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a b s t r a c t 

It is important to maintain cognitive function in old age, yet the neural substrates that support success- 

ful cognitive ageing remain unclear. One factor that might be crucial, but has been overlooked due to 

limitations of previous data and methods, is the ability of brain networks to flexibly reorganize and coor- 

dinate over a millisecond time-scale. Magnetoencephalography (MEG) provides such temporal resolution, 

and can be combined with Hidden Markov Models (HMMs) to characterise transient neural states. We 

applied HMMs to resting-state MEG data from a large cohort (N = 595) of population-based adults (aged 

18-88), who also completed a range of cognitive tasks. Using multivariate analysis of neural and cogni- 

tive profiles, we found that decreased occurrence of “lower-order” brain networks, coupled with increased 

occurrence of “higher-order” networks, was associated with both increasing age and decreased fluid intel- 

ligence. These results favour theories of age-related reductions in neural efficiency over current theories 

of age-related functional compensation, and suggest that this shift might reflect a stable property of the 

ageing brain. 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the increasing proportion of older adults in the worldwide

population ( Beard et al., 2016 ), there is a pressing need to under-

stand the neurobiology of cognitive ageing. Normal ageing gener-

ally results in cognitive decline ( Hedden & Gabrieli, 2004 ), though

not all cognitive functions follow the same trajectory. In particular,

whereas age is related to a marked reduction in fluid intelligence

(the ability to solve new problems), it has a much more modest

effect on crystallised intelligence (the ability to rely on acquired

knowledge; e.g., Borgeest et al., 2018 ; Gottfredson & Deary, 2004 ;

Schaie, 1994 ; Tucker-Drob, 2011 ). Indeed, crystallised intelligence

tends to increase with age, as individuals accrue knowledge

across their lifespan (e.g., Ackerman & Rolfhus, 1999 ; Horn & Cat-

tell, 1967 ; Kemper & Sumner, 2001 ; Uttl, 2002 ; Verhaeghen, 2003 ),

although it may decline in very late decades ( Bates et al., 2018 ;
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Drag & Bieliauskas, 2010 ; Singer et al., 2003 ). Moreover, functional

neuroimaging has revealed that ageing is associated with differ-

ent patterns of connectivity between brain regions, both within

and between large-scale networks ( Geerligs et al., 2014 ). One factor

that might play a crucial role in the ability to maintain cognition

in old age, but which has been largely overlooked, is the ability

of brain networks to flexibly reorganize and coordinate on a sub-

second time-scale. Indeed, the relationship between cognition and

such transient brain connectivity, and how this relationship differs

with age, remains unknown. 

In recent decades, functional connectivity within the human

brain has been measured mainly with functional magnetic res-

onance imaging (fMRI). In particular, differences in the brain’s

connectivity during the resting-state (rsfMRI) have proved effec-

tive in distinguishing various patient groups from controls (e.g.,

Alzheimer disease, major depression, schizophrenia; see for exam-

ple Lee et al., 2013 ). Substantial work has also used rsfMRI to ex-

amine the effects of age on functional connectivity (e.g., Andrews-

Hanna et al., 2007 ; Chan et al., 2014 ; Ferreira & Busatto, 2013 ;

Geerligs et al., 2015 ; Grady et al., 2016 ; Grady, 2008 ). Following the

suggestion that fluctuations in activity and connectivity can sup-
n open access article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.neurobiolaging.2021.01.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neurobiolaging.2021.01.035&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:roni.tibon@mrc-cbu.cam.ac.uk
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neurobiolaging.2021.01.035


218 R. Tibon, K.A. Tsvetanov, D. Price et al. / Neurobiology of Aging 105 (2021) 217–228 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

port flexible reorganization and coordination of neural networks

(e.g., Allen et al., 2014 ), this notion was recently extended to

the investigation of dynamic functional connectivity. For exam-

ple, Cabral et al. (2017) were able to link the switching dy-

namics of rsfMRI to cognitive performance in older age. Further-

more, Petrican and Grady (2017 , 2019) showed that age moder-

ates the relation between inhibition and dynamic organization of

resting-state networks. However, interpreting connectivity differ-

ences that are measured with fMRI is difficult owing to method-

ological issues, such as confounding factors like vascular reactivity

and head motion, which also change with age ( Geerligs et al., 2017 ;

Lehmann et al., 2017 ; Power et al., 2012 ; Tsvetanov et al., 2015 ).

