describe the first appearance 
of cortical tau tangles in the transentorhinal cortex, subsequent 
spread throughout the medial and basal temporal lobes, then into  

neocortical associative regions and finally into the unimodal sen-
sory and motor cortex9. While this stereotyped progression was 
derived from histopathological staining at autopsy, tau can now 
be measured in vivo in the human brain using positron emis-
sion tomography (PET). Early tau PET imaging studies described  
average spatial patterns that have mostly converged with the Braak 
staging system10,11.

However, many examples have emerged of individual tau pat-
terns that do not fit neatly into the Braak staging system. A medial 
temporal lobe (MTL)-sparing phenotype with extensive cortical tau 
burden but limited MTL burden has been described, as well as a 
limbic-predominant phenotype with most prominent tau pathology 
in the limbic and medial temporal cortex, which were each associ-
ated with specific patient profiles12–14. In addition, clinical variants of 
AD have been described that exhibit specific patterns of pathology 
that deviate from the Braak staging scheme15, for example, posterior 
cortical atrophy (PCA)16, logopenic primary progressive aphasia 
(PPA)17 and others18. These latter clinical variants of AD are rela-
tively uncommon and most frequently associated with early-onset 
AD but represent another example of atypical tau patterning.
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Taken together, the examples above suggest that, while the 
Braak staging system is a good description of tau spreading at the 
population level, it does not account for systematic variability at 
the individual level. Variation in tau patterning may be indicative 
of a distinct underlying neurobiology19,20, which may affect treat-
ment response. Different subtypes may also have distinct rates 
and profiles of cognitive decline21,22, potentially affecting clinical 
trials. For these reasons, a systematic description of variation in 
AD pathological spread is needed. Previous studies have provided 
invaluable information toward this effort12,13,23–26 but carry certain 
limitations. Pathology studies, for example, are limited by spatial 
sampling and semiquantitation. Neuroimaging studies have over-
come some of those limitations but often use nonspecific measure-
ments and rely on methods designed to parse spatial rather than  
spatiotemporal variation.

Here we present a systematic characterization of heterogeneity 
in tau patterning in AD. We amassed the largest and most diverse 
sample of tau PET data to date (n = 2,324), covering the full clini-
cal spectrum from asymptomatic through mild cognitive impair-
ment (MCI) to AD dementia, allowing unprecedented power to 
detect and characterize AD subtypes. We fitted these data using the 
Subtype and Stage Inference (SuStaIn) model, a paradigm-shifting 
algorithm that combines disease progression modeling with tra-
ditional clustering to achieve probabilistic spatiotemporal parti-
tioning and classification23. SuStaIn requires only cross-sectional 
datasets to automatically detect multiple spatiotemporal trajectories 
and provides probabilistic and quantitative information for individ-
ualized inference. We applied SuStaIn to our multi-cohort sample of 
tau PET data to discover systematic spatiotemporal variation in tau 
spreading. We validated the subtypes across different PET radio-
tracers and validated the progression patterns using serial longitu-
dinal tau PET data.

Results
We compiled an initial sample of 1,667 individuals with flortaucipir 
PET tau images, spanning 5 separate cohorts. A total of 1,143 indi-
viduals were identified as either cognitively normal (CN) (n = 707) 
or showing biomarker evidence for Aβ pathology (Aβ + MCI, 
n = 223; Aβ + AD dementia, n = 213) and were used as a discov-
ery sample for subsequent analysis. Demographic information and 
cross-cohort comparisons are shown in Supplementary Table 1.

Spatiotemporal subtypes of AD. We applied the SuStaIn algo-
rithm (Extended Data Fig. 1a) to the 1,143 flortaucipir PET images 
to extract distinct spatiotemporal trajectories of tau spreading.  
As expected, many individuals (n = 700; 61%) did not demon-
strate any abnormal tau PET signal and were therefore automati-
cally assigned to a tau− group (S0) (Supplementary Note 1). Using 
cross-validation, we determined a four subtype solution to best 
represent the remaining data (n = 443; Methods and Extended Data 
Fig. 1c–f). The four subtype model was applied to probabilistically 
assign individuals to 1 of 30 progressive stages along 1 of the 4 sub-
type trajectories (Fig. 1).

The distribution of clinical diagnoses across stages and subtypes 
can be found in Extended Data Fig. 2f,g,i. A total of 145 (32.7%) 
individuals exhibited a limbic-predominant phenotype with a 
Braak-like spatial progression across SuStaIn stages (S1: limbic). An 
additional 79 individuals (17.8%) expressed a parietal-dominant 
and MTL-sparing phenotype, where early precuneus binding accu-
mulated across the temporoparietal and frontal cortex but with 
relative sparing of the MTL (S2: MTL-sparing). The third subtype 
consisted of 135 (30.5%) individuals with a predominant posterior 
occipitotemporal phenotype involving early occipital lobe binding 
and gradual anterior progression across SuStaIn stage (S3: poste-
rior). The remaining 84 (19.0%) individuals showed an asymmetric 
temporoparietal phenotype with distinct left-sided lateralization, 

which was characterized by early left-temporal tau eventually 
spreading to the parietal and frontal cortex across disease stage (S4: 
lateral temporal). The differences highlight inconsistencies between 
tau PET binding and pathological sequencing of specific brain 
regions found in previous studies, such as the hippocampus, lingual 
gyrus and insula10,11,27, which exhibited different binding patterns 
across subtypes (Extended Data Fig. 3).

Stability of AD subtypes. While variation in subtype proportion 
was observed (and expected) across cohorts, all subtypes were rep-
resented across all cohorts (Extended Data Fig. 4). Most individ-
uals fell neatly into the stereotypical progression of each subtype  
(Fig. 1b), allowing a clean stepwise progression across tau abnor-
mality events to be observed across each subtype population 
(Extended Data Fig. 5). However, 12% of individuals did not fall 
cleanly into any subtype due to having either too little or too much 
pathology, both of which are uninformative for subtype (Fig. 1b 
and Extended Data Fig. 2d,h). In general, early-stage and individu-
als who were CN were assigned to subtypes with less confidence, 
although median subtype probability neared 100% by SuStaIn stage 
7 (Extended Data Fig. 2e) and by MCI clinical stage (Extended  
Data Fig. 2h). This provides evidence that the earliest phases of each 
subtype may overlap or that they are difficult to distinguish above 
measurement error. We further confirmed that the subtypes pro-
duced by SuStaIn were not driven by, or specific to, arbitrary user 
inputs relating to the anchoring of regional pseudotimes (Methods 
and Extended Data Fig. 6).

We next assessed whether the same subtypes could be derived 
within a separate replication sample of 469 individuals scanned 
with the RO948 tau PET tracer. The replication cohort, BioFINDER 
2 (ref. 28), is described in Supplementary Table 1. SuStaIn was run 
separately on these individuals, constraining the analysis to pro-
duce four subtypes. Three of the four replication subtypes greatly 
resembled those derived in the discovery sample (Fig. 2). The only 
exception involved the S4: lateral temporal subtype, which had a 
similar overall tau PET pattern but involved right-sided rather 
than left-sided lateralization. Further analysis determined that this 
related to the smaller sample size rather than the differing radio-
tracer and further suggested that the S4: lateral temporal subtype 
had a consistent overall pattern but a high propensity for marked 
lateralization (Supplementary Note 2 and Extended Data Fig. 7).

Subtypes characterized by distinct clinical profiles. Next, we 
compared demographic, cognitive and genetic (that is, APOE4 sta-
tus) variables between the subtypes and the tau− S0 group (Table 1). 
Individuals across all four subtypes expressed worse Mini-Mental 
State Examination (MMSE) and worse memory scores compared 
to S0 individuals. In addition, all subtypes except S1 (limbic) had 
worse global cognitive composite scores; individuals across all sub-
types except S2 (MTL-sparing) were more likely to be APOE4 carri-
ers and all subtypes except S4 (lateral temporal) were more likely to 
be female compared to S0 individuals. Compared to tau− individu-
als in S0, S1 and S3 were older, S2 exhibited poorer executive func-
tion, S2 and S3 exhibited poorer visuospatial function and S4 had 
worse language scores.

Compared to other subtypes (that is, other tau+ individuals), 
individuals within the S1 (limbic) subtype were more likely to be 
APOE4 carriers, had less overall tau with a more right-sided pat-
tern and had better overall cognition but worse memory relative to 
their overall cognition. S2 (MTL-sparing) individuals were younger, 
less likely to carry an APOE4 allele, had more overall tau burden, 
had a more right-sided tau pattern and had worse relative execu-
tive function compared to the other subtypes. S4 (lateral temporal) 
individuals had more overall tau with a more left-lateralized pat-
tern. These individuals also tended to have worse overall cognition 
but had better relative memory and worse relative language scores 
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compared to other subtypes. Finally, individuals with the S3 (poste-
rior) subtype did not exhibit any significant cognitive, demographic 
or APOE4 differences compared to the other subtypes. These rela-
tionships (after adjustment for demographics, diagnosis, cohort and 
SuStaIn stage) are described in Table 1 and visualized in Extended 
Data Fig. 8.

