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The brain recruits neuronal populations in a temporally coordinated
manner in task and at rest. However, the extent to which large-scale
networks exhibit their own organized temporal dynamics is unclear.
We use an approach designed to find repeating network patterns in
whole-brain resting fMRI data, where networks are defined as
graphs of interacting brain areas. We find that the transitions
between networks are nonrandom, with certain networks more
likely to occur after others. Further, this nonrandom sequencing is
itself hierarchically organized, revealing two distinct sets of net-
works, or metastates, that the brain has a tendency to cycle within.
Onemetastate is associatedwith sensory and motor regions, and the
other involves areas related to higher order cognition. Moreover, we
find that the proportion of time that a subject spends in each brain
network and metastate is a consistent subject-specific measure, is
heritable, and shows a significant relationship with cognitive traits.

resting-state networks | metastates | dynamic functional connectivity |
hidden Markov model

Resting brain activity is far from random and has been shown
to organize into a number of large-scale networks with

characteristic spatial architectures (1–3). It is also known that many
of the networks of activity found in the resting brain are also ob-
served in tasks (4). However, despite evidence at the microscale
that the brain deploys populations of neurons in a temporally co-
ordinated manner both in tasks (5) and at rest (6), relatively little is
known about the temporal organization of large-scale resting-state
networks. This has been limited to evidence of, for example, anti-
correlations between certain networks (7), long-range temporal
dependencies (8), and time-varying modularity (9, 10). Nonrandom
transitions have also been found between brain states defined as
electroencephalographic microstates (11), attractors in metastable
systems (12), or local minima in energy landscape analysis (13). In
this work, we hypothesize that there must exist more specific pat-
terns of temporal organization than have been described so far, and
propose that these transitions are not only nonequiprobable but are
themselves organized in a hierarchical manner.
To study the temporal organization of the brain’s large-scale

network dynamics, we used a method designed to discover net-
works that repeat over time (referred to as brain states). Impor-
tantly, we define networks as probability distributions representing
graphs, with not only distinct patterns of activation but, crucially,
also distinct patterns of functional connectivity. This approach has
access to temporal scales as fast as the data modality allows and
overcomes the statistical limitations of the sliding windows tech-
nique when applied to the analysis of brain dynamics (14–17).
Applying this method to whole-brain resting-state fMRI data from
820 subjects from the Human Connectome Project (HCP) (18)
reveals a clear temporal organization. We find that transitions
between different brain networks do not occur in complete ran-
domness; instead, certain networks are much more likely to follow
others in time. Further, this nonrandom sequencing of brain
networks is itself hierarchically organized, and strikingly reveals
two sets of brain networks, or metastates, that the brain has a
tendency to cycle within, with sporadic cycling between them. One
metastate is associated with sensorimotor and perceptual (visual

and auditory) regions. The other involves areas related to higher
order cognition, including regions of the default mode network
(DMN), language, and extensive prefrontal areas.
We also examine the most basic temporal characteristic of these

brain networks, or states, which is their occupancy. Occupancy is
defined as the proportion of time that each subject spends in each
brain state. Notably, these occupancies show a strongly dominant
mode of variation over subjects that corresponds to the same two
metastates that were apparent in the sequencing of brain networks.
We then demonstrate that the proportion of time spent in each
metastate is very subject-specific and significantly heritable. Not
only can we predict the metastate occupancy in a new session using
the occupancy from previous sessions but we can also significantly
predict the occupancy using behavioral information of the subject.
In particular, more occupancy of the cognitive metastate tends to
relate to positive traits, particularly to cognitive performance and
satisfaction. We analyze the relation of the metastates’ distribution
to sleep and motion, concluding that the high-level temporal dy-
namics are not an artifactual result of these factors.
In summary, this study highlights the hierarchically organized

temporal nature of resting-state networks of interacting brain areas,
characterizing its properties in a large cohort of subjects and re-
lating its cross-subject variability to behavior and heritability.