While some of these confounds, like neurovascular coupling, can

be addressed by more sophisticated modelling ( Tsvetanov et al.,

2019 ), others like head-motion are notoriously difficult to correct

(e.g., Maknojia et al., 2019 ). Furthermore, the fact remains that

fMRI has a fundamentally limited temporal resolution (owing to

the sluggish vascular response and relatively slow image acqui-

sition times), which precludes it from disclosing the potentially

richer dynamics in brain connectivity above approximately 0.1 Hz. 

An alternative, non-invasive way of measuring functional con-

nectivity is offered by magnetoencephalography (MEG), which

can sample neural activity at 1kHz and higher (at the cost of

worse spatial resolution). Indeed, recent advances in analytical

approaches offer the ability to measure dynamic functional con-

nectivity in terms of “microstates” of stable connectivity pat-

terns that last a few hundred milliseconds ( Baker et al., 2014 ),

well beyond the temporal resolution of fMRI. Moreover, MEG is

less sensitive than fMRI to age-related changes in vascular fac-

tors ( Tsvetanov et al., 2015 ), and allows simpler and more ro-

bust methods for correcting head-motion artifacts (e.g., Taulu &

Simola, 2006 ). In the current study, we utilized these advantages

of MEG to relate transient resting-state dynamics to cognitive age-

ing. 

More specifically, we exploited a large resting-state MEG

(rsMEG) dataset obtained from 595, population-based individuals,

who were sampled uniformly across the adult-lifespan (18 to 88

years of age) as part of the Cam-CAN project ( www.cam-can.org ).

In addition to the rsMEG scan, these individuals also completed

a wide range of cognitive tasks. We characterised transient net-

work dynamics using Hidden Markov Models (HMMs) in order to

explore the temporal dynamics of rsMEG networks ( Baker et al.,

2014 ; Brookes et al., 2018 ; Hawkins et al., 2020 ; Vidaurre et al.,

2016 , 2017 , 2018 ). HMM is a data-driven method that identifies a

sequence of “states”, where each state corresponds to a unique pat-

tern of brain covariance that reoccurs at different points in time.

By quantifying the time-series of MEG data as a sequence of tran-

sient states, the HMM provides information about the periods of

time at which each state is active, enabling the characterisation of

its temporal dynamics. While this technique has identified network

dynamics in small resting-state or task MEG datasets ( Baker et al.,

2014 ; Hawkins et al., 2020 ; Vidaurre et al., 2016 ), these dynamics

have not yet been linked to age and cognition. In particular, the

size of the Cam-CAN cohort allowed us to take a multivariate ap-

proach, namely to use canonical correlation analysis (CCA) to relate

the temporal properties of the data-driven HMM states to profiles

of cognitive performance, and to test whether these relations differ

with age. 

2. Materials and methods 

2.1. Participants 

A population-based sample of 708 healthy human adults (359

women and 349 men) was recruited as part of Stage 2 of the Cam-
bridge Centre Aging and Neuroscience (Cam-CAN; www.cam-can.

org ; Shafto et al., 2014 ). Ethical approval for the study was ob-

tained from the Cambridgeshire 2 (now East of England-Cambridge

Central Research Ethics Committee), and participants gave full in-

formed consent. Exclusion criteria included poor vision (below

20/50 on Snellen test; ( Snellen, 1862 ) and poor hearing (thresh-

old 35 dB at 10 0 0 Hz in both ears), ongoing or serious past drug

abuse as assessed by the Drug Abuse Screening Test (DAST-20;

Skinner, 1982 ), significant psychiatric disorder (e.g., schizophrenia,

bipolar disorder, personality disorder), neurological disease (e.g.,

known stroke, epilepsy, traumatic brain injury), low score in the

Mini Mental State Exam (MMSE; 24 or lower; Folstein et al., 1975 ),

or poor English knowledge (non-native or non-bilingual English

speakers); a detailed description of exclusion criteria can be found

in Shafto et al. (2014) , Table 1 . Of these, only participants with

full neuroimaging data (resting state MEG data and structural MRI

data) were considered for the current study ( n = 610). Fifteen ad-

ditional participants were excluded from analyses due to poor

MEG-MRI co-registration (details below). Thus, the final sample

included 595 participants (299 women and 296 men, age range

18-88). 