Each individual was assigned a stage along their respective sub-
type trajectory. As expected, increasing SuStaIn stage was associated 
with worse global cognition as measured with the MMSE (r = 0.54, 
P < 0.0001; Fig. 3a). This relationship was consistent across all  

subtypes (S1: r = −0.51, S2: r = −0.53, S3: r = −0.64, S4: r = −0.40, 
all P < 0.001). A strong negative relationship between SuStaIn stage 
and age was also observed, such that individuals at the later SuStaIn 
stages tended to be younger (r = −0.59, P < 0.0001). This relationship 
was again consistent across all subtypes, although less prominent 
for S1 (S1: r = –0.20, S2: r = −0.68, S3: r = −0.64, S4: r = −0.73, all 
P < 0.05; Fig. 3b). This inverse relationship was also present among 
individuals both 65 and younger (n = 100, r = −0.43, P < 0.0001) and 
individuals older than 65 (n = 342, r = −0.28, P < 0.0001), suggest-
ing the effect is not driven purely by early-onset cases. Lateralization 
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Fig. 1 | Spatiotemporal subtypes of tau progression. a, Tau PET pattern of tau+ (subtyped) individuals. b, Quaternary plot showing the probability each 
individual is classified as each subtype. The dots are labeled by final subtype classification: S1 (blue); S2 (green); S3 (orange); or S4 (pink). The inset box 
shows individuals who had a probability <0.5 to be classified as any of the 4 subtypes (that is, showing poor fit). c, Average tau PET pattern for each 
subtype. The color bar is the same as in a. d, Regions showing significant difference between one subtype and all other subtypes using OLS linear models 
adjusting for SuStaIn stage, after FDR correction. e, Progression of each subtype through the SuStaIn stages. Each image is a mean of individuals classified 
at the listed stage and up to four stages lower. Only the left hemisphere is shown.
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also increased with increasing SuStaIn stage (Extended Data Fig. 9). 
However, despite trends in lateralization at higher SuStaIn stages, 
many individuals were observed with a ‘reversed’ lateralization 
compared to the group average tau lateralization patterns for their 
subtype (Extended Data Fig. 9), suggesting lateralization to be at 
least partially orthogonal with subtype.

Cognitive prognosis of AD subtypes. Longitudinal MMSE data 
were available for a subset of 735 individuals (mean follow-up = 1.74 
years from PET scan, s.d. = 0.64). Individuals with the S3 (posterior)  
subtype had significantly slower decline compared to all other  

subtypes independently (S1: t = 2.03, P = 0.043; S2: t = 2.88, 
P = 0.004; S4: t = 4.83, P < 0.0001), as well as in a one-versus-all 
analysis (t = 3.64, P = 0.0003; Fig. 3c). This finding persisted across 
different clinical diagnoses (Fig. 3d and Supplementary Table 2) and 
was confirmed through a meta-analysis across the 5 cohorts, which 
also showed a significantly slower decline for the S3 (posterior) 
group (t = 1.67, P = 0.047; Fig. 3e). Individuals with the S4 (lateral 
temporal) subtype additionally showed steeper cognitive decline 
compared to S1 (limbic) subtype individuals (t = 3.40, P = 0.0008), 
and generally showed faster decline compared to other subtypes in 
a one-versus-all analysis (t = −4.49, P < 0.0001) and across clinical 
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in the discovery sample (y axis) and subtypes identified separately in the replication sample (x axis). Values represent spatial correlation between average 
regional tau-PET SUVR for each subtype. Values along the diagonal indicate similarity between the same subtype across both cohorts.

Table 1 | Comparison of means of different variables between subtypes in the discovery sample after correction for age (except in the 
case of age), sex (except in the case of sex), education (except in the case of education), cohort, clinical diagnosis (that is, CN, MCI, 
AD) and SuStaIn stage (except comparisons with S0). Standard deviations are given in parentheses where relevant. All P values were 
corrected for multiple comparisons

S0: No tau  
(s.d.)

S1: limbic  
(s.d.)

S2: MTL-sparing 
(s.d.)

S3: posterior  
(s.d.)

S4: L temporal  
(s.d.)

n 687 137 73 131 80

Age (years) 71.52 (8.1) 75.28 (7.7)a 71.34 (8.3)b 75.06 (7.3)a 73.41 (6.9)

Proportion female 0.49 0.70a 0.60c 0.64a 0.56

Education (years) 15.17 (2.9) 14.42 (3.9) 14.29 (4.0) 14.6 (3.0) 14.82 (2.9)

Proportion APOE4 carrier 0.26 0.75a,b 0.47b 0.63a 0.59a

Cortical tau SuVR 1.04 (0.1) 1.41 (0.1)a,b 1.44 (0.1)a 1.44 (0.1)a 1.47 (0.1)a,b

Laterality 0.0 (0.2) −0.28 (1.3)a,b R −0.13 (1.6)b,c R 0.04 (1.5) 1.95 (1.2)a,b L

MMSE 28.9 (1.5) 24.33 (3.0)a 24.32 (4.2)a 24.19 (3.0)a 23.33 (5.0)a

Global cognition 0.36 (0.5) −0.03 (0.8)b −0.29 (0.8)a −0.23 (0.8)a −0.39 (0.9)a,d

Absolute memory 0.48 (0.7) −0.62 (0.7)a,d −0.36 (0.7)a −0.55 (0.7)a −0.3 (0.8)a,d

Absolute language 0.22 (0.7) −0.11 (0.8) 0.01 (0.9) −0.18 (0.8) −0.64 (1.1)a,b

Absolute executive 0.19 (0.6) 0.02 (0.9) −0.33 (0.9)a 0.03 (0.8) −0.17 (1.0)c

Absolute visuospatial 0.19 (0.6) 0.08 (1.0) −0.25 (1.2)a −0.23 (1.2)a −0.09 (1.0)

Relative memory 0.26 (0.8) −0.61 (1.0)a,b −0.14 (1.0) −0.37 (1.0)a −0.06 (1.1)b

Relative language −0.02 (0.8) 0.05 (1.0) 0.31 (1.2)a 0.06 (1.0) −0.51 (1.3)a,b

Relative executive −0.14 (0.8) 0.25 (1.0)c −0.22 (1.0)b,c 0.38 (1.1)a 0.22 (1.2)

Relative visuospatial −0.1 (0.7) 0.31 (1.1)c 0.03 (1.3) 0.0 (1.3) 0.27 (1.3)
aAdjusted P < 0.05 (versus S0). bAdjusted P < 0.05 (versus all other subtypes, not including S0). cAdjusted P < 0.1 (versus S0) dAdjusted P < 0.1 (versus all other subtypes, not including S0). L, significant 
left-sided laterality in this subtype compared to other subtypes; R, significant right-sided laterality in this subtype compared to others.
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diagnoses (Fig. 3d and Supplementary Table 2). A meta-analysis 
once again confirmed a significant overall effect (t = 1.88,  
P = 0.031; Fig. 3e).

Stability and progression of AD subtypes over time. SuStaIn uses 
cross-sectional data to infer longitudinal trajectories for the tau 
data, so evaluating how well longitudinal data fits the model is a key 
aspect of validation. A total of 519 individuals from the discovery 

sample also had follow-up flortaucipir PET scans (mean follow-up 
time = 1.42 years, s.d. = 0.58). Overall, 88.5% of individuals exhib-
ited the same subtype at both baseline and follow-up or progressed 
from S0 into a subtype (Fig. 3f). Stability when excluding indi-
viduals classified as S0 at baseline (tau+ stability) and follow-up 
was 83.9%. Stable individuals were classified with a higher degree 
of confidence at baseline compared to individuals whose sub-
type changed at follow-up (stable mean = 0.91, s.d. = 0.17; change 
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subtype in individuals with stable subtypes over time (statistics are shown in Supplementary Note 3). i, SuStaIn was used to predict longitudinal change 
in regional tau accumulation. Each dot represents a patient, and the y axis represents the spatial correlation between the true and predicted regional tau 
change. Average predictions were significantly greater than chance based on a two-sided, one-sample t-test against 0 (S1: t(78) = 5.00, P = 3.5 × 10−6; S2: 
t(52) = 2.16, P = 0.035; S3: t(45) = 3.05, P = 0.0039; S4: t(29) = 4.93, P = 3.1 × 10–5). *P(unc.) < 0.05, ***P(unc.) < 0.001. a–c, The error bars represent the 95% 
confidence interval of the model fit across 1,000 bootstrap samples. For the box plots in d,g–i, the center line is the median, the box represents the inner 
quartiles, the whiskers represent the extent of data distribution except for the outliers (signified by the asterisks).
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mean = 0.74, s.d. = 0.27; t = 5.26, P < 0.0001; Fig. 3g). Supplementary 
Table 3 shows longitudinal tau+ stability (that is, excluding S0) when 
excluding individuals using various subtype probability thresholds.

We next examined how SuStaIn stage changed over time 
for each subtype. Across the whole sample, we observed sig-
nificant yearly increase in SuStaIn stage (mean ∆/year = 0.8, 
t(148) = 6.54, P < 0.0001) (Fig. 3h and Supplementary Table 4); a 
significant difference in mean annual rate of SuStaIn stage change 
was seen across subtypes (Supplementary Note 3). The annual 
SuStaIn stage increased faster in S4 (lateral temporal) compared 
to S2 (MTL-sparing) and S3 (posterior) subtypes (Fig. 3h and 
Supplementary Note 3). Younger age (r = −0.22, P = 0.006) but not 
higher baseline SuStaIn stage (r = 0.12, P = 0.15) was associated with 
faster annual change in stage. As a final validation, we used SuStaIn 
to forecast the longitudinal rate of regional tau PET change at the 
individual level. On average, predictions were significantly better 
than chance for all subtypes (S1 (limbic): t(78) = 5.00, P < 0.0001; S2 
(MTL-sparing): t(52) = 2.16, P = 0.035; S3 (posterior): t(45) = 3.05, 
P = 0.0039; S4 (lateral temporal): t(29) = 4.93, P < 0.0001; Fig. 3i).

