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human speech system exhibits a remarkable flexibility by adapting to
alterations in speaking environments. While it is believed that speech
motor adaptation under altered sensory feedback involves rapid reor-
ganization of speech motor networks, the mechanisms by which
different brain regions communicate and coordinate their activity to
mediate adaptation remain unknown, and explanations of outcome
differences in adaption remain largely elusive. In this study, under the
paradigm of altered auditory feedback with continuous EEG record-
ings, the differential roles of oscillatory neural processes in motor
speech adaptability were investigated. The predictive capacities of
different EEG frequency bands were assessed, and it was found that
theta-, beta-, and gamma-band activities during speech planning and
production contained significant and reliable information about motor
speech adaptability. It was further observed that these bands do not
work independently but interact with each other suggesting an under-
lying brain network operating across hierarchically organized fre-
quency bands to support motor speech adaptation. These results
provide novel insights into both learning and disorders of speech
using time frequency analysis of neural oscillations.
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ONE OF THE HALLMARKS OF THE human speech production system
is its ability to adapt under a variety of distortions in speech
environments (Houde and Jordan 1998; Jones and Munhall
2005; Purcell and Munhall 2006; Tremblay et al. 2003; Villa-
corta et al. 2007; Nasir and Ostry 2006; Lametti et al. 2012).
This adaptive ability is a fundamental trait of the brain and is
critical for normal speech development and language learning
abilities (Perkell 2012; Guenther 2006), and its breakdown can
cause debilitating speech disorders such as stuttering (Cai et al.
2012) and ataxia (Zeigler and Wessel 1996). Speech motor
adaptation, unlike motor learning in human arm movement
tasks, exhibits a wide range of individual differences across
subjects. In studies of motor speech adaptation under altered
sensory feedback, both for auditory and somatosensory pertur-
bation, differences in individual responses have been noted
wherein some subjects who do not adapt under altered auditory
feedback may adapt under somatosensory feedback and vice
versa, while others do not adapt to the task at all (Lametti et al.
2012). Since very little is known about the neural basis of
speech motor learning, a careful and systematic study of
outcome differences will elucidate the factors, processes, and
brain regions that contribute to such variability in motor speech
adaptation.

The present study aims to investigate this question of out-
come differences in adaptation by examining oscillatory brain

activity in EEG recordings while subjects perform a speech
motor training task under altered auditory feedback. In partic-
ular, the study tests the idea that adaptation differences are
captured and predicted by distinctive EEG spectral profiles
and, therefore, elucidates the differential role of the various
EEG frequency bands in motor speech adaptation. EEG fre-
quency bands have been found to play specific roles in differ-
ent aspects of motor control (Lisman and Jensen 2013; van
Wijk et al. 2012), with distinct bands contributing to planning,
executing, and feedback control. For example, the gamma band
plays a role in voluntary motor control (Douglas et al. 2008;
Cheyne et. al. 2008), beta band plays a role in motor planning
(McFarland et. al. 2000; Tzagarakis et. al. 2010), and theta-
band activity modulates higher frequency beta and gamma
bands during both planning and execution of motor tasks
(Canolty et. al. 2006; Perfetti et. al. 2011) and alpha band in
sensory perception (Strauss et al. 2014). More recently, neural
oscillations have also been implicated in the context of human
speech (Arnal and Giraud 2012; Arnal et al. 2011; Giraud and
Poeppel 2012; Sengupta and Nasir 2015). We therefore expect
these frequency bands to be involved in motor speech adapt-
ability.

This paper aims to address the involvement of neural oscil-
lations at the scalp electrode level in two steps: first, what are
the electrodes and the frequency band activities at them that
correlate with the degree of speech motor adaptation, and
second, how much reliable information is contained in these
activities based on which one can predict whether subjects will
adapt or not. Our analyses revealed that only a handful of
electrodes contained reliable information in the low-frequency
theta band, medium-frequency beta band, and high-frequency
gamma band based on which accurate prediction on adaptation
outcome was possible. Moreover, it was found that the bands
do not operate independently but interact with one another
demonstrating how coupled frequency bands support adaptive
behavior through brain networks operating across multiple
spatiotemporal scales. Such a predictive analysis (Waldert et
al. 2008; Markser et al. 2015; Wang et al. 2010; Quandt et al.
2012; Freyer et al. 2013; Brodski et al. 2015; Myers et al.
2014) will not only illuminate the mechanisms underlying the
development of speech learning but will also aid in our under-
standing the basis of speech motor disorders.

METHODS

Subjects

Study participants included 17 male subjects between the ages of
19 and 30 (21.7 � 0.6 yr). All subjects were English speakers without
any known history of hearing or speech disorders. The Northwestern
University Research Ethics Board approved all experimental proce-
dures, and informed consent was obtained from all subjects before
their participation in this study.
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Experimental Setup and Task

Experiments were conducted in a soundproof booth. The experi-
mental task consisted of speech motor training under continuous
recording of EEG. A target word “Head” was displayed on a computer
monitor and the subjects were instructed to read aloud the word as it
appeared on the screen. Each subject repeated the target utterance for
8 baseline blocks followed by 12 training blocks and 5 after-effect
blocks. Each block consisted of 12 trials each. Our goal was to
investigate the mechanisms of adaptation, and hence, the analyses
focused on the baseline and training phases only. Moreover, the
after-effect persisted much longer without reaching the baseline level
and was excluded from further analyses. A pause of 1–2 min between
blocks and 2.5 s between trials was inserted to prevent fatigue.
Subjects received normal auditory feedback in the baseline and
after-effect phases, while in the training phase auditory feedback
was perturbed by shifting the first two formant frequencies of the
target vowel /æ/ towards /I/ as in “Hid” (Fig. 1A). Estimates of
formant shifts were obtained at the start of the experiment for each
subject during a screening phase when the vowel space was
mapped out. The intensity of the feedback signal played back to
participants was adjusted to 80 dB to minimize air-borne unaltered
auditory feedback. A masking noise of 60 dB was also delivered
through the headphones to minimize any bone-conducted unaltered
feedback.