2.2. Cognitive tasks 

Thirteen cognitive tasks, performed outside the scanner, were

used to assess five broad cognitive domains, including execu-

tive function, memory, language, processing speed and emotional

processing. The tasks are summarized in Table 1 , with full de-

tail in Shafto et al. (2014) . Task scores were obtained from

Borgeest et al. (2018) , in which missing data ( < 12% in all tasks)

were interpolated using Full Information Maximum Likelihood

( Enders & Bandalos, 2001 ) across the full Stage 2 sample ( n = 708),

as implemented in the Lavaan R package ( Rosseel, 2012 ). 

2.3. MEG data acquisition and pre-processing 

Fig. 1 shows an overview of the preprocessing and analysis

pipeline for the study. Data were collected using a 306-channel

VectorView MEG system (Elekta Neuromag, Helsinki), consisting

of 102 magnetometers and 204 orthogonal planar gradiometers,

located in a magnetically shielded room. MEG resting state data

(sampled at 1 kHz with a highpass filter of 0.03 Hz) were recorded

for 8 min and 40 s, while participants remained still in a seated

position with their eyes closed, but instructed to stay awake. Head

position within the MEG helmet was estimated continuously using

four Head-Position Indicator (HPI) coils to allow offline correction

of head motion. 

The MaxFilter 2.2.12 software (Elekta Neuromag Oy, Helsinki,

Finland) was used to apply temporal signal space separation (tSSS,

Taulu & Simola, 2006 ) to the continuous MEG data to remove

noise from external sources (correlation threshold 0.98, 10-sec slid-

ing window), to continuously correct for head-motion (in 200-ms

time windows), to remove mains-frequency noise (50-Hz notch

filter), and to detect and reconstruct noisy channels. Following

these de-noising steps, data were imported into Matlab (The Math-

Works, Inc.) and preprocessed using a mixture of SPM12 ( http:

//www.fil.ion.ucl.ac.uk/spm ) and the OHBA Software Library (OSL;

https://ohba- analysis.github.io/osl- docs/ ). Bad segments were de-

tected and rejected by identifying outliers in the standard devia-

tion of the signal using the Generalized ESD test ( Rosner, 1983 )

at a significance level of a 0.1 (mean % segments rejected = 1.44,

SD = 1.35). Data were then down-sampled to 200Hz, and a band

pass filter was applied from 1–45 Hz to remove slow trends and

high frequency noise. 

http://www.cam-can.org
http://www.cam-can.org
http://www.fil.ion.ucl.ac.uk/spm
https://ohba-analysis.github.io/osl-docs/
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Table 1 

Description of cognitive behavioural tasks (table adapted from Borgeest et al., 2018 ) 

Cognitive Domain Cognitive Task Task Description Descriptive Statistics for 

n = 595 (Mean, SD, Range) 

References 

Executive Function Fluid Intelligence (FldIn) Cattell Culture Fair Test: nonverbal puzzles 

involving series completion, classification, 

matrices, and conditions. 

M = 31.74 SD = 6.83 

Range = 11-44 

Cattell & Cattell, 

1960 

Multitasking (Hotel Task; MltTs) Simulated tasks of a hotel manager: write 

customer bills, sort money, proofread advert, 

sort playing cards, alphabetise list of names. 

Total time must be allocated equally between 

tasks; there is not enough time to complete 

any one task. 

M = 301.3 SD = 171.7 

Range = 20.19-960 

Shallice & Burgess, 

1991 

Language 

Functions 

Spot the Word (StW) Pairs of items comprising one word and one 

non-word (e.g, ‘flonty – xylophone’); 

participant is required to point to the real 

word. 

M = 53.72 SD = 5.28 

Range = 24-60 

Baddeley, Emslie & 

Nimmo-Smith, 

1993 

Sentence Comprehension (SntRec) Judge grammatical acceptability of partial 

auditory sentences, which begin with an 

ambiguous sentence stem (e.g., “Tom noticed 

that landing planes…”) followed by a 

disambiguating continuation word (e.g., “are”) 

in a different voice. Ambiguity is either 

semantic or syntactic, with empirically 

determined dominant and subordinate 

interpretations. 

M = 0.89 SD = 0.07 

Range = 0.46-1 

Rodd, Longe, 

Randall, & Tyler, 

2010 

Picture-Picture Priming (PicNam) Name the pictured object presented alone 

(baseline), then when preceded by a prime 

object that is phonologically related (one, two 

initial phonemes), semantically related (low, 

high relatedness), or unrelated. 