Subtype patterns resemble distinct corticolimbic networks. 
Based on our previous work29, we used network diffusion models 
to examine the possibility that the observed subtype-specific tau 
spreading patterns may be driven by spread through distinct net-
works. We found that an entorhinal cortex epicenter was optimal 
for the S1 (limbic) subtype tau pattern and strongly replicated the 
pattern of tau spreading (r2 = 0.70) but did not reproduce other sub-
type patterns nearly as well (S2: r2 = 0.04; S3: r2 = 0.41; S4: r2 = 0.37). 
Models using different epicenters substantially improved the fit for 
these other subtypes (Fig. 4a,b,e): best-fitting models used the mid-
dle temporal gyrus (r2 = 0.27) for S2 (MTL-sparing), the fusiform 
gyrus (r2 = 0.59) for S3 (posterior) and the inferior temporal gyrus 
(r2 = 0.50) for S4 (L Temporal) (Fig. 4c), suggesting a possible pre-
dominance of these regions in secondary tau seeding for different 
subtypes. Highly similar results were found using a different brain 
atlas and different connectivity data (Extended Data Fig. 10). We 
further tracked how the best-fitting epicenter changed at higher 
disease stages, perhaps reflecting participation of different regions 
as secondary seeding points with advancing disease progression  
(Fig. 4d). All but the S2 (MTL-sparing) subtype exhibited MTL 
spreading in the earlier stages, whereas the early stages of S2 
involved parietal spread. Later stages involved secondary seed-
ing in the temporal lobes and subtype-specific regions. Together, 
these results suggest that distinct tau patterns across different sub-
types may be driven in part by vulnerability of, or selective spread 
through, distinct temporal lobe networks.

Discussion
For the last 30 years, the progression of tau pathology in AD has 
principally been described by a single model of spatiotemporal evo-
lution8,9 despite frequent examples of nonconforming cases12. We 
showed that the cortical cascade of tau pathology is better described 
by a data-driven model including multiple spatiotemporal patterns 
(Fig. 5). Importantly, our findings may reconcile atypical AD vari-
ants with common variations of typical AD into a single unified 
model of pathological progression. First, the model reaffirms the 
existence of observed cortical- and limbic-predominant patho-
logical patterns as distinct subtypes of tau progression rather than 
phases along a continuum. In addition, the model also accounts for 
the most frequently occurring atypical clinical variants of AD, PCA 
and logopenic PPA as the extremes of regularly occurring posterior 
and lateral temporal AD subtypes. Together, our data align with a 
recent model14 to suggest variation in the pathological expression 
of AD along two orthogonal axes, subtype and severity, the latter of 
which is strongly and inversely correlated with age (Fig. 5). Given 
that no dominant pattern emerged, our data suggest the existence of 

multiple common AD subtypes, challenging the notion that there 
is such a pathological entity that can be described as ‘typical’ AD. 
Rather, the spatial pattern of tau spreading appears to vary along at 
least four archetypes, depending on factors such as age and geno-
type. Therefore, we propose that heterogeneity in AD is best repre-
sented as a quadrilateral axis (Fig. 5).

Our results are robust across datasets and radiotracers. We found 
individuals representing each of four subtype patterns in each of 
the five contributing cohorts and reproduced a very similar set of 
subtypes in a totally separate sample using a different radiotracer. 
Furthermore, most individuals were confidently assigned into one 
subtype pattern, which was consistent over time. The limbic sub-
type was the most frequent and presented with many characteris-
tics typically associated with AD, including a greater proportion of 
APOE4 carriers, a strongly amnestic phenotype and medial tempo-
ral pathology with a Braak-like progression of tau spread. However, 
this subtype represented only a third of all tau+ cases in our dataset 
(although the earliest stages of three of the four subtypes featured 
prominent MTL binding; Fig. 4d). Instead, our data suggest that, at 
an older age at onset or earlier disease stages, subtypes may present 
with subtle differences that may be difficult to detect in the clinic, 
while at a younger age at onset or later disease stages, the more 
aggressive phenotype can amplify the distinct subtype expressions. 
The existence of these phenotypes, if further validated, may neces-
sitate a reform in pathological tau staging, where key regions are 
surveyed to increase sensitivity to detect subtype-specific patterns.

Many pioneering studies have noted variation in AD pathology. 
For example, limbic-predominant and MTL-sparing phenotypes 
are contrasted against ‘typical’ phenotypes that express tau pathol-
ogy in both the MTL and neocortex12,13. In contrast to this notion, 
we found that a subtype of individuals expressing both cortical and 
MTL tau exhibited a more aggressive phenotype with marked later-
alization, the latter being a feature that has not been well character-
ized in histopathological studies of AD, which typically assess only 
one hemisphere. In addition, our model allows the concurrence 
of MTL and cortical pathology at later stages of several distinct 
progressions, perhaps suggesting that solely contrasting cortical 
and MTL tau (for example, see refs. 21,22) may not be sufficient to 
describe AD heterogeneity. Indeed, while some spatial convergence 
could be observed in our AD subtypes, particularly at the early or 
late stages, subtle regional variation consistently distinguished indi-
viduals of one subtype from another.

We reproduce previous reports describing a strong negative cor-
relation between age and tau progression30–34, as well as previous 
reports that a younger age at onset of AD is associated with a more 
rapid progression of tau pathology35,36. Interestingly, in our study, 
this phenomenon was observable across all subtypes (Fig. 3b). 
Previous work has noted that early-onset AD is more likely to pres-
ent with an atypical (that is, nonamnestic) phenotype37. This may be 
a specific characteristic of early-onset AD. However, ours and other 
studies26,38,39 suggest that posterior or left-lateralized temporal bind-
ing is not uncommon across the age spectrum, although our data 
suggest that the phenotype is more pronounced at the earlier ages. 
Therefore, atypical variants of AD may represent an accelerated and 
intensified manifestation of common AD subtypes, although this 
will require further validation.

Our findings complement other supervised and unsupervised 
AD subtyping studies from the imaging and pathology litera-
ture12–14,21,22,26,38, although our analysis also produced some new find-
ings that are worthy of further investigation. Despite the extreme 
of the posterior subtype being represented by PCA, an aggressive 
disease variant, the posterior subtype overall demonstrated slower 
cognitive decline compared to all other subtypes. These individu-
als exhibited considerable tau pathology in posterior (including  
occipital) brain regions but also relatively less MTL and frontal bind-
ing. However, these findings are in agreement with the pathology 
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literature describing common variation in occipital tau pathology in 
both preclinical and symptomatic AD2,40–42. These studies, variously 
surveying Brodmann areas 17, 18 and 19, found evidence for occipi-
tal lobe tau in 24–52% of sampled brains, including in individuals 
who were CN. Our study suggests this population variation may 
indeed be systematic and could be associated with a specific pro-
gression pattern. However, tau in the occipital lobe remains under-
studied and future studies will be necessary to validate the precise 
characteristics of this posterior subtype. It is still unclear if the pos-
terior subtype is related to PCA beyond a shared predominance of 
posterior tau, although it may at least signify the existence of a pos-
terior cortical network selectively vulnerable to tau pathology.

Different manifestations of AD may represent subtle variations 
in the spread of pathology or could signal the influence of highly 

distinct processes relevant to treatment intervention. For example, 
a recent pathology study found increased neurofibrillary tangle 
pathology and neuronal loss in the cholinergic basal forebrain spe-
cifically in patients with an MTL-sparing phenotype and that ear-
lier disease onset was associated with more neurofibrillary tangle 
pathology in these individuals43. Furthermore, another recent 
study indicated that a targeted basal forebrain treatment could be 
most effective for patients with an MTL-sparing phenotype44. This 
research may suggest a unique role of the basal forebrain in certain 
subtypes of AD. Meanwhile, APOE has been consistently associ-
ated with limbic manifestations of AD12,34, including the present 
study, and APOE or hippocampus-focused therapies could prove 
more effective for these individuals. Together, these results point to 
the possibility that clinical trials may benefit from stratification or 
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fitted separately for each subtype; once using an entorhinal cortex epicenter (a, blue) and once with a subtype-specific best-fitting epicenter (b, red). For 
each plot, each dot represents a region. The x axis represents the mean simulated tau+ probabilities across the population, while the y axis represents the 
mean observed tau+ probability. Each row represents a subtype. a–c, The error bars represent the 95% CI of model fitting across 1,000 bootstrap samples. 
c, For each subtype, the probability that each region was the best-fitting epicenter for that subtype is shown, which was based on bootstrap resampling. 
d, For each subtype, the proportion of individuals at various stages that had best-fitting epicenters within each of five major brain divisions is shown: MTL 
(blue); temporal lobe (yellow); parietal lobe (purple); occipital lobe (gray); and frontal lobe (turquoise). e, For each subtype, spatial representation of the 
ESM results from b using the best-fitting epicenter is shown. From left to right, observed regional tau PET probabilities (tau-P), regional connectivity to 
best-fitting epicenter (Cx) and tau PET probabilities predicted by the ESM. These images show the degree to which constrained diffusion of signal through 
a connectome (predicted), starting in a given epicenter and its associated fiber network (Cx), recapitulates the tau patterns of each subtype (observed).
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enrichment based on AD subtype, or as a first step, post hoc identi-
fication of within-subtype effects.