Results
Dynamic Switching Between Brain Networks Is Not Random.We used
resting-state fMRI data from 820 subjects in the HCP (18). Data
across the multiple subjects were temporally concatenated,
resulting in a single group data matrix from which a hidden
Markov model (HMM) with 12 states was inferred (Methods). The
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HMM states represent unique brain networks of distinct activity and
functional connectivity (where functional connectivity is defined as
Pearson correlation over time between brain areas) that repeat at
different points in time (19, 20). Other approaches (typically based
on sliding windows estimations and subsequent clustering) have been
proposed to find repeating states (21); the HMM, however, offers a
probabilistic (generative) model that, through a single process of
Bayesian inference (Methods), models the time series in a self-
contained manner. Here, whereas the states are estimated at the
group level, each subject has a characteristic state time course that
indicates the points in time at which that state is active. Fig. 1 shows
an illustrative 1-min section of the state time course for one example
subject. Mean activation maps are shown for three of the 12 inferred
states, along with their corresponding functional connectivity matri-
ces. The mean activity maps for all states are shown in Fig. S1.
We used the temporal structure of the inferred brain states to

reveal that the temporal organization of brain activity is, while
stochastic, not completely random. In particular, we examined the
HMM’s estimate of the transition probability matrix, which spec-
ifies the probability of transitioning from any state to another
(mathematical details are provided in Methods). Fig. 2A shows the
estimated transition probabilities in two different formats: a matrix
and a graph, where nodes represent states and arrow thickness
represents (thresholded) state transition probability. Community
discovery analysis using the transition probability matrix as an input
(22) reveals two sets of states or metastates (colored blue and red in
Fig. 2A), indicating that the brain tends to cycle between brain
networks within a metastate, with less frequent transitions between
them (the average number of metastate switches is ∼30 per scan-
ning session, and 96% of the sessions have at least one switch). To
gain confidence in the result, we performed bootstrapped subject
resampling (1,000 draws of 820 subjects with repetition) and ap-
plied the community discovery algorithm (22) on each bootstrap
sample separately. We obtained the exact same separation in all
bootstrap samples, confirming that the separation between these
sets is highly significant. Further, it was found that the probability of
transition between states heavily depends on how similar the brain
networks in those states are (estimated using the correlation

between the brain state functional connectivity matrices) but very
little on the correlation between the brain state activation patterns,
suggesting that changes at the level of connectivity are smoother
than changes at the level of absolute activation (Fig. S2).

Time Spent Visiting Distinct Brain Networks Is Not Random. Another
summary measure of the temporal characteristics of the states, or
brain networks, is the proportion of time spent visiting each state.
This is referred to as the fractional occupancy (FO) for each state
and for each subject. This allows us to examine the FO correlations
for each pair of states across subjects; that is, if matrix R refers to
the FO for all subjects, such that Ri,k is the proportion of time spent
by subject i in state k, then the (number of states by number of
states) FO correlation matrix C has elements Ck,l = corr (R.,k, R.,l),
where R.,k represents the column vector of R that corresponds to
state k. Fig. 2B illustrates the result of correlating the FO of each
pair of states across subjects and performing hierarchical clustering
(using Ward’s algorithm) on the resulting correlation matrix. This
analysis reveals between-state correlations that are extremely high
(with absolute values over 0.5 and often close to 1.0), indicating an
exceptionally clear hierarchical organization of the brain dynamics,
with the states divided into two sets, or metastates, corresponding
to those in Fig. 2A. More explicitly, here, the metastates correspond
to sets of states whose FOs are strongly correlated across subjects
(red blocks in Fig. 2B); conversely, the between-metastate FO
correlations are negative (blue areas in Fig. 2B). State 5, which was
included in one of the metastates by the previous community de-
tection analysis (Fig. 2A), is, however, uncorrelated to the rest of
the states in terms of its FO. This state, with a relatively strong
correlation with motion (Fig. S5A) and a much higher signal vari-
ance for all regions than the rest of the states (Fig. S5C), may well
be related to head movements, and is thus left out of subsequent
analyses. As we show in Supporting Information (Fig. S3), the
metastate organization in the FO correlation matrix can largely be
explained by between-subject differences of the Markovian dy-
namics encoded in the transition probability matrix. To illustrate
the extent to which transition probabilities (although estimated in
the HMM at the group level) can vary across subjects, we recal-
culated the transition probability matrix for the 100 subjects with
the highest occupancy for metastate 1 and the 100 subjects with the
highest occupancy for metastate 2. These are shown in Fig. 2C,
depicting much larger transition probabilities from metastate 2 to
metastate 1 in the first group, and the opposite in the second group.