M = 0.78 SD = 0.09 

Range = 0.5-0.94 

Clarke, Taylor, 

Devereux, Randall, 

& Tyler, 2013 

Verbal Fluency (VrbFl) Mean of letter (phonemic) fluency and animal 

(semantic) fluency task. For phonemic fluency 

task, participants have 1 min to generate as 

many words as possible beginning with the 

letter ‘p’. For semantic fluency task, 

participants have 1 min to generate as many 

words as possible in the category ‘animals’. 

M = 20.72 SD = 5.4 

Range = 6-37.5 

Lezak, Muriel, & 

Deutsch, 1995 

Proverb Comprehension (ProV) Read and interpret three English proverbs. M = 4.54 SD = 1.62 

Range = 0-6 

Hodges, 1994 

Emotional 

Processing 

Face Recognition (FaceRec) Given a target image of a face, identify same 

individual in an array of 6 face images (with 

possible changes in head orientation and 

lighting between target and same face in the 

test array) 

M = 22.93 SD = 2.32 

Range = 14-27 

Benton, 1994 

Emotion Expression Recognition 

(EmoRec) 

View face and label emotion expressed 

(happy, sad, anger, fear, disgust, surprise) 

where faces are morphs along axes between 

emotional expressions. 

M = 86.6 SD = 10.74 

Range = 47.5-100 

Ekman & Friesen, 

1976 

Memory Visual Short-Term Memory (VSTM) View (1–4) coloured discs briefly presented 

on a computer screen, then after a delay, 

attempt to remember the colour of the disc 

that was at a cued location. 

M = 2.43 SD = 0.58 

Range = 0 ∗-3.5 

Zhang & Luck, 

2008 

Story Recall (StrRec) Listen to a short story, recall freely 

immediately after, then again after a delay, 

and finally answer recognition memory 

questions. Delayed recall measure used here. 

M = 12.98 SD = 4.23 

Range = 0 ∗-24 

Wechsler, 1999 

Processing Speed Choice Motor Speed (MRSp) Time-pressured movement of a cursor to a 

target by moving an (occluded) stylus under 

veridical, perturbed (30 °), and reset (veridical 

again) mappings between visual and real 

space. 

M = 0.19 SD = 0.06 

Range = 0.05-0.85 

Choice Motor Coefficient of Variation 

(MRCv) 

Standard deviation divided by mean of 

reaction time of choice motor speed. Reflects 

the relative measure of variability. 

M = 1.84 SD = 0.38 

Range = 0.91-2.98 

Note: reanalysis of the data after excluding one participant who scored 0 in the StrRec measure, and another who scored 0 in the VSTM measure, resulted in the exact same 

patterns. 

 

 

 

 

 

 

 

2.4. MEG source reconstruction, parcellation, and envelope 

calculation 

The MEG data were co-registered to each participant’s struc-

tural T1-weighted MRI, using three anatomical fiducial points (na-

sion, and left and right pre-auricular points) that were digitized for
the MEG data and identified manually on the MRIs. The median

distance between each scalp headshape point and its nearest ver-

tex was calculated for each participant, and those with a median

distance greater than 6 mm ( n = 15; see Participants section above)

were excluded from subsequent analyses. 
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Fig. 1. Overview of processing and analysis pipeline used in the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source space activity was then estimated for each participant

at every point of an 8 mm whole-brain grid using a single-shell

lead-field model and a linearly constrained minimum variance

(LCMV) scalar beamformer ( Van Veen et al., 1997 ; Woolrich et al.,

2011 ), combining data from both magnetometers and gradiome-

ters. Source-reconstructed time-series (in each epoch) for each grid

point were then parcelled into 38 regions of interest (ROIs; defined

by selecting a subset of 19 of the ROIs in the Harvard–Oxford cor-

tical brain atlas, available in FSL, and splitting each into two lateral

halves to create 38 binary ROIs, as in Colclough et al. (2015) . This

was done in order to reduce the dimensionality of the oscillatory

activity submitted to the HMM (see below). The reconstructed data

for each parcel was summarised by the first principal component

across grid points within that parcel, and magnetic field spread be-

tween parcels was reduced by symmetric, multivariate orthogonal-

ization ( Colclough et al., 2015 ; Colclough et al., 2017 ). Next, the

amplitude envelope of each parcel’s time-course was calculated us-

ing a Hilbert transform, subsequently down-sampled to 20 Hz for

computational efficiency. 