There are currently very few explanations as to why subtypes of 
AD manifest. Fascinating work has found that PCA and logopenic 
PPA patients are more likely to exhibit learning disabilities in child-
hood45,46, perhaps mediated by abnormalities during brain devel-
opment47. While logopenic PPA and PCA may represent extremes 
along the AD continuum (as indicated by the present results), this 
points to the possibility that distinct subtypes may be influenced 
by variation in cognitive development or other premorbid factors. 
Interactions between posttranslational tau modification and syn-
aptic tau spreading are another possible explanation for subtypes. 
Several studies have shown that the regional pattern of pathologi-
cal tau expression in mice is dependent on the conformation and 
injection site of tau seeds35,48,49. Therefore, it is possible that subtypes 
of tau spread may simply be dictated by distinct tau conformations 
and/or systematic variation in the human connectome, perhaps at 
key synaptic junctures. Supporting the latter hypothesis, we found 
that the tau PET pattern of AD subtypes resembled macroscale 
neuronal networks seeded from different brain regions. These find-
ings do not presuppose tau pathology necessarily starts in different 
regions but instead that different regions may play a more promi-
nent role in tau propagation across subtypes as ‘amplifying nodes’. 
This could be mediated by involvement of distinct neuronal cell 

subtypes50, which may incur disrupted development due to environ-
mental or genetic factors, leading to network abnormality during 
life and network vulnerability in later life.

This study has a number of limitations. The SuStaIn method 
fits data based on the assumption that several discrete sequences 
are represented within the data and uses cross-sectional informa-
tion to create pseudo-longitudinal sequences. This framework is 
based on the same logic as most pathological staging schema (for 
example, Braak and Braak8) and hypotheses of biomarker tra-
jectories (for example, Jack et al. 5) but does so in an automated 
fashion. Therefore, it is possible that a SuStaIn subtype trajectory 
could be created by ‘appending’ or ‘stitching’ unrelated disease 
states together. However, we found that most individuals remained 
the same subtype at longitudinal follow-up and we could predict 
regional individual tau accumulation greater than by chance using 
just the SuStaIn model. While the use of tau PET imaging is a great 
improvement over using magnetic resonance imaging to measure 
AD pathology, there is still some discrepancy between the tau PET 
signal and true tau pathology51. While flortaucipir binds to paired 
helical filament tau, off-target binding is an issue with flortaucipir, 
particularly in the striatum, white matter and choroid plexus52. We 
mitigated this issue by regression of choroid plexus signal, exclu-
sion of subcortical regions of interest (ROIs) and non-AD demen-
tia patients and region-specific normalization against nonspecific 
binding, as well as replication with RO948, which exhibits less 
off-target binding53. Similarly, recent reports questioned whether 
elevated flortaucipir binding is detectable before advanced stages 
of tau accumulation54–56. However, SuStaIn modeling is based on 
relative regional differences in pathology and regional variation in 
tau PET and tau pathology are correlated55–57. Still, while the unbi-
ased spatial sampling of tau PET data across the brain aided our 
discovery of these subtype patterns, they must still be validated 
using histopathology studies. Sample size was an obvious strength 
of our study but it comes with the caveat of mixing data from mul-
tiple cohorts, scanners and cognitive batteries. We addressed this 
issue somewhat by examining subtypes in each cohort separately, 
replicating our results in a separate sample and adjusting for cohort 
in our comparisons. In addition, despite our study boasting the larg-
est tau PET sample to date, even larger samples would be prefer-
able to elucidate the spatiotemporal progression of each subtype in 
more detail. We arrived at a four subtype solution to describe our 
data using established statistical methodology to identify a solu-
tion the data support with confidence. However, this does not pre-
clude the possibility that other, more subtly distinct subtypes exist  
(Extended Data Fig. 1f).

In conclusion, we describe four distinct but stable spatiotempo-
ral phenotypes of tau accumulation in AD. These subtypes exhibit 
differing clinical profiles and longitudinal outcomes and their tau 
patterns resemble distinct temporal lobe networks. Our data-driven 
results call into question whether ‘typical AD’ is a quantifiable 
entity, rather suggesting that several AD subtypes exist and that 
their individual differences are exacerbated by more aggressive phe-
notypes with younger ages at onset. Future studies should seek to 
validate the existence and temporal evolution of these subtypes, as 
well as identify genetic, cellular and developmental factors that may 
influence their expression. This may include identifying differences 
in brain activity and connectivity between individuals, as well as dif-
ferences in regional vulnerability. This framework may also be use-
ful to enrich clinical trials, provide more individualized clinical care 
and eventually more individualized treatment.
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Methods
Unless otherwise noted, all data analysis was conducted, and all figures were 
created, using Python v.3.7.3, mostly using the numpy, scipy, pandas, scikit-learn, 
nilearn, matplotlib, seaborn and statsmodels libraries.

Sample characteristics. The total sample for the following analyses consisted 
of flortaucipir tau PET scans from 1,667 individuals from 5 different cohorts 
(BioFINDER 1, Seoul, AVID, University of California, San Francisco (UCSF), 
Alzheimer’s Disease Neuroimaging Initiative (ADNI)) and RO948 PET scans from 
657 individuals from a sixth cohort (BioFINDER 2). Information pertaining to 
recruitment, diagnostic criteria and Aβ positivity assessment for the BioFINDER 
1 (ref. 47), ADNI27, AVID32, Seoul58, UCSF6 and BioFINDER 2 (ref. 28) cohorts 
have been reported previously. Informed written consent was obtained from all 
participants or their designated caregiver(s) and all protocols were approved 
by each cohort’s respective institutional ethical review board. Specifically, all 
BioFINDER participants provided written informed consent to participate in the 
study according to the Declaration of Helsinki (2013); ethical approval was given 
by the ethics committee of Lund University and all methods were carried out in 
accordance with the approved guidelines. Approval for PET imaging was obtained 
from the Swedish Medicines and Products Agency and the local radiation safety 
committee at Skåne University Hospital. For UCSF, the study was approved by 
the University of California (San Francisco and Berkeley) and Lawrence Berkeley 
National Laboratory institutional review boards for human research. Data from the 
AVID sample were collected in compliance with the Declaration of Helsinki (2013) 
and the International Conference on Harmonization guidelines on good clinical 
practice. Data collection for the Gangnam Severance Hospital sample was approved 
by the institutional review board of Gangnam Severance Hospital. Information 
related to participant consent in ADNI can be found at http://adni.loni.usc.edu. 
Some of the data used in the preparation of this article were obtained from the 
ADNI database (http://adni.loni.usc.edu). ADNI was launched in 2003 as a public–
private partnership led by principal investigator M. W. Weiner. The primary goal 
of ADNI has been to test whether serial magnetic resonance imaging (MRI), PET, 
other biological markers and clinical and neuropsychological assessment can be 
combined to measure the progression of MCI and early-onset AD. For up-to-date 
information, see http://adni.loni.usc.edu.

From this total sample of 1,667 participants with flortaucipir scans, a 
subsample was derived including (1) all cognitively unimpaired individuals older 
than 40 years and (2) individuals who had both a diagnosis of MCI or AD and 
imaging or fluid evidence of brain Aβ pathology. All participants with a primary 
diagnosis other than cognitively unimpaired, which included subjective cognitive 
decline, MCI or AD were excluded. This subsample, used for all subsequent 
analysis, consisted of 1,143 individuals. The same screening procedures were used 
to filter individuals from BioFINDER 2, reducing the samples size from 657 to 469. 
The characteristics of all samples, including inter-cohort differences, are detailed in 
Supplementary Table 1.

Image acquisition and preprocessing. Tau PET data acquisition procedures 
for each cohort have been described previously6,27,28,32,46,58. All tau PET data were 
processed centrally in Lund by analysts blinded to demographic and clinical data 
in a manner described previously46. Briefly, resampling procedures were used to 
harmonize image size and voxel dimension across sites. Each image underwent 
motion correction using the AFNI program 3dvolreg (https://afni.nimh.nih.gov/
pub/dist/doc/program_help/3dvolreg.html) and individual PET volumes were 
averaged within-participant. Next, each participant’s mean PET image underwent 
rigid coregistration to its respective skull-stripped native T1 image and images 
were intensity-normalized using an inferior cerebellar gray reference region, 
resulting in standardized update value ratio (SUVR) images. T1 images were 
processed using FreeSurfer v.6.0 (https://surfer.nmr.mgh.harvard.edu/), resulting 
in native space parcellations of each participant’s brain using the Desikan–Killiany 
(FreeSurfer) atlas. These parcellations were used to extract mean SUVR values 
within different ROIs for each participant in native space.

SuStaIn. Typical efforts to perform data-driven subtyping of neuroimages 
in AD are limited by the confound of disease stage. In a sample spanning the 
AD spectrum from healthy to demented such as ours, disease progression 
represents the main source of variation in MRI and PET images. Therefore, 
unless disease stage is somehow accounted for, most clustering algorithms will 
partition individuals based on their disease stage. This is not useful for parsing 
heterogeneous patterns related to progression subtypes, which are theoretically 
orthogonal to disease progression itself. The SuStaIn23 algorithm surmounts this 
limitation by combining clustering with disease progression modeling. Detailed 
formalization of SuStaIn has been published previously23.