Neural activity was assessed during the baseline and at early and
late training phases (defined below; also see Sengupta and Nasir
2015). A time window extending from 300 ms before to 600 ms
after the voice onset was selected for analyzing the data so as to
capture the neural processes related to speech planning (300 ms
before voice onset), production (300 ms after the onset), and
feedback error processing (300 ms following production) within
each utterance.

Altered Feedback

The formant frequencies of the vowels were altered in real time
during speech production following the methods of altered auditory
feedback paradigm (Jones and Munhall 2005; Purcell and Munhall
2006). The LabView real time language implemented in the National
Instruments PXI system can estimate the formant frequencies using
the Burg algorithm and update the linear predictive coding (LPC)
filter coefficients of the speech signal at a rate of 10 kHz. The
participant’s voice was recorded at 10 kHz to obtain offline estimates
of the formant frequencies.

Acoustical Analyses and Learning

PRAAT and customized Matlab routines were used to extract the
first and second formant frequencies of each utterance of the target
sound for each subject. The formant frequencies were normalized by
subtracting their baseline mean. To assess speech motor adaptation,
the focus was only on the produced first formant frequency (f1) as the
shifts in the second formant frequency (f2) were much less (�10% of
the f2 value of head) compared with shifts in f1 (�25%) (Fig. 1B).
Formant compensation was measured over the course of training and
assessed for statistical significance (see below) between the early and
late training phases at P � 0.01. A regression line was fitted over all
the training trials and the slope was used as an estimate for the degree
of adaptation; a significant positive slope implied successful adapta-
tion while a negative slope implied nonadaptation. By this measure
nine subjects adapted, called adapters, and eight did not and were
termed nonadapters. It should be noted that there was no significant
difference between the produced second formant frequencies of the
two groups. An earlier paper (Sengupta and Nasir 2015) focused only
on the adapters for investigating the role of theta-gamma phase
coupling in the formation of feedforward map associated with adap-
tation. In the current study, we considered both adapters and non-
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Fig. 1. Experimental setup. A: shifts in the first formant
frequency during the utterance “Head.” Blue trace shows the
unperturbed 1st and 2nd formant frequency; red trace shows
shifted formant frequency. B: averaged first formant frequency
over the course of the experiment for adapters (blue) and
nonadapters (red). Clear differences can be seen between two
groups. Different experimental phase, baseline, early training
and late training, are shown in grey. C: EEG signals were
recorded from 26 electrodes spanning central, parietal, frontal
and temporal scalp locations. D: overall power extracted at a
representative electrode location, CPz, and averaged over the
adapters and the nonadapters for different experimental phases.
Differences between the two groups can be clearly seen in the
total power between adapters, most conspicuously in late
training. Also, note how the total power varies between adapt-
ers and nonadapters at different speech epochs. The line
thickness indicates the standard error of mean.
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adapters and examined the predictable roles played by the EEG
frequency bands in accounting for outcome differences in speech
motor adaptation. Neural activity was assessed during baseline and at
early and late training phases. The baseline phase consisted of the last
50% of the trials in baseline, the early training phase consisted of the
first 30% of the trials of the training phase, and the late training phase
consisted of the last 30% of the trials of the training phase so that each
of the phases contained equal number of trials.

EEG Acquisition

A 64-channel active Brainvision system was used to obtain EEG
data at a sampling rate of 512 Hz using. The electrodes were mounted
on an elastic cap following the standard 10–20 system of electrode
placement and electrical impedances of the scalp electrodes were kept
below 10 k�. For our analyses, we excluded electrodes over the
occipital region and focused only on the electrodes on the temporal,
parietal, and frontal areas of the scalp that are directly above the
cortical regions supporting the speech motor task. We also excluded
electrodes over the extreme temporal and frontal region to minimize
movement artifacts and analyzed the remaining 38 electrodes indi-
cated by gray circles in Fig. 1C. Participants were instructed to
minimize eye blinks and head movements during word production and
a brief hiatus between trials and blocks was inserted to prevent fatigue
and muscle tension.

A TTL pulse delivered by the real-time Labview system was used
for detecting of voice onset (Fig. 1E) and provided a time stamp for
the alignment of the EEG signal and allowed for offline extraction of
event-related potentials (ERPs).

Analysis of Power Orofiles

Filtering. The EEG signals were extracted using Matlab based
EEGLAB toolbox. A second-order Butterworth filter was used to filter
the signal offline between 0.75 and 55 Hz. The trial ERP epochs were
then time aligned at the initiation of voice onset and extended from
900 ms before and after voice onset and re-referenced at electrode
AFz. The average of the prevoicing part of the signal was subtracted
before conducting further analyses.

Artifact rejection. Eye movements, head movement, and muscular
activity giving rise to stereotypical artifacts arising were removed by
detecting epochs in which the scalp voltage at any of the electrode
locations exceeded 50 �V and excluding them from further analysis.
Further artifact rejection was done to detect for the presence of
aberrant temporal patterns, large negative kurtosis spectral peaks that
coincided with muscle activation based on independent component
analysis (Olbrich et al. 2011). The average number of trials discarded
per subject was �15%.

EEG frequency bands. The ERPs obtained were filtered to obtain
the instantaneous power of rhythmic activity over five frequency
bands: delta (1–3 Hz), theta (3–8 Hz), alpha (8–14 Hz), beta (14–30
Hz), and gamma (30–50 Hz). Each trial epoch was filtered using a
fourth-order Butterworth filter to obtain the oscillatory component in
each band. We then used the Hilbert transformation to obtain the
instantaneous amplitude of the signal and squared it to obtain the
power. Normalized power for each trial was obtained by dividing out
by the overall power.