2.5. Group level exploratory analysis of networks (Hidden Markov 

Model) 

We used the group-level exploratory analysis of networks

(GLEAN) toolbox ( https://github.com/OHBA-analysis/GLEAN ;

Vidaurre et al., 2017 ), which assumes that the same set of

microstates apply to all participants. The de-meaned and nor-

malized envelope data for each participant were concatenated

temporally across all participants to produce a single dataset. We

set the analysis a-priori to derive 8 states from the data, based

on a previous work ( Baker et al., 2014 ) that used the same HMM

approach to examine transient dynamics of rsMEG networks. In

that study, the authors gradually increased the number of inferred
states from 4 to 14. Increasing the number of states did not change

their topographies, nor revealed any additional distinct topogra-

phies, but rather resulted in the splitting of states into multiple

similar maps. The authors concluded that there is no advantage

of using more than 8 states when aiming to identify resting-state

networks, and that this number represents a reasonable trade-off

between a sufficiently rich but not overly complex representation

( Baker et al., 2014 ). 

HMMs describe the dynamics of brain activity as a sequence

of transient events, each of which corresponds to a visit to a par-

ticular brain state. Each state describes the data as coming from

a unique 38-dimensional multivariate normal distribution, defined

by a covariance matrix and a mean vector. Therefore, each state

corresponds to a unique pattern of amplitude envelope variance

and covariance that reoccurs at different time points. The HMM

state time-courses then define the points in time at which each

state was “active” or “visited”. These estimated state time-courses,

represented by a binary sequence showing the points in time when

that state was most probable, were obtained using the Viterbi algo-

rithm ( Rezek & Roberts, 2005 ). The partial correlation of the time-

course of each state (i.e., after adjusting for the time-courses of all

the other states) with the whole-brain parcel-wise amplitude en-

velopes concatenated across participants, were estimated in order

to produce spatial maps of the changes in amplitude envelope ac-

tivity associated with each state. The resulting state maps show

the brain areas whose amplitude envelopes increase or decrease

together (covary) when that state is active, compared to what hap-

pens on average over time. 

Using the state time-courses, we quantified the temporal char-

acteristics of each state according to four measures of interest: (1)

Fractional Occupancy (FO): the proportion of time the state was ac-

tive; (2) Mean Life Time (MLT): the average time spent in the state

before transitioning to another state; (3) Number of Occurrences

https://github.com/OHBA-analysis/GLEAN


R. Tibon, K.A. Tsvetanov, D. Price et al. / Neurobiology of Aging 105 (2021) 217–228 221 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(NO): the number of times the state was active; and (4) Mean In-

terval Length (MIL): the average duration between recurring visits

to that state. 

2.6. Relating HMM states to age and cognition (Canonical Correlation

Analyses) 

To identify how the temporal characteristics of the HMM states

relate to age and cognition, we used Canonical Correlation Analy-

ses (CCA; Smith et al., 2015 ; Sui et al., 2012 ; Wang et al., 2020 ;

see Figure 1 in Wang et al. (2020) for schematic illustration of

CCA). CCA is a multivariate technique that can identify and mea-

sure linear relations between two sets of variables. Linear combi-

nations within each of the sets are defined such that the correla-

tions of these combinations between sets (e.g., between HMM pro-

file and cognitive profile) are maximized, resulting in CCA compo-

nents, or “modes”. This multivariate approach is useful when the

observed variables within each set are correlated (as is the case

for the above HMM temporal characteristics, and for the cognitive

scores). 

CCA was employed via canoncorr in Matlab. The number of

modes produced by this analysis is always equal to the minimum

number of variables across the two sets (though not all modes nec-

essarily explain a substantial portion of the variance, see Results

section below). Each mode represents a set of function coefficients,

which are the standardized coefficients derived to maximize the

canonical correlations, and are analogous to beta weights in re-

gression. In canoncorr’s terminology (see also Smith et al., 2015 ;

Sui et al., 2012 ; Wang et al., 2020 ), each CCA mode is also as-

sociated with canonical “coefficients” across the variables in each

set and “scores” across the observations (participants). The corre-

lation between each set’s participant scores (for a given mode) is

termed the “canonical correlation” (denoted by R c ), and its squared

value ( R ²c ) represents the proportion of variance shared between

the sets. The correlation between the participant scores and each

original variable (for a given set and given mode) is called the

“structure coefficient” (denoted by r s ), and the set of structure co-

efficients represents the “profile” of the CCA mode across those

variables. Structure coefficients are often used to guide interpre-

tation of multivariate analyses, and are particularly useful in the

presence of multicollinearity ( Sherry & Henson, 2005 ). In the Re-

sults section below, structure coefficients greater than |.2| are high-

lighted to indicate substantial contribution of the variable to the

canonical solution (see Smith et al., 2015 , in which the same cut-

off value was used). 