SuStaIn models linear transition across discrete points along a progression 
of indices of severity (typically z-scores) separately across different ROIs 
(Supplementary Fig. 1a). Input requires a subject x feature matrix where, in this 
case, features represent the mean tau PET signal within different ROIs. In addition, 
‘severity scores’, indicating different waypoints along the natural progression of 
ROI severity, must be provided. Whereas the choice of ROI constrains the spatial 
dimensions along which individuals may vary, severity scores instead constrain 

the temporal dimension of variation. Therefore, the total number of features is 
represented by the product of m ROIs by n ROI-specific severity scores. Thus, a 
balance must be struck between resolution in the spatial and temporal dimensions 
with respect to overall sample size.

Our discovery sample boasted scans from 1,143 individuals, but even given 
our inclusion criteria, we expected from previous work29 that most individuals 
(50–60%) will have minimal tau binding (note that SuStaIn will automatically 
detect these individuals and exclude them from progression modeling). Therefore, 
we expected the modeling to be performed on a sample of approximately 450–550. 
Therefore, we decided on 10 different ROIs (spatial features), each with 3 severity 
scores (temporal dimension), totaling 30 features. Given an arbitrary rule of 10–20 
observations per feature, 300–600 observations should provide sufficient power 
and our sample size should therefore be sufficient.

For the ten spatial features, we opted for left and right lobar ROIs: parietal; 
frontal; occipital; temporal; and MTL. This choice is justified as follows:  
(1) previous imaging and pathology subtyping studies have revealed variation in AD 
pathology to often occur within specific lobes, for example, limbic-predominant 
(MTL), MTL-sparing (parietal), PCA (occipital), logopenic aphasia (temporal) 
and behavioral variant AD (perhaps frontal)18; (2) hemispheric laterality in AD 
is understudied perhaps due to pathological staining often occurring on single 
hemispheres. However, some laterality has been observed in AD clinical variants 
(that is, logopenic PPA15) and may point to differing phenotypes in typical AD; 
(3) these lobar regions maintain some orthogonality to disease progression since 
multiple lobes are involved in Braak stages IV–VI8.

To define severity score cutoffs, we first sought to normalize SUVR values to 
account for regional differences in PET signal (due to nonuniformity of off-target 
binding, perfusion, etc. across the brain)29. Two-component Gaussian mixture 
models were used to define, for each ROI, a normal (Gaussian-shaped noise) 
and abnormal distribution. We then created tau z-scores by normalizing all 
values using the mean of the normal distribution (Extended Data Fig. 1b). This 
procedure centered the z-score values on the normal distribution to allow for 
more interpretable values (that is, 2 = 2 s.d. from normal) and also accounted for 
region-specific differences in normal and abnormal SUVR distributions. Uniform 
values of z = 2, 5 and 10 were arbitrarily chosen as severity score control points for 
all ROIs (Extended Data Fig. 1b). However, analyses were also run with alternative 
z-score values (see the Replication analysis section below).

The number of subtypes (that is, distinct spatiotemporal progressions) was 
determined through cross-validation. Separately for each k = 1–7 subtypes, 
tenfold cross-validation was performed where, for each fold, SuStaIn was fitted 
to 90% of the data and this model was used to evaluate sample likelihood for the 
10% left-out participants. For each left-out set, model fit was evaluated using 
the cross-validation-based information criterion (CVIC; as described in Young 
et al.23), as well as out-of-sample log-likelihood. In addition, we used the inner-fold 
SuStaIn model to assign all outer-fold individuals to a subtype and we evaluated 
the probability of the maximum likelihood subtype. In theory, a better fit model 
should produce more high-probability assignments of left-out data, although more 
subtypes will also make assignment more challenging. k was chosen by evaluating 
these three metrics in concert (Extended Data Fig. 1c–e). CVIC increased 
significantly with increasing k, indicating better fit to the data as the number of 
subtypes increased, although the curve flattened somewhat after k = 4 (Extended 
Data Fig. 1c). Similarly, log-likelihood increased indicating better model fit up  
until k = 4, after which no improvement was seen (Extended Data Fig. 1d).  
In contrast to these fit statistics, cross-validated maximum likelihood subtype 
probability decreased with increasing k, indicating less confident assignment of 
left-out data with more subtypes. This decline was steady, although the median 
probability dropped below 0.5 after k = 4. Taken together, k = 4 appeared to be the 
best solution to maximize model fit but minimize detriment to subtype confidence. 
We also noted that no subtypes after k = 4 had more than one ‘parent’ subtype.  
In other words, solutions 3 and 4 featured subtypes that were composed of multiple 
parent subtypes, whereas all solutions thereafter featured only subtypes that split 
off from a single parent subtype. This could be indicative of a certain level of 
hierarchical convergence at k = 4 (Extended Data Fig. 1f).

Finally, SuStaIn was run on the whole sample with the selected k = 4. Note that 
for model fitting, SuStaIn uses a uniform prior on disease subtype and stage (that 
is, it assumes all subtype and stage combinations equally likely). Note also that the 
model is initialized with an expectation–maximization algorithm and therefore 
does not require a burn-in period23. The model uncertainty was estimated using 
10,000 Markov chain Monte Carlo iterations. SuStaIn calculates the probability that 
each individual falls into each stage of each subtype and individuals are assigned 
to their maximum likelihood subtype and stage. Note that individuals who do not 
express abnormal tau in any region are classified by SuStaIn as ‘stage 0’ and are not 
assigned to a subtype. The proportion of individuals classified into each subtype 
was quantified. We also stratified this quantification by clinical diagnosis and by 
cohort to assess the frequency of subtypes in each contributing dataset. Finally, we 
quantified the proportion of participants who did not fall well into any subtype (no 
subtype probability >50%).

Post hoc subtype correction. Manual inspection of subtype progressions 
suggested that the early stages of one subtype (S2: MTL-sparing; Results) were 
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composed mostly of individuals who were CN with abnormally high tau PET 
binding throughout the cortex but little-to-no tau in typical early-mid AD regions, 
that is, false (tau) positives. Specifically, these individuals showed elevated binding 
throughout the cortex, including sensorimotor and frontal regions (regions 
where tau typically accumulates only in the latest stages of AD8) but had low 
tau levels in the temporal lobes (Extended Data Fig. 1a). On an individual basis, 
such individuals showed a tau PET signal that was slightly but globally elevated, 
with several small ‘hotspots’ distributed diffusely throughout the frontal, parietal 
and occipital cortex. While it is unclear whether this elevated binding represents 
off-target binding, diffuse low-level target binding or other methodological issues, 
consensus among coauthors was that these individuals were not consistent with 
an AD phenotype. We used Gaussian mixture modeling across all individuals 
as described in Vogel et al.29 to define the probability of abnormal tau positivity 
in each of the left and right entorhinal cortex and precuneus, respectively. We 
then marked individuals who had <90% probability of tau in all four regions as 
low-probability tau individuals (T−). These individuals also underwent manual 
inspection. Next, we identified T− individuals in the MTL-sparing subtype, 
finding that 40.6% of this subtype was composed of this group and all were 
classified as stage 5 (of 31) or below. Furthermore, these individuals showed many 
other indications of being false (tau) positives: they had normal MMSE scores, 
were older, less likely to be Aβ+ and less likely to be MCI or AD (Extended Data 
Fig. 2b,c). We assumed SuStaIn appended this specific group of T− individuals to 
the MTL-sparing subtype because the individuals (1) had abnormally high tau in at 
least one ROI as per our calculations (even if that abnormal signal was not driven 
by pathology); (2) the abnormal tau was located mainly in the isocortex inclusive 
of the parietal lobe; and (3) these individuals did not have elevated MTL binding. 
Since SuStaIn is an unsupervised algorithm, the pathological MTL-sparing 
phenotype became conflated with this specific profile of T− individuals. To correct 
this issue, we converted all T− individuals classified as MTL-sparing to subtype 0 
for all further analysis.

Visualization of subtype-specific tau PET patterns. To visualize the tau PET 
patterns for each subtype, we calculated the mean tau z-score for each Desikan–
Killiany (FreeSurfer) atlas ROI. To visualize the progression of the subtype 
pattern across SuStaIn stages, for each subtype, we created mean images for all 
individuals falling into the following SuStaIn stage bins: 2–6; 7–11; 12–16; 17–21; 
and 22–26. To deduce regions with relatively greater or less tau signal for each 
subtype, we created region-wise one-versus-all ordinary least squares (OLS) linear 
models comparing regional tau in one subtype to all others. This analysis was 
performed to visualize subtype models inferred by SuStaIn using individual data 
and explore differences between subtypes. Each model included ROI tau z-scores 
as the dependent variable, a one-hot dummy variable representing membership 
in the reference subtype and SuStaIn stage as a covariate. These models were false 
discovery rate (FDR)-corrected for the number of comparisons (that is, number  
of ROIs).

Subtype characterization. Several demographic, cognitive and genetic variables 
were available for nearly all individuals across the five cohorts in our main 
(discovery) cohort. These variables included clinical diagnosis (100%), age 
(99.8%), sex (100%), years of education (97.1%), MMSE score (97.7%) and APOE4 
allele carriage (89.5%). Only the UCSF sample provided diagnoses of clinical 
AD variants such as PCA16 and logopenic PPA17. In addition, most individuals 
underwent extensive cohort-specific cognitive batteries assessing multiple domains 
of cognition. To utilize this rich cognitive data, we created cognitive domain 
scores separately within each cohort by taking the mean of several z-scored tests 
within the following cognitive domains: memory; executive function; language; 
and visuospatial function. Supplementary Table 5 indicates which cognitive tests 
were used in each cognitive domain score across each cohort. We calculated global 
cognition as the mean between the four domain scores. Finally, we additionally 
regressed global cognition out of each domain score to create ‘relative’ cognitive 
domain scores. These scores are useful for assessing the degree of domain-specific 
impairment above and beyond global impairment. The various absolute and 
relative domain scores were then aggregated across all cohorts to maximize the 
sample size available for cognitive tests: memory (86.6%); language (81.3%); 
executive function (85.5%); and visuospatial function (82.0%). While aggregating 
scores of different compositions across cohorts of different compositions presents 
a suboptimal solution, we rest on sample sizes and statistical correction helping to 
overcome these limitations.