The Emerging Metastates Have Distinctive Spatial Features. Fig. 3A
shows, for each metastate, a spatial map of the average absolute
amplitude within the metastate. Regions with high values in
these maps can be interpreted as having brain activity that de-
viates substantially from their average activity levels during the
time the metastate is active. Fig. 3B shows a spatial map of the
functional connectedness (or degree) of each brain area, com-
puted as the sum of the absolute value of functional connectivity
with the rest of the brain. Both the amplitude and connectivity
reflect a clear functional distinction between the first metastate,
composed of sensory (somatic, visual, and auditory) and motor
regions, and the second metastate, covering higher order cog-
nitive regions that include the DMN, language, and prefrontal
areas. The correlation between the absolute amplitude and the
connectedness maps is significantly positive (r = 0.52, P < 0.001).

Time Spent Visiting Brain Networks and Metastate Predicts Behavioral
Traits. If the temporal organization of the brain network dynamics
is functionally relevant, then it should link to behavior. We next
assessed how strongly the time spent (i.e., FO) in the states or
metastates can be predicted by subject-specific behavioral traits.
Motion, sex, age, body mass index, and a measure of surface
registration differences (using the surface-warping Jacobian
obtained from the multimodal surface matching process and
taking the mean of the absolute logarithm of the area ratio im-
ages) were regressed out as confounds from all of the considered
variables (FO and traits). Furthermore, we discarded the 10% of
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Fig. 1. HMM estimates a number of brain networks (or states) that are common
to all subjects, together with a specific state time course for each subject indicating
when each state is active. The states are characterized by their mean activation
and functional connectivity matrix. (Top) Sixty-second section of the state time
course for one example subject. Pr, probability. (Bottom) Mean activation maps
(projected from 50D ICA space to brain space) for three of the 12 inferred states,
along with their corresponding functional connectivity matrices.
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subjects with the highest measures of motion. Then, using
(Bayesian) partial least squares combined with permutation test-
ing (23), the relationship between FO and behavioral traits was
found to be statistically significant (P = 0.003; Methods).
We then questioned whether the metastates’ FO would be better

predicted by the behavioral traits than by the individual states’ FO, as
this would show that the metastates are behaviorally relevant above
and beyond the underlying brain states. Fig. 4A shows the explained
variance of each state’s FO, predicted using cross-validation (Meth-
ods), along with the explained variance of the metastate profile,
defined as the FO of the cognitive metastate minus the FO of the
sensorimotor/perceptual metastate. This analysis illustrates that the
prediction for the metastate is higher than any of the single states
separately (P < 0.001), suggesting that the metastates are not only
subject-specific but also relevant to behavior.
Next, to assess the individual significance of each variable (ei-

ther FO or trait), we use canonical correlation analysis (24).
Motion, sex, age, body mass index, and registration differences
(discussed above) were again regressed out as confounds from all
of the considered variables (FO and traits). We then looked at the
individual correlation of each behavioral trait or each state’s FO
against the opposite canonical covariate (i.e., the canonical
covariate of the state FO was used for the behavioral traits, and
vice versa; Methods). Fig. 4B shows the behavioral traits and brain
states separated into two groups according to the sign of the
correlation, where the four colored boxes (red and blue) indicate
statistical significance (permutation testing, significance level of
0.05). As observed, there is a tendency of the positive traits to
correlate with the FO of the higher order cognitive metastate.