Generalized linear model analysis. To determine the electrode
locations associated with speech motor adaptation, we first used a
generalized linear model (GLM) (McCullagh and Nelder 1989) to
quantify how the activity of the EEG power in each frequency band
varied with the outcome of speech motor adaptation, as measured by
the regression slope (see above). For each band, the instantaneous
power levels averaged over a 10-ms time window slided in steps of 4
ms within the band was modeled as a linear weighted sum of the
degree of adaptation. The average power within the window was
calculated for each subject and then the power data and slopes for all

17 subjects were fed into the GLM model to obtain the linear weights.
These weights capture the differences of the adaptation outcomes on
power of the EEG frequency bands. We only chose those weights that
were significant at P � 0.01 (uncorrected). The GLM analysis was
carried out for each electrode location and at each frequency band
separately to identify the electrodes within each band that accounted
for the observed outcome differences. The coefficient obtained from
the GLM was normalized between �1 and 1 before displaying on a
scalp plot. A positive coefficient implies a positive relationship
between power levels and adaptation outcome and vice versa.

Linear classification. To further examine the roles played by the
EEG frequency bands in predicting behavioral outcome, a linear
time-frequency pattern classification (Waldert et al. 2008) was carried
out using the Matlab. For each subject, electrode location and fre-
quency band the averaged power computed over 20-ms sliding win-
dow and in step of 4 ms were used for the classification analysis
(Friedman et al. 2009). Each subject belonged to a single class of
either an adapter or a nonadapter. With the use of these data, the
classifier was trained on about half of the subjects and tested on the
remaining half. This process was iterated for 4,000 times so as to
obtain a large number of bootstrapped samples for carrying out the
classification analyses. In each iteration the bootstrap sampling
method without replacement (Efron 1982; Perfetti et al. 2011) was
used to randomly select 9 subjects from a total of 17 that were used
for training the classifier, while the remaining 8 subjects for testing the
classifier. Partitioning of the training and test sets containing roughly
equal number of subjects makes the classification task much harder
and allows to obtain better estimate for classification accuracy. The
statistical significance for classification was computed using Binomial
distribution. The probability of success in correctly classifying an
adapter or a nonadapter is 0.5 and achieving a success rate greater than
80% (at least 6 success out of 8) has a probability of P � 0.03. The
average accuracy rate over all 4,000 bootstrap samples was then
calculated and the electrode locations and the times for which the
averaged accuracy crossed the threshold of 80% were determined. We
thus obtained a set of electrodes within each frequency band and times
that reliably predicted behavioral outcomes with an accuracy of 80%
or better.

To evaluate the robustness of the bootstrapping procedure we
calculated effect sizes associated with the classification accuracy rate.
At the threshold crossings where the mean accuracy exceeds 0.5
(classification at the chance level), the effect sizes were at least 2.2 or
greater with P � 10�8.

Principal component analyses. Principal component (PC) analyses
were performed to reveal cross-band interactions at the source level
(Friedman et al. 2009). Separate PCs were computed for each fre-
quency band by taking the data set from all 17 subjects. Analyses were
conducted subsequently on the first three PCs as they account for up
to 80% of the variance in the data. The above linear classification was
conducted to identify the PCs contributing to outcome differences. To
quantify cross-band interactions, covariance was computed between
the PC time series across the frequency bands that crossed the
classification threshold and the averaged covariance between adapters
and nonadapters was compared using a t-test for statistical
significance.

Statistical analysis. Adaptation for each subject was assessed using
one-way ANOVA followed by Tukey’s honestly significant differ-
ence to confirm that the adapted subjects altered their production
significantly higher at the end of training relative to the baseline (P �
0.01).

Statistical significance of classification analyses was also con-
ducted under the t-test and, separately, using repeated-measures two-
way ANOVA. The analyses were carried out at each electrode
location and using the same time windows as in the classification
analyses. For ANOVA, statistical significance was ascertained when
there was a main effect (P � 0.05) for the groups followed by Tukey’s
honestly significant difference (P � 0.05) that compared differences
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between the adapters and nonadapters at early and late training phases.
It should be noted that classification methods and ANOVA tap into
different types of information and may not yield identical results.

RESULT

The goal of this study was to elucidate the role of the various
EEG frequency bands in predicting behavioral outcomes of
speech motor adaptation under the paradigm of altered auditory
feedback. Subjects were asked to repeat the word “Head”
under continuous recording of EEG. The experiment consisted
of an initial baseline phase with unaltered feedback followed
by a training period in which the first formant frequency (f1) of
the auditory feedback was shifted downward. Figure 1A shows
the spectrograms of the target vowel utterance /e/ (as in
“Head”) with its produced f1 marked in blue and the downward
shifted auditory feedback /I/ (sounded as “Hid”) marked in red.
The response to the altered feedback during the training phase
varied across subjects and resulted in two different outcomes:
nine subjects who adapted to the task (henceforth “adapters”)
compensated for the auditory perturbation by gradually shifting
the f1 production upwards so that the auditory feedback re-
ceived at the end of the training matched closely the target
vowel sound /ae/, while eight subjects did not adapt to the
perturbation (henceforth “nonadapters”). Figure 1B shows the
produced f1, normalized relative to the baseline and averaged
across subjects, for both adapters and nonadapters. In the
baseline phase, the formant production is similar for both
groups. During the training phase, the f1 production showed
upward compensation in response to downward auditory shift
is clearly evident for the adapters, whereas for the nonadapters
the production seemed to follow the perturbation. A split-plot
ANOVA revealed significant differences between the two
groups [F(1, 15) � 6.61, P � 0.025] with a significant
interaction (P � 0.05). A post hoc analysis revealed significant
differences between the two groups at late training at P � 0.01.
To quantify outcome differences, a straight line was fitted on
the training data and its slope was used as a measure of
adaptation; a significant positive slope indicates successful
compensation to auditory perturbation.

The locations of the EEG recording electrodes are shown in
Fig. 1C. The signals were aligned at the voice onset and were
divided into three epochs for analyses (Fig. 1D). A time
window of �300 ms to the voice onset (at 0 ms) was defined
as the speech-planning epoch; from 0 to 300 ms as the
speech-production epoch; from 300 to 600 ms as the postpro-
duction epoch. This partitioning allowed us to study the dy-

namics of the neural activity at temporal windows before,
during, and following each utterance so as to capture planning,
production, and feedback error processing related activity dur-
ing utterances. As the motor training proceeded, we monitored
how neural activity changed in these time windows during the
feedforward and feedback processes that accompany speech
motor adaptation. Thus activity during the planning epoch shed
light on motor preparation and feedforward control, while
activity during speech production captures motor control, and
while the postproduction epoch highlights later stages of feed-
back error processing and updating of existing motor maps. To
capture the evolution of neural activity with training, we took
the last 30% of the baseline trials (baseline), the first 30% of
the training trials (early training), and the last 30% of the
training trials (late training). By focusing on baseline and early
and late training, we were able to determine how feedforward
and feedback processes evolved over the course training and
how they differed between adapters and nonadapters.