Subtypes were statistically compared to one another and to tau− (that is, 
stage 0) individuals to determine subtype-specific characteristics. These analyses 
compared age, sex, education, APOE4 carriage, MMSE, global cognition, total tau 
and total tau asymmetry. Comparisons between subtypes and stage 0 individuals 
additionally included the four cognitive domain scores, while comparison 
between subtypes instead included the four ‘relative’ cognitive domain scores. This 
statistical comparison involved three steps: (1) comparison to tau− individuals: 
tau− individuals were those characterized as ‘subtype 0’ by SuStaIn, that is, those 
individuals who did not demonstrate any abnormal tau events. An OLS linear 
model was fitted with each variable described above as the dependent variable 
and with dummy-coded subtype entered as the independent variable (with S0 as 

the reference subtype). The model also included age, sex, education, clinical status 
(CN, MCI, AD) and cohort as covariates (except when that covariate was the 
dependent variable). Model t and P values were stored for each model and the latter 
were FDR-corrected; (2) comparison between subtypes. A one-versus-all approach 
was applied to subtyped individuals only to assess how different tau progression 
subtypes differed from one another. Separately for each subtype, models were fitted 
for each variable with a single dummy variable entered indicating membership to 
that subtype. Models once again covaried for age, sex, education, clinical status 
(CN, MCI, AD), cohort and, this time, SuStaIn stage. T and P values were stored 
and the latter were FDR-corrected for the number of variables assessed; (3) finally, 
each subtype was compared directly to each other subtype (that is, one-versus-one 
comparison). OLS models were fitted with dummy-coded subtype variables as the 
dependent variable, cycling each subtype as the reference subtype. T and P values 
for each of these models were stored and the latter were FDR-corrected for the 
number of comparisons (that is, the number of dependent variables). These models 
were also adjusted for age, sex, education, clinical status (CN, MCI, AD), cohort 
and SuStaIn stage. For space reasons, the results of (3) are only visible in Extended 
Data Fig. 8.

All models were subjected to diagnostics to ensure our data fulfilled the 
assumptions of the OLS regression models. We found the residuals of all models 
to be normally distributed (Anderson–Darling tests P > 0.05). Furthermore, 
we found no strong evidence for autocorrelation (Durbin–Watson test, 1.5 < all 
models < 2.5), outliers (Cook’s distance of all participants < 0.5), multicollinearity 
(variance inflation factor for all covariates < 100; besides age (23–27), sex (8–12) 
and education (13–17), all variance inflation factor < 10) or heteroscedasticity 
(visual assessment of distribution around the mean of residuals) in any of our 
models.

We also assessed the relationship between SuStaIn stage and two variables: age 
and MMSE. For these analyses, stage was correlated with age and MMSE and the 
results were visualized across the whole sample and stratified by subtype. As a post 
hoc analysis, we separated individuals into different age groups: 65 or younger and 
older than 65. We then reassessed age by SuStaIn stage correlations within each of 
these age groups.

Longitudinal MMSE data were also available for individuals from all cohorts, 
totaling 735 individuals with at least 2 time points; 195 individuals had an 
additional third time point, 29 had a fourth and 3 had a fifth. The mean latest 
follow-up was 1.72 years from PET scan (s.d. = 0.64). Linear mixed-effect models 
were used to assess the difference in longitudinal MMSE change between subtypes. 
All models were fitted using the lme4 library in R (v4.0.3), using type III sum of 
squares, unstructured covariance matrices and Satterthwaite approximation to 
calculate the denominator degrees of freedom for P values. Models featured MMSE 
measurements as the dependent variable, interactions between time from baseline 
and dummy-coded subtype variables as the independent variables of interest 
(cycling the reference subtype), subject ID as a random effect (allowing for random 
intercepts and slopes) and age, sex, education, cohort, dummy-coded variables 
for MCI and AD and SuStaIn stage as covariates of no interest. One-versus-all 
models were also fitted for each participant using dummy-coded subtype variables 
and significant effects were reported. We additionally repeated the one-versus-all 
subtype models within each cohort separately and used this to calculate a 
meta-analysis by finding a weighted mean of the t values and s.e.m. Since this 
analysis was confirmatory, we used a one-tailed significance test to calculate  
the P values.

Replication analysis. We performed two types of replication analysis. To ensure 
that our results were not driven by arbitrary z-score cutoffs, we reran models with 
completely different cutoffs. To ensure the results were not driven by our sample 
or unique to the flortaucipir radiotracer, we repeated the analysis de novo in a 
separate cohort using a different tau PET radiotracer.

SuStaIn require z-score values to anchor the pseudotime for each ROI (Subtype 
and stage inference section) and we chose values of 2, 5 and 10 for all ROIs so as 
not to let any region bias or influence the model unduly and to aid comparability 
across different regions. To ensure our results were not driven by this choice, we 
reran the model with a different set of z-score values chosen in a data-driven 
manner. The object was to allow the distribution of tau PET data in each region 
to define natural waypoints in the data. For each input region, we fitted Gaussian 
mixture models to the data, varying the number of components between 1 and 
5. We used the model fit (Akaike information criterion) to decide the optimal 
number of components for each region. Finally, we used fivefold cross-validation 
to determine the boundaries of these Gaussians to define anchors for each regions. 
We did this separately for each ROI; as a result, different ROIs had different 
waypoints and even different numbers of waypoints (Supplementary Table 6). We 
then refitted the SuStaIn model to the data and compared the results to the original 
model using spatial correlation (see below).

While the five cohorts from the main discovery sample all use flortaucipir 
as the tau PET tracer, a sixth cohort (BioFINDER 2) was available that instead 
used the RO948 radiotracer. While the two tracers have similar binding patterns, 
RO948 tends to have less off-target binding in the basal ganglia and better MTL 
signal but frequently boasts a high meningeal signal that can affect cortical SUVR 
measurement53. Because of these differences, we opted to leave BioFINDER 2 out 
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of the discovery sample and instead use it as a replication cohort. This strategy 
allowed us not only to evaluate the stability of the subtypes in a new cohort, but 
also allowed us to evaluate whether the subtypes were robust to the tau PET 
radiotracer.

We reran SuStaIn de novo in the BioFINDER 2 sample using identical 
procedures to those described above (Subtype and stage inference section), 
although using the discovery sample to inform the number of subtypes. The 
resulting subtypes were visualized and assessed quantitatively using spatial 
correlations. Specifically, mean within-subtype SUVRs were computed for  
each (FreeSurfer) ROI and each discovery subtype ROI vector was correlated  
to each replication (BioFINDER 2) subtype ROI vector. To account for  
whether different sample sizes contributed to differing results between the 
discovery and replication datasets, we performed a split-half analysis with the 
discovery sample. Specifically, we split the discovery sample in half and ran  
SuStaIn separately on each half, once again using the original discovery sample  
to inform the number of subtypes. We then compared each half, which had a 
sample size comparable to that of BioFINDER 2, to the BioFINDER 2 samples 
using spatial correlations.

Assessment of longitudinal stability. Longitudinal PET data were available for 
individuals across all cohorts except for the UCSF cohort, totaling 519 individuals 
with at least 2 time points (mean follow-up time = 1.42 years, s.d. = 0.58). These 
longitudinal scans were used to validate the stability of subtypes over time under 
the hypothesis that individuals should remain the same subtype but should 
advance (or remain stable) in SuStaIn stage over time. ROIs for the longitudinal 
datasets were z-scored as described above but using the cross-sectional cohort 
as the cohort for normalization. The SuStaIn model fitted to the cross-sectional 
dataset was used to infer subtype and stage of longitudinal data (all time points). 
Confusion matrices were built to assess subtype stability between baseline and 
first follow-up. Stability was calculated as the proportion of individuals classified 
as the same subtype at follow-up or who advanced from stage 0 into a subtype, 
compared to the total number of individuals. Stability was also calculated excluding 
individuals who were classified as stage 0 at baseline or follow-up. We also assessed 
the influence of subtype probability (that is, the probability an individual falls into 
their given subtype) on individual subtype stability. Specifically, we compared the 
subtype probability of stable to unstable individuals with a t-test. We additionally 
calculated overall model stability after excluding individuals using various subtype 
probability thresholds.

Subtype progression was assessed by observing change in SuStaIn stage over 
time in stable subtype individuals. We calculated the proportion of individuals 
who advanced, were stable or regressed in disease stage over time before and 
after accounting for model uncertainty. Specifically, while stages are generally 
characterized by advancing abnormality in a given region, uncertainty leads to 
some stages being characterized by probabilities of progressing abnormalities in 
more than one region. Therefore, individuals who advanced or regressed to a stage 
with event probabilities overlapping with their previous stage were considered 
stable. We also calculated annual change in SuStaIn stage by dividing total change 
in SuStaIn stage by the number of years between baseline and final available time 
point. We used a one-sample t-test against zero to assess whether significant 
change over time was observed across the whole sample and within each subtype. 
We used analysis of variance and Tukey’s post hoc tests to assess differences in 
annual change in stage across the different subtypes. We also correlated annual 
change in stage with baseline stage and with age.