Time Spent in Each Metastate Is a Subject-Specific, Heritable Measure.
Given that we have seen that the proportion of time spent in
each metastate is associated with behavioral traits (Fig. 4 A and
B), we could also expect them to be very subject-specific mea-
sures. To assess this, we performed cross-validated predictions of
the FO for each session, either for the states or the metastates, as
a function of the FO of the other three sessions for the same
subject. Fig. 4C shows that, despite the fact that the subjects were
scanned on different days, the metastate FOs are consistent
across sessions and can be reliably predicted.
It has been recently reported that functional connectivity

within and across large-scale brain networks has a heritable
component (25, 26). Here, we found that both the states’ FO and
the metastates’ FO are also highly heritable. The dataset contains
twin structure, including a combination of nonidentical twins and
nontwin siblings. That allowed us to compare whether related sub-
jects had a more similar metastate profile than nonrelated subjects.
For each pair of subjects, we computed the absolute difference of
their metastate profile values, gathering a distribution of differences
for each type of familial relation. Fig. 4D (Left) shows that identical
twins, followed by nonidentical twins and then nontwin siblings, all
have a closer metastate profile than unrelated individuals. We also
calculated the correlation of the state FO (a vector of 12 elements
per subject) for each pair of individuals. Fig. 4D (Middle) reveals a
huge difference between unrelated pairs of subjects and pairs of
subjects that are twins or even nontwin siblings. We then questioned
whether these differences in the state FO were solely due to the
differences in the metastate profile. To answer this, we regressed the
metastate profile out of the FO and repeated the analysis. Fig. 4D
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DMN, language, and extensive prefrontal areas). This
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Fig. 2. Transitions between brain networks are not
random, giving rise to two very distinct sets of states,
which are referred to as metastates. (A) Transition
probability matrix (Top Left) indicates the probability
of transitioning from any state to another, showing
that some transitions are much more likely than
others. This is apparent when shown in graph format
(Top Right and Bottom), where the nodes represent
brain states and the thickness of the arrows repre-
sents the state transition probability (transitions
were thresholded for readability). (B) FO matrix,
which contains the total time spent in each state per
subject, exhibits exceptionally strong correlations
between states across subjects. Even more strongly
than the transition probability matrix, these corre-
lations indicate a clear hierarchical metastate struc-
ture. Hierarchical clustering (illustrated above the FO
correlation matrix) confirms this result. (C) Transition
probability matrix for the 100 subjects with the
highest occupancy for metastate 1 and the 100 sub-
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(Right) indicates that whereas many of the differences were actually
due to the heritability of the metastate profile, the specific states’ FO
contains further information that is also heritable.

Are the Metastates Related to Motion and/or Sleep? One possible
concern about the cognitive interpretation of the metastates is
whether they are driven by motion. However, the correlation
between head motion (measured as the session average) and the
metastate profile is relatively low (r = 0.05) in comparison to
other subject measures (Fig. S4A). Also, the correlation between
motion and the metastate profile is very low in comparison to the
individual state correlations (Fig. S4B). In particular, state 5 [the
one associated with the highest signal variance (Fig. S4C)] has
the highest correlation with motion in absolute value, followed
by state 6, which corresponds to the DMN and anticorrelates
with motion significantly. Furthermore, if we regress motion out
of the FO matrix and then repeat the calculation of the corre-
lation between the states’ FO across subjects (as in Fig. 2B), the
two metastates (and the unrelated state 5) are still evident (Fig.
S4D). Therefore, although there seems to be a certain influence
of motion on the individual states, the metastate distribution
appears to be relatively free of motion confounds.

If we consider the metastates to represent a high-level state of
cognition, then it is important to consider how the metastates relate
to macrostates such as sleep. As reported by Tagliazucchi and Laufs
(27), many subjects transit from wakefulness to sleep stages N1 and
N2 during the first 10 min of the resting-state session, and that is
certainly a major cause of genuine neural activity change over time.
Moreover, if we divide the 15-min sessions into four blocks, the
occurrence of the metastates varies significantly between the four
blocks, with an increase in the occurrence of the sensorimotor/
perceptual metastate as the session progresses (Fig. S5A).
Hence, do the sensorimotor/perceptual and cognitive meta-

states simply represent sleep and wakefulness, respectively? Al-
though it is possible that the sensorimotor/perceptual metastate is
higher in states of drowsiness and sleep (given Fig. S5A and the
results from ref. 27), we argue that there is more information in
the metastates than just sleep, and that both metastates coexist in
pure wakefulness. First, the HCP resting-state protocol corre-
sponds to subjects having their eyes open with fixation, which
reduces the probability of falling asleep. Second, the amount of time
spent, on average, in the sensorimotor/perceptual metastate during
the first minute of scanning (when sleep is highly unlikely) is around
20 s (Fig. S5B). Third, if we look at the state dwell times of the