To understand the contributions of the various frequency
bands toward adaptation, we worked with the instantaneous
power of the neural activity within each band. Our first step
was to see if and how the power traces of the various EEG
frequency band changed with training. Figure 1D shows the
time series of the total power averaged over across all subjects
for each frequency band and at different experimental phases
for a representative electrode location CPz during the baseline,
early, and late training phases (adapters in blue, nonadapters in
red). For this electrode, distinct activation patterns between the
two groups emerged at late training suggesting contrasting
brain activity accompanying their behavioral differences.
Figure 2 further shows scalp plots for the five different EEG
frequency bands, delta, theta, alpha, beta, and gamma, that
capture mean differences in neural activity between the adapt-
ers and the nonadapters. This was obtained for each group by
averaging the total power in each band over all the speech
epochs (300 ms before the voice onset to 600 ms after) and
then taking the difference between the two groups. Even in this
large window of averaging, the scalp plots clearly show wide-
spread power differences across all EEG frequency bands
between the two groups providing the first indications that
EEG band power profiles are likely contain information about
differences in speech motor adaptation.

Our next objective was to identify the electrode locations
within each frequency band at different training phases that
contained information about adaptation outcomes. We first
used a GLM to identify the electrode locations whose power

-1 1

Delta Theta Alpha Beta Gamma

Early 
training

Late 
training

Fig. 2. Power scalp plots. Power differences between adapters
and nonadapters are shown at late and early training and for
different EEG frequency bands. These are averaged across
subjects and over all speech epochs. Power differences are
widespread over different scalp regions. Positive values indi-
cate higher power levels for adapters compared with nonadapt-
ers and vice versa.

2522 NEURAL OSCILLATIONS IN MOTOR ADAPTATION

J Neurophysiol • doi:10.1152/jn.00043.2016 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (108.049.181.137) on October 18, 2022.



levels carry information about the outcome differences in the
speech motor task at P � 0.01 (uncorrected). Electrode loca-
tions at P � 0.01 that are corrected for multiple comparisons
are shown by white dots. Figure 3 shows the scalp plot of the
electrode locations at early and late training; hotter colors (red)
indicate positive correlation between power levels and adapta-
tion outcomes while colder (blue) colors indicate negative
correlations. At early training, all frequency bands except the
delta band contained information about differences in adap-
tation outcome. The theta band did not show any power
activity that significantly correlated with the adaptation
during the planning phase. The information-bearing beta-
power level was primarily bilateral while alpha and gamma
bands mostly had right lateral activation during the planning
phase. Gamma power during speech planning was found to
have an inverse relation (blue) between power level and
amount of adaptation, i.e., the greater the amount of adap-
tation, lower the level of gamma activation, and vice versa.
During production, the theta-, beta-, and gamma-band power
carried information in parietal and frontal electrodes, while
during postproduction, the theta and gamma bands were
most informative.

By late training however, the behaviorally correlated power
activity patterns had changed in almost all the bands but most
significantly in the theta, beta, and gamma bands (Fig. 3). The
delta band showed localized power differences in the planning
phase in the left front-temporal electrodes. The theta-band

power changed dramatically; the prominent early training ac-
tivation seen in the postproduction phase disappeared, and
instead we observed bilateral activation during speech-plan-
ning and speech-production phases over fronto-temporal elec-
trodes; a slight negative left lateralized theta activation was
also seen during postproduction. Alpha-band power change
was restricted entirely in the planning phase at the frontal,
parietal, and right-temporal electrodes. The beta band showed
differences at centro-parietal electrodes during planning and
significant bilateral activation during production, while slightly
right-lateralized activation during postproduction. The gamma
band power activity was the strongest and the most wide-
spread. It spanned all epochs of speech planning, production,
and postproduction and covered significant regions over the
scalp. During planning strong positive centro-parietal and fron-
tal activity was accompanied by slight negative bilateral acti-
vation in the frontal scalp location. During production, the
power activation was the strongest and spanned large regions
of the parietal and frontal areas of the scalp. Strong activation
was also observed in the right parietal scalp region. This was
followed by a decrease in power level in the postproduction
epoch, although strong positive activation was still seen over
the centro-parietal and fronto-parietal scalp region and some
limited activation in the right-fronto-temporal regions. It
should be noted that theta- and gamma-band activities are
strongly implicated during speech planning while the beta band
is in the production epoch.
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Fig. 3. Generalized linear model (GLM) and elec-
trode locations. The electrode locations carrying
information about adaptation were identified using
the GLM analyses. Plotted are the GLM coeffi-
cients at P � 0.01. White dots show electrode
locations at P � 0.01, corrected for multiple com-
parisons. Red (hot) colors are for positive coeffi-
cients and, blue (cooler) colors are for negative
coefficients. At early training, there was no delta
band activity while at late training it showed up
only during the speech-planning epoch. At early
training no theta activity was seen during speech
planning while more prominent activity was seen
during postproduction. At late training theta band
showed fronto-temporal activation during planning
and production, with a stronger left lateralization.
Alpha-band activity was observed during planning
epoch both at early and late training phases. Beta-
band activity was observed at early and late train-
ing for all the three speech epochs. As with the
beta band, gamma band involved wide spread
scalp regions for all speech epochs, increasing
during speech planning and speech production dur-
ing late training. Observe the increase in activity in
theta, beta, and gamma bands during late training
relative to early training, suggesting adaptation
related changes.
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To further corroborate the above findings, we next examined
whether the neural activity that correlated with adaptation
according to the GLM model at the identified electrodes could
predict the outcome of the speech motor task. To answer this
question we performed blind linear classification analyses at
early and late training for all three speech epochs (baseline
phase did not contain any predictive information). This al-
lowed us to gauge the predictive strength of scalp activity
within the different EEG frequency bands in differentiating the
adapters from the nonadapters with at least 80% accuracy (see
METHODS). Figure 4 shows results from the classification anal-
yses (white dots show the GLM electrode locations at P � 0.01
corrected for multiple comparisons). At early training, the
scalp power levels at none of the frequency band was predic-
tive of adaptability. By late training, however, the theta-, beta-,
and gamma-band power levels were found to reliably differ-
entiate adapters from nonadapters. The theta band only had one
electrode location, Fc3 on the left frontal scalp region, the
power level of which only during speech-planning could pre-
dict outcome differences. In contrast, the beta-band power
levels during all three epochs were found to be reliably pre-
dicting adaptability. During speech planning, beta activity at
the centro-parietal electrode location, Cpz; during speech pro-
duction, activities at the electrode locations in the fronto-