Individual forecasting of longitudinal tau progression. SuStaIn models 
spatiotemporal subtype progressions but does so using only cross-sectional data. 
Therefore, longitudinal data can be used as ‘unseen’ or ‘left-out’ data, which can be 
used to test whether and to what extent individuals follow the trajectories predicted 
by SuStaIn. We accomplished this by using an individual’s subtype and stage 
probability to generate a predicted second time point and comparing the change 
between baseline and predicted follow-up to change between baseline and actual 
follow-up.

To do this, we first sought to predict the rate of change of stage for each 
individual. We trained a Lasso model to predict individual annualized change 
in SuStaIn stage (∆stage) using the available data and cross-validation to get 
out-of-sample predictions for each individual. Features included age, sex, 
education, amyloid status, APOE4 status, baseline stage MMSE and dummy-coded 
variables for MCI, AD and each subtype. For each fold, the model was trained 
on 90% of the data and this model was used to predict ∆stage in the 10% left-out 
individuals. This process was repeated until predictions were made for each 
individual. The mean absolute error between the predicted and true ∆stage was 
0.91 stages per year. The predicted ∆stage was used for subsequent aspects of 
the tau prediction. This is important because we are minimizing the amount of 
longitudinal information leaking into the forecast.

Using this predicted ∆stage, we were then able to predict an individual’s stage 
at follow-up ki,new given any stage at baseline k, as ki,new = k + ∆stageti, where ti is the 
time between follow-up visits in years.

We can then evaluate the SuStaIn-predicted pattern of regional tau deposition 
at baseline Yi,j as:

Yij =
C∑

c=1

K∑

k=0

Aj,c,kPi,c,k

or at follow-up zi,j as:

Zij =
C∑

c=1

K∑

k=0

Aj,c,ki,newPi,c,k

where Aj,c,k is an ‘archetype’ indicating the expected amount of tau deposition for 
biomarker j at stage k of subtype c and Pi,c,k is the probability subject i is at stage k of 
subtype c. The archetype Aj,c,k is estimated probabilistically from the Markov chain 
Monte Carlo samples of uncertainty provided by the SuStaIn algorithm, giving 
an average archetypal pattern accounting for the uncertainty in the progression 
pattern of each subtype. This means that each SuStaIn-predicted pattern Yi,j 
accounts for both uncertainty in the progression pattern of each subtype as well as 
uncertainty in the subtype and stage of each individual.

Therefore, we can represent the predicted change in tau as Zi,j − Yi,j. This 
vector represents the predicted change in tau z-score in each of the ten spatial 
input features to SuStaIn (that is, left and right temporal, parietal, occipital, 
frontal and medial temporal lobes). We evaluated the prediction by computing, 
for each individual, the correlation between the predicted and true regional tau 
change vectors. We evaluated the overall prediction across the whole sample, 
and within-subtypes, by comparing the average prediction against chance using 
one-sample t-tests against a correlation of zero.

Epidemic spreading model. Perhaps the most prominent hypothesis of tau 
spread suggests tau oligomers spread directly from neuron to neuron through 
axonal connections. Under this hypothesis, diverse but systematic variations in 
tau spreading may be driven by variability in macroscale connectivity, network 
organization or vulnerable circuits. We tested this idea by investigating whether a 
network diffusion model simulating tau spread through the human connectome 
could recapitulate the various subtype patterns discovered by SuStaIn. We have 
previously applied the epidemic spreading model (ESM)59 to tau PET data, showing 
how diffusion of an agent through human connectivity data (measured with 
diffusion imaging-based tractography) can explain a majority of the variance of 
spatial tau patterns across a population of individuals along the AD spectrum29. 
In this study, we conducted the exact same analysis separately for each subtype 
identified through SuStaIn. We further allowed the ESM to identify regional 
epicenters separately for each subtype under the hypothesis that different subtype 
patterns may be driven by prominence of different corticolimbic networks.

As described in Vogel et al.29, each tau PET ROI was converted to tau+ 
probabilities using mixture modeling. This process is similar to the z-scoring 
procedure (Extended Data Fig. 1), although in this case, the probability that values 
fall onto the abnormal distribution is ascertained using fivefold cross-validation. 
These measures represent the probability that a given ROI exhibits tau in the 
abnormal range. Connectivity was measured from a dataset of 60 young healthy 
individuals from the CMU-60 DSI template (https://www.cmu.edu/dietrich/
psychology/cognitiveaxon). Deterministic tractography was calculated for each 
individual by finding connections between ROIs using orientation distribution 
functions; connectivity was measured using the anatomical connection density 
metric59. Images were assessed for quality and connectomes were averaged 
across all 60 individuals. For each subtype separately, the ESM was fitted across 
all individuals, cycling through the average of each left–right pair of cortical 
ROIs (including the hippocampus and amygdala, 33 pairs in total) as the model 
epicenter. The best-fitting epicenter was selected by finding the model with the 
minimum mean Euclidean distance between model-predicted and model-observed 
tau spatial pattern across individuals. Model accuracy was represented as the r2 
between the mean observed ROI-level tau PET probabilities and mean predicted 
probabilities across individuals. For each subtype, we compared the r2 of the model 
using the best-fitting epicenter to the r2 of models using an entorhinal epicenter. To 
gain confidence in the individual-specific epicenter, we bootstrapped the sample 
1,000 times and recomputed the best-fitting epicenter for each subtype. Epicenter 
probability was calculated as the frequency that an epicenter was selected as the 
best epicenter across bootstrap samples.

We were additionally interested in how secondary seeding evolved over the 
course of each subtype progression. While the ESM is designed to ascertain the 
true pathological epicenter, the selected epicenter reflects the seeding point that 
best matches the spatial pattern of the dependent variable. As such, it is likely that 
‘secondary epicenters’ become important for disease spread at later disease stages. 
We binned individuals for each subtype into disease stage bins, as with Fig. 1e. 
Individual epicenters were ascertained for each subject and were aggregated based 
on lobe (MTL, temporal, frontal, parietal, occipital). We then calculated epicenter 
frequency among individuals in each stage bin for each subtype. This allowed us to 
track how the secondary epicenter evolved throughout the disease course for each 
subtype trajectory.

We repeated this same analysis with a different connectome based on 
resting state functional MRI connectivity from an elderly population and using 
a higher-resolution atlas. The sample consisted of resting state functional MRI 
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scans from 422 healthy older controls (166 Aβ+), 138 individuals with subjective 
cognitive decline but without objective impairment (48 Aβ+) and 83 Aβ+ MCI 
patients; 57 individuals overlapped between this sample and the tau PET discovery 
sample used for analysis. Functional data were processed using the modified 
CPAC pipeline60 involving slice time correction, bandpass filtering at 0.01–0.1 Hz, 
regression of motion, white matter and cerebrospinal fluid signal, CompCor 
physiological noise and the 24 Friston parameters. The time series also underwent 
adaptive censoring of volumes for which DVARS jumps above the median + 1.5× 
interquartile range were observed. Time series were averaged within ROIs of 
the 246-ROI Brainnetome cortical/subcortical atlas (https://atlas.brainnetome.
org/), nodewise connectivity was calculated using either Fisher’s z-transformed 
correlations or partial correlation. The ESM was fitted using the bilateral A35/36r 
ROI as the model epicenter and the following combinations of parameters were 
varied: regions (cortical only or all regions); subject-base (Aβ− only versus all 
individuals); density (edgewise thresholding at 0.02, 0.5, 0.1, 0.25 and 1 or partial 
correlation with no thresholding); and normalization (whether connectivity 
matrices were normalized after density thresholding). The only parameter strongly 
affecting model performance was density threshold—partial correlation far 
outperformed all other conditions. Using all regions over only cortical regions 
bore slight advantages as did using all individuals over only Aβ−. Normalization 
had no effect on outcomes. The best-fitting model was used for further analysis. 
The ESM was fitted to each individual separately and epicenter bootstrapping was 
performed, both as described above.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The tau PET data contributing to this study were sourced from six different 
cohorts. One of them, ADNI, is a public access dataset and can be obtained by 
application from http://adni.loni.usc.edu/. Data from the other datasets are not 
publicly available for download, but access requests can be made to the respective 
study investigators: BioFINDER 1,2—O.H.; UCSF Memory and Aging Center—
G.D.R.; Gangnam Severance Hospital—C.H.L.; AVID Radiopharmaceuticals—
M.J.P. and M.D.D. Additionally, the CMU-60 diffusion tensor imaging (DTI) data 
used to create the template DTI connectomes are publicly available and can be 
accessed at https://www.cmu.edu/dietrich/psychology/cognitiveaxon/data.html.