U
nr

el
at

ed

Id
en

tic
al

 tw
in

s

N
on

-id
en

t. 
tw

in
s

N
on

-t
w

in
 s

ib
lin

gs

StatesMetastates

di
ffe

re
nc

e

F
O

 c
or

re
la

tio
n

F
O

 c
or

re
la

tio
n

C

BA

M
et

as
ta

te
s

E
xp

la
in

ed
 v

ar
ia

nc
e 

(r
2 )

S
ta

te
 1

Behavioural traits predict states and metastate

States, after regressing 
metastates out

Metastates and states are heritable

S
ta

te
 2

S
ta

te
 3

S
ta

te
 4

S
ta

te
 5

S
ta

te
 6

S
ta

te
 7

S
ta

te
 8

S
ta

te
 9

S
ta

te
 1

0

S
ta

te
 1

1

S
ta

te
 1

2

P
re

di
ct

ed
 F

O

FO U
nr

el
at

ed

Id
en

tic
al

 tw
in

s

N
on

-id
en

t. 
tw

in
s

N
on

-t
w

in
 s

ib
lin

gs

U
nr

el
at

ed

Id
en

tic
al

 tw
in

s

N
on

-id
en

t. 
tw

in
s

N
on

-t
w

in
 s

ib
lin

gs

D

Metastate 1: r=0.745
   Metastate 2: r=0.736

Inhibitory Control
Processing speed

Life Satisfaction

Emotional Support

Cognitive Flexibility

Reading

Agreeableness
Spatial Orientation

Attention TN

Friendship
Positive Affect

Vocabulary
Instrumental Support

Episodic Memory
Mean Purpose

Fluid Intelligence Accuracy
Extraversion

Emotion Recognition
Attention TP

Fluid Intelligence Speed
Verbal Episodic Memory

Fear-Affect
Fear-Somatic

Anger-Aggression

Loneliness

Perceived Stress
Perceived Hostility

Sadness
Anger-Affect

Anger-Hostility

Perceived Rejection
Openness to Experience

Neuroticism
Working Memory

Conscientiousness

State 6
State 8

State 10
State 9
State 7
State 12
State 11
State 2

State 4
State 5

State 3
State 1

(H0: r2 for metastate is not higher than r2 for best state)

0.1

0.06

0.02

1.0

0.6

0.2

0.2 0.6 1.0

0.7

0.5

0.3

0.1

0.7

0.5

0.3

0.1

0.7

0.5

0.3

0.1
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metastates (after removing metastate visits shorter than 4 s to rule
out noisy artifactual transitions), Fig. S5C shows that most of the
transitions are too short to capture sleep or wakefulness periods (e.g.,
around 50% of the metastate visits are shorter than 15 s even when
ignoring the shortest visits). Finally, if the metastates are primarily
capturing sleep versus wakefulness, we might expect the metastate
profile to correlate highly with the Pittsburgh Sleep Quality Index
(PSQI) score provided within the HCP set of variables, which es-
sentially measures the quality and pattern of sleep of the subjects.
The PSQI is, however, uncorrelated to the metastate profile (r =
−0.0056). Fig. S5D shows that this correlation is lower in absolute
value than the majority of the behavioral variables considered in this
study. Also, as illustrated in Fig. S5E, this correlation is lower than
most of the states when considered separately. Altogether, our re-
sults suggest that the metastate organization goes beyond separating
wakefulness and sleep, and arguably represents a more general and
ubiquitous temporal pattern in spontaneous brain activity.