temporal regions, F3 and Fc5; left centro-parietal region, Cp5;
and right fronto-central location, Fc6; and during postproduc-
tion phase, activities at frontal location, F1; and centro-parietal
region, Cp2, were predictive of adaptability. The gamma-band
power level showed extensive predictive capacity but was
restricted only during the planning and production epochs both
of which contained bilateral parietal and the frontal scalp
regions. During speech planning, right temporal, frontal, and
parietal activation at electrode locations F1, F2, F4, Fc1, Fc4,
C2, Cpz, and Cp6 was found to be reliable predictors, while
during production, parietal and frontal power levels at F1, F2,
and Cpz were found to be reliable predictors of adaptability.
Thus GLM and classification analyses together strongly impli-
cate theta, beta, and gamma bands in supporting motor speech
adaptability.

It is rather remarkable that high mean classification accuracy
of 80% was obtained in a large number (4,000) of bootstrapped
samples despite the training and test sets in each bootstrapped
samples contained roughly the same number of subjects, which
makes the classification task much harder. At the threshold
crossings where the mean classification accuracy for the boot-
strapped samples exceeds 0.5 (classification at the chance
level), the corresponding probability is P � 10�8 (see METH-
ODS). To further determine the statistical significance of clas-
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Fig. 4. Motor speech adaptability for different EEG
frequency bands. Linear classification was used to
assess information contained in different EEG fre-
quency bands about predicting outcome differences
in the speech motor task. Only the theta-, beta-, and
gamma-band activities at late training were found to
be reliable predictors of motor speech adaptability.
The significant electrode locations are marked in red.
During speech planning and production epochs all
three bands were involved, whereas during postpro-
duction only the beta band activity showed up. Left
centro-parietal electrode in theta band was seen dur-
ing planning. In beta band, left parietal electrodes
during planning, left parietal area during production
and localized right-parietal and left-frontal electrode
during late production. Widespread central and pari-
etal activation during planning and localized central
and frontal activation during production was seen in
gamma. B: the power levels at early and late training
for two representative electrodes are shown in
gamma and beta bands. Note that although the adapt-
ers and nonadapters did not differ in their power
levels at early training, differences between them
emerged by late training. White dots show GLM
electrode locations at P � 0.01, corrected for multi-
ple comparisons.
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sification results, group differences in the power level for each
band and at each electrode location were assessed under the
t-test and separately using a repeated-measures ANOVA.
Wherever the classifier crossed the threshold of 80%, there
were significant power differences between the adapters and
nonadapters under ANOVA (see METHODS) or t-test (P � 0.05
or less). The theta-band activity for electrode Fc3 showed
significance only under the t-test at P �0.01. Most of the
beta-band electrodes showed significance under the ANOVA
followed by a post hoc test: F3, F(1, 15) � 7.69, P � 0.01;
Fc6, F(1, 15) � 7.51, P � 0.01; Cp5, F(1, 15) � 6.1, P � 0.03;
Cp2, F(1, 15) � 11.7, P � 0.001 (quoted here and below are
only the F values of the main effect showing the group
differences). The electrode Fc5 was significant only under the
t-test at P � 0.005. Likewise, most of the gamma-band elec-
trodes showed significance under the ANOVA: F1, F(1, 15) �
12.08, P � 0.001; Fc1, F(1, 15) � 5, P � 0.03; Fc4,
F(1, 15) � 9, P � 0.01; C2, F(1, 15) � 5.6, P � 0.02; Cpz,
F(1, 15) � 5.6, P � 0.02. The remaining electrodes were
significant under the t-test: F2: P � 0.005; Fc1: � 0.02. Figure
4B shows power levels for two representative electrodes from
beta and gamma band at early and late training. It can clearly
be seen that power differences between the adapters and
nonadapters emerge by late training. It should be noted that the
ANOVA and t-tests were conducted in the same temporal
window in which the classification results were obtained,
suggesting that although the classification analyses and
ANOVA tap into different types of information, there was a
close agreement between the two methods.

The classification analyses thus established that theta,
gamma, and beta bands not only contained information about
speech motor adaptation and that these activities were reliable
predictors of outcome differences in speech motor adaptation,
while delta and alpha bands did not contain any reliable
information in any of the epochs on which such a classification

could be made. It was thus natural to ask if the bands operated
independently or if they were coupled to each other to mediate
adaptation and whether such coupling could potentially arise
from common underlying sources. We found very little overlap
in the electrodes across the different frequency bands. To
address this issue, PC analyses were performed to estimate the
EEG sources that could be contributing to the scalp activity.
We extracted the first three PCs associated with each EEG
frequency band that accounted for at least 80% of the variance
in the data. The power time series of these PCs are shown in
Fig. 5A (adapters in blue, nonadapters in red). Observe the
distinct activities between the two groups emerging by late
training. We ran classification analyses on each PC and for
each frequency band and found that, at late training, only the
third PC (PC3) of the theta band, the second of the beta band
(PC2), and the third of the gamma band (PC3) were reliable
predictors of adaptability (Fig. 5B), while delta and alpha
bands did not clear the cutoff in any of the PC components.
This was consistent with the results obtained at the scalp level
in which the theta, beta, and gamma activities at late training
were also found to be the only reliable predictors.