Code availability
Python and MATLAB implementations of the SuStaIn algorithm are available on 
the UCL-POND GitHub page: https://github.com/ucl-pond. The ESM algorithm is 
available for academics as part of open-access, user-friendly software (for further 
details, visit https://www.neuropm-lab.com/).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Methodological details. Methodological details. a, SuStaIn requires both spatial (for example brain regions) and pseudotemporal 
(for example Z-score waypoints representing advancing biomarker severity) features as input. SuStaIn models linear change between waypoints across 
multiple biomarkers and uses clustering to fit subtype trajectories representing distinct biomarker sequences. b, Each spatial feature was z-scored in order 
to derive interpretable waypoints. Example: (top left), SUVR distribution in the left temporal lobe. (bottom-left) Distribution of standardized residuals after 
regression of choroid plexus. Gaussian mixture-modeling identifies ‘normal’ (grey) and ‘abnormal’ (red) tau-PET values within this distribution. (bottom 
right) Mean and SD of ‘normal’ distribution used to normalize the whole distribution, creating ‘Tau Z-scores’. Tau Z-scores of 2, 5 and 10 are used as 
waypoints. (top-right) Tau-z scores superimposed onto the original SUVR distribution. For each subtype model (k = 1-7), c) distribution of average negative 
log-likelihood, d) CVIC, and e) distribution of the probability of the maximum-likelihood subtype across cross-validation folds of left-out individuals. 
Higher log-likelihood, lower CVIC represents better model fit. f, Visualization of subtype solutions k = 2-7. For each subtype, the rendered brains show 
significant regional tau difference between the subtype and all other subtypes in its solution. Connecting-line thickness indicates how many subjects are 
shared between a subtype and each subtype from its parent and child solutions. Circle color represents which k = 4 subtypes (outlined in the dashed box) 
each subtype is most similar to, in terms of the number of overlapping subjects. Red arrowheads indicate subtypes that were formed by pooling individuals 
from two different parent subtypes. For boxplots in c,e, center line=median, box=inner quartiles, whiskers=extent of data distribution except *=outliers.
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Extended Data Fig. 2 | Details of subtype assignment. Details of subtype assignment. a, Several individuals classified as S2 (MTL-Sparing) were found 
to be tau-negative (that is no significant tau in the entorhinal cortex or precuneus; S2: False). Cortical rendering shows the overall mean tau Z-scores 
(see Extended Data Fig. 1b) of S2: False individuals. Slightly elevated signal was observed throughout the cortex (but not MTL areas), including in regions 
where pathological tau is not typically observed until late AD. b, Proportion of Ab + (top) and cognitively impaired (bottom) individuals in S2: False 
(n = 54) compared to other S2 individuals (S2: True, n = 79) and tau-negative individuals (S0, n = 646). Using, χ2-tests with Tukey’s posthoc correction, 
a higher proportion of S2: False and S0 individuals were Aβ- (S0 p[adj]=8.5e-13; S2:F p[adj]=9.7e-08) and cognitively unimpaired (S0 p[adj]=6.2e-68; 
S2:F p[adj]=2.0e-10) than S2: True individuals, but did not differ significantly from one another (Ab p[adj]=0.94; cog p[adj]=0.07). c, Using two-sided 
ANOVAs with Tukey’s posthoc correction, S0 and S2: False individuals were older (S0 p[adj]=0.001; S2:F p([adj]=0.024) and had higher MMSE scores 
(S0 adj]=0.001; S2:F p([adj]=0.001) than S2: True individuals, but did not differ from one another (Age p[adj]=0.48; MMSE p[adj]=0.21). d, SuStaIn 
stage of all individuals stratified by subtype, with the poorly fitting subjects (those that had <0.5 probability of falling into any subtype) shown separately. 
All but one poorly fit subject exhibited very low SuStaIn stages. e, Probability of maximum likelihood subtype is low at early SuStaIn stage and quickly 
increases with increasing SuStaIn stage. f, Distribution of clinical diagnoses across SuStaIn stages. g, Distribution of clinical diagnoses across subtypes 
(same colors as in f). h, Distribution of maximum-likelihood subtype probabilities for each clinical diagnosis. i, Distribution of PCA and lvPPA subjects from 
the UCSF sample into each subtype. For boxplots in c,e,h, center line=median, box=inner quartiles, whiskers=extent of data distribution except *=outliers.
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Extended Data Fig. 3 | Regional comparisons. Regional comparisons. Comparison of the mean tau-PET signal (tau-Z) across all ROIs, after adjustment for 
total cortical tau. A value of 0 represents regional tau Z-score proportionate to the average cortical tau Z-score in that subtype. The left panel represents 
left hemisphere, the right panel represents right hemisphere. Values represent means +/− SEM.
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Extended Data Fig. 4 | Subtypes observable across all contributing cohorts. Subtypes observable across all contributing cohorts. The top panel shows the 
proportions of each subtype (plus S0) within each of the cohorts. All cohorts included individuals from each subtype. The bottom shows the mean tau Z 
image of each subtypes in a given cohort. Variation be observed across cohorts, particularly regarding phenotypic severity, but subtype patterns are fairly 
consistent.
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Extended Data Fig. 5 | Individual fit to stereotypical subtype progression. Individual fit to stereotypical subtype progression. a) Progression plots are 
created for each subtyped individual based on their progression through events specific to their subtype. The outer images show regional tau z scores (see 
Extended Data Fig. 1) for an S2 (left) and S3 (right) individual. This data is summarized in lobar ROI z-scores (inner images). In progression plots under the 
images, each box represents a biomarker event, SuStaIn stage. A SuStaIn stage represents tau reaching a given severity (Z) score at a given region (see 
Extended Data Fig. 1). Filled (boxes indicate an individual fulfills the criteria for that SuStaIn stage. An empty (black) box indicates an individual does not. 
Note that each subtype has a different event order. b) A stepwise progression plot is shown for each subtype. Each row represents an individual, and each 
column represents SuStaIn stage. A perfect fit would be represented by an individual (row) having every box filled before a given stage, and no boxes filled 
after. y-axes (subjects) are sorted from the least (top) to most (bottom) stages fulfilled. Across the population, this should be represented as a stepwise 
progression. Each subtype demonstrates a stepwise progression indicating good general fit. The average subject fit imperfection was 2.1 boxes.
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Extended Data Fig. 6 | Replication using different initial parameters. Replication using different initial parameters. SuStaIn creates nearly identical 
subtypes when initialized with different parameters (Supplementary Table 5) Methods: Replication Analysis). SuStaIn was rerun allowing a data-driven 
methodology to determine the number and value of z-score waypoints for each ROI. a) Qualitative contrasts of each subtype as defined using the original 
(Orig) parameters and the new data-driven (DD) parameters, where maps show regions significantly different between one subtype and all others 
(excluding S0) within the cohort (after FDR correction). b) Confusion matrix comparing subtypes identified in the original (orig) sample (y-axis), and 
subtypes separately identified in the data-driven parameter replication sample (x-axis). Values represent spatial correlation between average regional tau 
for each subtype. Values along the diagonal indicates similarity between the same subtype across both parameter sets.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Stability of subtypes across train-test split and replication datasets. Stability of subtypes across train-test split and replication 
datasets. (Top) Cortical renders showing, for each subtype across each dataset, regions with significantly different tau-PET signal compared to other 
within-dataset subtypes after FDR correction. Hot regions show greater tau-PET signal, whereas cooler regions show lower signal. Remarkable similarity 
can be observed across subtypes, except S4, where lateralization switches from left to right. (Bottom) A heatmap showing similarity (spatial correlation) 
between subtypes across all four datasets. The diagonal represents identity, whereas outlined boxes represent comparisons of the same subtype across 
datasets.
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Extended Data Fig. 8 | Subtypes present with differing clinical profiles. Subtypes present with differing clinical profiles. For all plots, a * below a box 
indicates the subtype is significantly different (corrected p < 0.05) from other subtypes combined (one vs. all), while a χ represents a trend (p < 0.1). Thick 
horizontal lines above boxes indicate significant (p < 0.05) differences between two subtypes (one vs one). Dashed horizontal lines represent the mean 
of the S0 group (controlling for covariates), where relevant. All statistics are adjusted for demographics, disease status, cohort and SuStaIn stage. For 
boxplots, the center line=median, box=inner quartiles, whiskers=extent of data distribution except *=outliers.
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Extended Data Fig. 9 | Lateralization across disease progression as measured with SuStaIn stage. Lateralization across disease progression as measured 
with SuStaIn stage. a, Tau lateralization was measured as the mean left to right ratio of scores for all ten tau features. Higher positive numbers represent 
greater left hemisphere tau lateralization, whereas lower negative numbers represent greater right hemisphere lateralization. The progression of laterality 
over SuStaIn stage was visualized for each subtype. Lateralization generally increased with increasing SuStaIn stage. In some subtypes (particularly S2 and 
S3), strong lateralization was seen in both hemispheres later stages. b, The absolute (that is agnostic to hemisphere) lateralization was visualized against 
SuStaIn stage, indicating general increase in lateralization with more severe tau expression. c, A three-way relationship between age, SuStaIn stage and 
absolute lateralization is visualized, indicating these relationships covary but are independent of one another. For b, confidence interval represents 95% 
around line-of-best-fit across 1000 bootstrap samples.
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Extended Data Fig. 10 | Replication of subtype-specific epidemic spreading model. Replication of subtype-specific epidemic spreading model. We 
repeated analyses from Fig. 4, this time using functional connectivity from a sample of elderly healthy and MCI individuals, over a higher-resolution 
cortical atlas, as the connectome input to the model. The ESM was fit separately for each subtype; once using an entorhinal cortex epicenter (a), gray], 
and once with a subtype-specific best-fitting epicenter (b), blue]. For each plot, each dot represents a region. The x-axis represents the mean simulated 
tau-positive probabilities across the population, while the y-axis represents mean observed tau-positive probability. Each column represents a subtype. 
Confidence interval represents 95% CI around line-of-best-fit across 1000 bootstrap samples c) Visualization of the best-fitting epicenter selected by the 
model. d) For each subtype, the probability that each region’s best fitting epicenter for that subtype, based on bootstrap resampling (1000 samples).
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