Discussion
Robust patterns of synchronized activity can be measured in the
brain in both task and rest. The spatial organization of these pat-
terns at rest has been studied well. In this study, we focus on the
temporal organization of the dynamics of the resting-state net-
works, and discover a temporal hierarchy in which brain networks
are organized into two distinct sets, or metastates. These metastates
have a clear functional separation (cognitive versus sensorimotor/
perceptual) that is consistent across subjects, relates to behavior, is
heritable, and is reproducible (Supporting Information and Fig. S6).
Although other work has reported hierarchical aspects of the fMRI
resting-state networks (28–30), these analyses assume the existence of
a hierarchy in the first place, whereas the HMM neither imposes nor
encourages it; that is, if a hierarchical structure arises from the HMM
results, then this is purely driven by the structure in the data. More
importantly, whereas previous work extracts the hierarchical structure
from the zero-lag correlations of the [voxels’ or independent com-
ponent analysis (ICA) components’] time series, we are here re-
ferring to the hierarchical structure of the network dynamics. This
hierarchy manifests in two ways: first, in the hierarchical structure of
the transition probability matrix (i.e., the hierarchy emerges not from
correlations but from transitions) and, second, in the FO correlation
across subjects [i.e., it is not the correlation of the time series within
subjects but the correlation between the (subject-specific) averaged
state probabilities (of which the FO is an estimation) across subjects].
These results can be related to current theoretical perspectives

on cognition. First, the hierarchy of brain networks (in the form
of the metastates) and, more generally, the nonrandom transitions
between the states naturally imply that current and previous brain
states can constrain future states in task-free conditions. This re-
lates to, and can potentially complement, current results on the
persistence of activity in specific areas of the brain (31) to the
whole brain. Second, there is some overlap between the meta-
states and the two extremes of the principal axis of structural
connectivity variation estimated by Margulies et al. (32), which is
based on a mathematical decomposition of the structural con-
nectivity elicited from the same 820 subjects used in this study.
This coincidence of structural and functional hierarchies is
meaningful from a theoretical perspective and deserves further
investigation, perhaps also at other hierarchical levels. Third, from
an evolutionary psychology perspective, it is interesting to observe
that FO of the higher order cognition metastate is, in general,
positively correlated with positive traits, and so may indicate an
adaptive value of intrinsically generated mental states (33).
Leveraging the common framework provided by the HMM to

integrate different data modalities, future work will aim to in-
vestigate whether or not the same hierarchical structure and
metastates can also be found in electrophysiological data such as
magnetoencephalography and electroencephalography. To this
end, we will use an observation model specifically tailored to this
type of data (34).

Alternative Representations of the Data. It is worth noting that we
are not claiming the HMM to be the ground truth or to explain all
aspects of the data, but to offer a useful perspective on the data.
Other models and techniques such as multivariate autoregressive
modeling (35) or lag-based activity propagation approaches (36, 37)
offer their own complementary and useful descriptions of the dy-
namics in the data. In this work, the HMM has been able to reveal a
strong hierarchical structure in the data, represented by metastates.
While it is possible that the same (or related) phenomena might be
detected using other approaches, it is unclear how this would be
achieved in practice. An advantage of the HMM over other tech-
niques is that the HMM explicitly parametrizes time-dependent in-
formation (in the form of the state time courses), such that it can be
more easily used to access network dynamics [e.g., in task responses
(20)]. In Supporting Information, we explore the relationship between
the HMM and both the multivariate autoregressive model and lag-
based activity propagation analysis in more detail.

Data Stationarity. The HMM assumes that, within each state, the
data are drawn from a single given HMM observation model,
which is defined by a single set of parameters. Although more
general statistical definitions of stationarity exist (38), we here
refer to stationarity with respect to the observation model used by
the HMM, which, in this case, is a multivariate Gaussian distri-
bution. In other words, we refer to data as being nonstationary
when they have a time-varying mean and/or covariance within a
given session. Now, the facts that (i) the HMM needs more than
one state to model the data and does not collapse into a single
state and (ii) multiple states are inferred with significantly dif-
ferent observation model parameters suggest that the data are
nonstationary in this sense. Further evidence supporting non-
stationary can be gathered from the synthetic data used in Sup-
porting Information (Using the HMM to Assess Nonstationarity).
In relation to this question, recent studies have reasonably ques-