Finally, we proceeded to quantify the interband interaction
by carrying out covariance analysis between PCs (Fig. 5C) that
is similar to computing spectral coherence. Significant interac-
tions were found across the PCs of theta-, beta-, and gamma-
band pairs that crossed the classification threshold. Notably, at
late training there was a prominent interaction between a PC in
the theta band and a PC in the gamma band (P � 0.0005,
uncorrected). Note that theta-gamma interaction in terms of
neural phase coherence was previously observed for adapters
(Sengupta and Nasir 2015). Adapters showed stronger positive
covariance while nonadapters showed a negative covariance
resulting in a mean covariance difference of 0.44 between
the two groups. Interaction to a lesser extent was also seen at
late training between the beta and the gamma bands (P �
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Fig. 5. Estimating interband interaction. A: principal
components were computed to estimate neural
sources and quantify interaction across the bands. At
late training only the third principal component of
the theta band, the second of the beta band and the
third of the gamma band were reliable predictors of
adaptability. These principal component traces aver-
aged across adapters (blue) and nonadapters (red) are
shown for different experimental phases. Note the
differences arising during early training, becoming
more amplified by late training phase. B: shown are
classification accuracy for the principal components.
C: interband interaction was estimated by computing
the covariance between power bands and comparing
between adapters and nonadapters. Significant inter-
action was seen between theta and gamma band and
also between gamma and beta bands.
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0.005, uncorrected) with a resulting mean difference of �0.15
between the two groups. Thus the gamma bands interact with
both theta and beta bands and the theta- and gamma-band
interaction appears to facilitate adaptation while beta- and
gamma-band interaction inhibiting adaptation.

DISCUSSION

We have studied speech motor adaptation under altered
auditory feedback with the goal of identifying the neural
signatures that underlie motor speech adaptability. We argued
that by identifying the neural processes that robustly distin-
guish adapters from nonadapters, we could unravel the neural
signatures of speech motor adaptation. In particular, identifi-
cation of frequency bands and the temporal window of their
activation within speech utterances that contain behaviorally
relevant information and whose activities predict the outcome
of speech motor adaptation reveals a dynamic picture of
specific oscillatory processes and their contributions towards
adaptation can be obtained. We proceeded to first identify the
set of electrodes whose power activity correlated with behavior
using a GLM and then, using a linear classifier, assessed their
predictive accuracy to obtain a smaller set of electrodes that
was highly informative of the behavioral outcome. These
analyses were carried out at different epochs of speech utter-
ance to identify electrodes and frequency bands that contrib-
uted to speech planning and production. It was found that by
late training, the instantaneous power in theta and gamma
bands during speech planning and beta band during speech
production contained predictive information about adaptation
outcomes. While theta-band power was localized to fronto-
temporal electrodes, gamma-band activity was more wide-
spread spanning temporal and parietal electrodes on the scalp
and beta-band activity was restricted mostly to temporal elec-
trodes. Finally, to understand to what extent scalp power
activations reflect interaction between the frequency bands at
the level of underlying sources we performed PC analyses
that revealed high degree of interaction between the bands.
Since low-frequency bands are believed to reflect synchro-
nized distributed activities while high-frequency bands
more localized activity (Von Stein and Sarnthein 2000),
these correlations across the frequency bands suggest a
larger underlying network operating across multiple fre-
quency bands in hierarchical fashion.

The GLM analyses revealed a subset of electrodes in all the
EEG frequency bands being implicated in speech motor adap-
tation, but not all of them were predictive of adaptation
outcomes. This is likely due to the reason that although
numerous processes involved in mediating speech motor ad-
aptation are distributed across multiple brain areas, all of them
may not be directly involved in the recalibration of the motor
maps necessary for successful adaptation. It is also interesting
to note that it was only by late training when the theta, beta,
and gamma bands contained enough predictive information to
successfully classify adapters from nonadapters. These results
are in good agreement with prior studies that have shown the
involvement of theta and gamma bands in motor adaptation
(Perfetti et. al 2011; Sengupta and Nasir 2015) and the role of
the beta band in anticipating sensory events during motor
planning (Arnal and Giraud 2012). The theta, beta, and gamma
powers during speech planning were found to be predictive of

motor speech adaptability suggesting a more direct role played
by these bands in the establishment of a new feedforward map
associated with adaptation; in contrast, the alpha and delta
bands play little role in the process. The beta and gamma bands
were implicated during speech production suggesting a role for
them in feedback error monitoring. During the postproduction
epoch, only beta band activity was predictive of adaptability
that suggests the involvement of beta band in a late stage
feedback processing. It should also be noted theta and beta
bands showed a more limited scalp activity than the gamma
band whose activity was more widespread.

As multiple scalp activity patterns could result from a single
underlying source (Michel et. al. 1992), we speculated that a
small number of oscillatory neural mechanisms involved in
accounting for differences in motor speech adaptability, pos-
sibly neural sources located beneath the left-temporal and
centro-parietal scalp regions that support the feedback and
feedforward processes, respectively. The PC analyses revea-
led that only the first few components for the theta, beta, and
gamma bands contained predictive information about adapta-
tion outcomes, which further points to a handful of underlying
oscillatory processes that may be driving these changes. Under
the assumption that activities at different EEG frequency bands
reflect brain networks at different scales (Siegel et al. 2012;
Hipp et al. 2011, 2012; Von Stein and Sarnthein 2000; Bull-
more and Sporns 2009), one could ask how these networks
interact in mediating motor speech adaptability. The covari-
ance analyses revealed pairwise interactions between the theta
and gamma and between the beta and the gamma bands. It is
very possible that this interaction could result from coupling
factors such as cross-frequency phase coherence between beta
and theta bands and between gamma and theta bands, which
have been shown to play a critical role in motor adaptation and
learning in a variety of behaviors including speech (Sengupta
and Nasir 2015; Perfetti et. al. 2011). Overall, the pairwise
interactions across the bands imply interactions between a
smaller and local network (gamma activity) and networks at
medium and large scale (beta and theta bands).