tioned whether observed changes in dynamical functional connectivity
in resting-state fMRI are due to genuine brain transitions or, rather,
are mostly explained by sampling variability (14–17). However, these
valid concerns are specific to techniques that measure dynamic
function connectivity using sliding windows. The HMM, however, can
bypass the problem of sampling variability by using, for each state, the
entire set of subjects to provide an estimation of functional connec-
tivity (SI Methods). The amount of data used to infer the network
characteristics for each brain state is thus orders of magnitude larger
(on average, 820 subjects × four sessions × 1,200 time points per
session, divided by 12 states) than that which a sliding window can
possibly encompass, especially given the size of the dataset used in
this study. At the same time, and unlike long sliding windows, the
model is able to capture quick changes in brain activity.

Conclusion
Altogether, our approach reveals an intriguing property in the
resting-state temporal dynamics: The brain transitions between
networks in a manner that is stochastic yet not completely ran-
dom. More specifically, there is a hierarchical organization of the
brain networks into two major metastates, whose functional at-
tributes are well separated, such that one metastate covers regions
that correspond to the sensorimotor systems and perception,
whereas the other relates to high cognitive functions. The evi-
dence of temporal organization of large-scale network states in
the resting brain adds to previous evidence at the microscale in
both task (5) and rest (6), suggesting that this is a general char-
acteristic of activity in human cognition that exists at a wide range
of spatiotemporal scales. This perspective, and the methods used
to provide it, paves the way for future investigations into the
cognitive role of the temporal dependency of brain network states
(e.g., in short-term memory and learning). Further, it contributes
to the important debate about the feasibility of assessing dynamic
functional connectivity in resting-state fMRI by showing the re-
lation of our estimations to behavior and heritability.
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Methods
Data and Preprocessing. We used resting-state fMRI data from Ν = 820 subjects
from the HCP, which provides the required ethics and consent needed for study
and dissemination, such that no further institutional review board (IRB) approval
is required. These are all subjects with complete resting fMRI data from the
900-subject public data release, all healthy adults (aged 22–35 y, 453 females)
scanned on a 3-T Siemens connectome-Skyra. For each subject, four 15-min runs
of fMRI time series data with a temporal resolution of 0.73 s and a spatial res-
olution of 2-mm isotropic were available. The preprocessing pipeline followed
the technique of Smith et al. (18, 39), and thus will be described only briefly here.
Spatial preprocessing was applied using the procedure described by Glasser et al.
40. After structured artifact removal using ICA followed by FMRIB’s ICA-based
X-noisefier (FIX) from the FMRIB Software Library (FSL) (41), which removed more
than 99% of the artifactual ICA components in the dataset, we used group spatial
ICA to obtain a “parcellation” of 50 components that covers both the cortical sur-
faces and the subcortical areas. We did not use global signal regression. Then, we
used this parcellation to project the fMRI data into 50D time series. Such time series
(size: number of participants × number of scans × number of time points × number
of ICA components = 820 × 4 × 1,200 × 50) were finally standardized so that, for
each scan, subject, and ICA component, the data have a mean of 0 and SD of 1.

Hidden Markov Modeling. The HMM assumes that the time series data can be
described using a sequence of a finite number of states. Each state is here
represented by amultivariate Gaussian distribution, which is described by the
mean and covariance. The HMM is inferred using the (publicly available)
HMM-MAR (multivariate autoregressive) toolbox, which provides estimates

of the parameters of the state distributions, the (group-level) transition
probability matrix, and the probabilities of each state to be active at each
time point (20, 42). The FOs are computed as the aggregations of these
probabilities for each subject. Full details are provided in SI Methods.

Estimation and Statistical Testing On the Metastates. The presence of the
metastateswere investigated in twodifferentways. First, the Louvain community
detection algorithm (22) was used on the transition probability matrix. This
method aims to find communities or nodes (here, metastates) in a graph (here, a
directed, weighted graph representing the transition probability matrix), such
that the connectivity between the nodes (here, states) within a community is
strong with respect to the connectivity across communities. Second, we looked
at the structure of the correlation matrix of the FOs, which contains the cor-
relation for each pair of states’ FO across subjects. Full details of this and the
statistical testing with behavior and heritability are provided in SI Methods.
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