What are the neural sources and the brain networks that
generate the observed power differences in the theta, beta, and
gamma bands? A series of functional (f)MRI studies by Guen-
ther and his colleagues identified brain areas in premotor cortex
and superior temporal cortex for the processing of auditory
feedback error (Tourville et al. 2008). Learning of novel
speech motor sequence involved pre-supplementary motor area
(Segawa et al. 2014). According to the DIVA model the
feedforward part of the speech motor system consists of the
supplementary motor area, basal ganglia, premotor, and motor
cortex; the feedback processing system contains ventral pre-
motor cortex, planum temporale, and posterior superior tem-
poral gyrus (Golfinopoulos et. al. 2010). It remains to be seen
if the same brain areas are also implicated in the EEG fre-
quency bands underlying motor speech adaptation. The theta
band, for example, is found to encompass a fronto-parietal
network in a visual task (von Stein and Sarnthein 2000) or the
medial temporal lobe in case of spontaneous cortical activity
(Hipp et al. 2012). Likewise, the beta band involves parietal
areas and the gamma band describes local neuronal processing
and may involve pareito-temporal or sensorimotor areas (von
Stein and Sarnthein 2000; Hipp et al. 2011, 2012). To find the
proper correspondence between the EEG and fMRI results, a
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detailed source reconstruction analysis needs to be conducted.
Infact, the same feedback alteration paradigm in conjunction
with simultaneous recording of EEG and fMRI could be
conducted to investigate such correspondences.

To the best of our knowledge, this is the first study demon-
strating the predictive capacity of neural oscillations in deter-
mining behavioral outcome in speech motor adaptation. An
application of this predictive method is well suited for clinical
application for the understanding of speech disorders (Gonza-
lez-Gadea et al. 2015; Markser et al. 2015; Kamavuako et al.
2015; Dickinson et al. 2015). By comparing brain activity
between healthy and disordered population at relevant elec-
trode locations and frequency bands, it may be possible to
isolate processes that are most informative about an underlying
disorder. Since our method developed here may expose differ-
ences and anomalies during both speech perception and pro-
duction, it has the potential to shed light on more specific
sensory and motor processes that break down in the speech
chain in disorders. Neural oscillations, in particular, may be
used to probe into anomalous patterns in neural communica-
tions within and across the various brain regions that may
underlie speech disorders such as stuttering and aphasia. Iden-
tifying the specific locus and time course of anomalous activity
will yield greater insight into the specific causes of speech
disorders and thus help clinicians in devising more effective
treatment suited to individual patient needs. The methods
presented may therefore be applicable to novel noninvasive
EEG-based diagnostic methods in motor speech disorders.

An important question that arises from this and past studies
is regarding the nature of the roles that the various frequency
bands play in sensorimotor learning. Why are theta, gamma,
and beta bands important in motor speech, and not the others?
What specific functional roles do they serve? To answer this
question, we must look into developmental trajectories of the
various frequency bands. Whether same bands also important
in children learning to speak and can predict their degree of
speech learning will further help to elucidate the roles of the
individual bands and their interactions. Developmental studies
such as this, along with closer inspection of disordered popu-
lations, will bring further clarity into the exact nature of the
various frequency bands in speech motor learning and adapta-
tion.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

R.S. and S.M.N. conception and design of research; R.S. performed
experiments; R.S. analyzed data; R.S. and S.M.N. interpreted results of
experiments; R.S. prepared figures; R.S. drafted manuscript; R.S. and
S.M.N. edited and revised manuscript; R.S. and S.M.N. approved final
version of manuscript.

REFERENCES

Arnal LH, Giraud AL. Cortical oscillations and sensory predictions. Trends
Cogn Sci 16: 390–398, 2012.

Arnal LH, Wyart V, Giraud AL. Transitions in neural oscillations reflect
prediction errors generated in audiovisual speech. Nat Neurosci 14: 797–
801, 2011.

Brodski A, Paasch GF, Helbling S, Wibral M. The faces of predictive
coding. J Neurosci 35: 8997–9006, 2015.

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat Rev Neurosci 10: 186–198, 2009.

Cai S, Beal DS, Ghosh SS, Tiede MK, Guenther FH, Perkell JS. Weak
responses to auditory feedback perturbation during articulation in persons
who stutter: evidence for abnormal auditory-motor transformation. PLoS
One 7: e41830, 2012.

Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE,
Berger MS, Barbaro NM, Knight RT. High gamma power is phase-locked
to theta oscillations in human neocortex. Science 313: 1626–1628, 2006.

Cheyne D, Bells S, Ferrari P, Gaetz W, Bostan AC. Self-paced movements
induce high-frequency gamma oscillations in primary motor cortex. Neuro-
image 42: 3323–3342, 2008.

Douglas C, Bells S, Ferrari P, Gaetz W, Bostan AC. Self-paced movements
induce high-frequency gamma oscillations in primary motor cortex. Neuro-
image 42: 332–342, 2008.

Dickinson A, Bruyns-Haylett M, Jones M, Milne E. Increased peak gamma
frequency in individuals with higher levels of autistic traits. Eur J Neurosci
8: 1095–1101, 2015.

Efron B. The Jackknife, the Bootstrap, and Other Resampling Plans. Phila-
delphia, PA: SIAM, 1982.

Freyer F, Becker R, Dinse HR, Ritter P. State-dependent perceptual learn-
ing. J Neurosci 33: 2900–2907, 2013.

Friedman JH, Tibshirani R, Hastie T. The Elements of Statistical Learning
(2nd ed.). New York: Springer, 2009.

Giraud AL, Poeppel D. Cortical oscillations and speech processing: emerging
computational principles and operations. Nat Neurosci 15: 511–517, 2012.

Golfinopoulos E, Tourville JA, Guenther FH. The integration of large-scale
neural network modeling and functional brain imaging in speech motor
control. Neuroimage 52: 862–874, 2010.

Gonzalez-Gadea ML, Chennu S, Bekinschtein TA, Rattazzi A, Beraudi A,
Trippichio P, Moyano B, Soffita Y, Steinberg L, Adolfi F, Sigman M,
Marino J, Manes F, Ibanez A. Predictive coding in autism spectrum
disorder and attention deficit hyperactivity disorder. J Neurophysiol 114:
2625–2636, 2015.

Guenther FH. Cortical interactions underlying the production of speech
sounds. J Commun Disord 39: 350–365, 2006.

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale
cortical correlation structure of spontaneous oscillatory activity. Nat Neu-
rosci 15: 884–890, 2012.

Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale
cortical networks predicts perception. Neuron 69: 387–396, 2011.

Houde JF, Jordan MI. Sensorimotor adaptation in speech production. Science
279: 1213–1216, 1998.

Jones JA, Munhall KG. Remapping auditory-motor representations in voice
production. Curr Biol 15: 1768–1772, 2005.

Kamavuako EN, Jochumsen M, Niazi IK, Dremstrup K. Comparison of
features for movement prediction from single-trial movement-related corti-
cal potentials in healthy subjects and stroke patients. Comput Intell Neurosci
2015: 858015, 2015.

Lametti DR, Nasir SM, Ostry DJ. Sensory preference in speech production
revealed by simultaneous alteration of auditory and somatosensory feed-
back. J Neurosci 32: 9351–9358, 2012.

Lisman JE, Jensen O. The theta-gamma neural code. Neuron 77: 1002–1016,
2013.

Markser A, Maier F, Lewis CJ, Dembek TA, Pedrosa D, Eggers C,
Timmermann L, Kalbe E, Fink GR, Burghaus L. Deep brain stimulation
and cognitive decline in Parkinson’s disease: the predictive value of elec-
troencephalography. J Neurol 262: 2275–2284, 2015.

McCullagh P, Nelder J. Generalized Linear Models (2nd ed.). Boca Raton,
FL: Chapman and Hall/CRC, 1989.

McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR. Mu and beta rhythm
topographies during motor imagery and actual movements. Brain Topogr
12: 177–186, 2000.

Michel CM, Lehmann D, Henggeler B, Brandeis D. Localization of the
sources of EEG delta, theta, alpha and beta frequency bands using the FFT
dipole approximation. Electroencephalogr Clin Neurophysiol 82: 38–44,
1992.

Myers NE, Stokes MG, Walther L, Nobre AC. Oscillatory brain state
predicts variability in working memory. J Neurosci 34: 7735–7743, 2014.

Nasir SM, Ostry DJ. Somatosensory precision in speech production. Curr
Biol 16: 1918–1923, 2006.

Olbrich S, Jödicke J, Sander C, Himmerich H, Hegerl U. ICA-based
muscle artefact correction of EEG data: what is muscle and what is brain?
Neuroimage 54: 1–3, 2011.

2527NEURAL OSCILLATIONS IN MOTOR ADAPTATION

J Neurophysiol • doi:10.1152/jn.00043.2016 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (108.049.181.137) on October 18, 2022.



Perfetti BP, Moisello C, Landsness EC, Kvint S, Lanzafame S, Onofrj M,
Di Rocco A, Tononi G, Ghilardi MF. Modulation of gamma and theta
spectral amplitude and phase synchronization is associated with the devel-
opment of visuo-motor learning. J Neurosci 31: 14810–14819, 2011.

Perkell J. Movement goals and feedback and feedforward control mechan-
sisms in speech production. J Neurolinguistics 25: 382–407, 2012.

Purcell DW, Munhall KG. Adaptive control of vowel formant frequency:
evidence from real-time formant manipulation. J Acoust Soc Am 120:
966–977, 2006.

Quandt F, Reichert C, Hinrichs H, Heinze HJ, Knight RT, Rieger JW.
Single trial discrimination of individual finger movements on one hand: a
combined MEG and EEG study. Neuroimage 59: 3316–3324, 2012.

Segawa JA, Tourville JA, Beal DS, Guenther FH. The neural correlates of
speech motor sequence learning. J Cogn Neurosci 27: 819–831, 2014.

Sengupta R, Nasir SM. Redistribution of neural phase coherence reflects
establishment of feedforward map in speech motor adaptation. J Neuro-
physiol 113: 2471–2479, 2015.

Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuro-
nal interactions. Nat Rev Neurosci 13: 121–134, 2012.

Strauss A, Kotz SA, Scharinger M, Obleser J. Alpha and theta brain
oscillations index dissociable processes in spoken word recognition. Neu-
roimage 97: 387–395, 2014.

Tourville JA, Reilly KJ, Guenther FH. Neural mechanisms underlying
auditory feedback control of speech. Neuroimage 39: 1429–1443, 2008.

Tremblay S, Shiller DM, Ostry DJ. Somatosensory basis of speech produc-
tion. Nature 423: 866–869, 2003.

Tzagarakis C, Ince NF, Leuthold AC, Pellizzer G. Beta-band activity during
motor planning reflects response uncertainty. J Neurosci 30: 11270–11277,
2010.

van Wijk BC, Beek PJ, Daffertshofer A. Neural synchrony within the motor
system: what have we learned so far? Front Hum Neurosci 6: 252, 2012.

Villacorta VM, Perkell JS, Guenther FH. Sensorimotor adaptation to feed-
back perturbations of vowel acoustics and its relation to perception. J Acoust
Soc Am 122: 2306–2319, 2007.

von Stein A, Sarnthein J. Different frequencies for different scales of cortical
integration: from local gamma to long range alpha/theta synchronization. Int
J Psychophysiol 38: 301–313, 2000.

Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A,
Mehring C. Hand movement direction decoded from MEG and EEG. J
Neurosci 28: 1000–1008, 2008.

Wang W, Sudre GP, Xu Y, Kass RE, Collinger JL, Degenhart AD, Bagic
AI, Weber DJ. Decoding and cortical source localization for intended
movement direction with MEG. J Neurophysiol 104: 2451–2461, 2010.

Ziegler W, Wessel K. Speech timing in ataxic disorders Sentence production
and rapid repetitive articulation. Neurology 47: 208–214, 1996.

2528 NEURAL OSCILLATIONS IN MOTOR ADAPTATION

J Neurophysiol • doi:10.1152/jn.00043.2016 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (108.049.181.137) on October 18, 2022.