All variables were z-scored before being subjected to CCA, in or-

der to make the various parameters more comparable across vari-

ables. First, we used CCA to relate the four temporal characteris-

tics across all 8 HMM states (Set 1, 32 variables) to age. Note that

in this case, the CCA analysis is equivalent to multiple linear re-

gression because the second set contains a single variable (age).

Nevertheless, for consistency with subsequent analysis, we used

CCA rather than multiple linear regression. We then conducted an-

other CCA analysis to relate the 32 HMM measures (Set 1) to the

13 cognitive measures (Set 2). Having used CCA to establish re-

lationships between the HMM brain measures and the cognitive

measures across all ages, we then asked whether the relationship

between HMM profile and cognitive profile (i.e., the relations be-

tween canonical scores obtained by the final CCA) varied with age,

using a moderation analysis (see Tsvetanov et al., 2016 , 2018 , for

a similar approach with different measures). Specifically, we con-

structed a multiple linear model where HMM scores (for a given

mode), age and their interaction term (HMM scores × age) were

used as independent variables and cognitive scores (for that mode)

as the dependent variable (all statistical tests were two-sided). In
order to visualise the results of this continuous moderation analy-

sis, we created scatter plots of HMM profile versus cognitive profile

for six equally-sized age groups ( n = 99 in each group). 

2.7. Additional control analyses 

In addition to the main analyses described above, we performed

several additional analyses in order to ensure that the CCA re-

sults are robust and interpretable. First, in order to ascertain that

the results are not biased by outliers, we repeated the main CCA

and moderation analyses after excluding data from participants

who were outliers in one or more measures. Second, in order to

check whether the results reflect variations in the HMM states’ ex-

pression across participants, we correlated each participant’s state

map (based on the partial correlation of their ROI data with the

timeseries of the states; see earlier) with the group-averaged map

for that state. Then, for each state, we correlated these correla-

tion coefficients with age, to determine whether the states were

similarity expressed across age. The significance of this correlation

was estimated against a distribution of 10,0 0 0 correlation coeffi-

cients based on permuting participants’ ages. Third, in order to

confirm the significance of canonical correlation (R c ) of the first

CCA mode that was determined under parametric assumptions, we

also estimated R c against a distribution of 10,0 0 0 correlation co-

efficients based on a CCA computed after permuting across par-

ticipants their cognitive scores. Fourth, we performed a separate

cross-validation analysis in which the CCA was only run on a sub-

set of the data, and the outputs tested against the rest. This anal-

ysis was performed over 10,0 0 0 iterations. For each iteration, we

randomly chose 80% of the participants for the “training” subset,

leaving the other 20% for the “testing” subset, and computed the

R c for the first CCA mode in the testing subset, using the weights

from the training set. Fifth, in order to assure that the func-

tion weights are stable, we implemented split-half reliability test-

ing (e.g., Kovacevic et al., 2013 ), by splitting the sample into two

equal-sized subsets, running the CCA analysis separately for each

subset, and computing the correlation between the 45 standard-

ized canonical function coefficients (32 coefficients for the HMM

brain measures + 13 coefficients for the cognitive measures) ob-

tained from the two subsets. We repeated this process over 10,0 0 0

iterations, randomly splitting the participants into the two subsets

in each iteration. Finally, we repeated the HMM-age CCA analysis

with an additional quadratic term, in order to account for potential

non-linear (quadratic) age-effects. Moreover, in addition to these

control analyses, we computed a transition probability and used

CCA to relate these transitions to age. Further details of this anal-

ysis and the results are reported in Supplementary Analysis 1 and

Supplementary Figure 6. 

2.8. Data and code availability 

Raw data from the Cam-CAN project are available from http:

//camcan-archive.mrc-cbu.cam.ac.uk , subject to conditions speci-

fied on that website. For a complete description of Cam-CAN data

and pipelines, see Shafto et al. (2014) and Taylor et al. (2017) .

In addition, pre-processed mean data used for analyses and fig-

ures, together with all the analysis code, is available on: https:

//osf.io/7d4wj/ . 

3. Results 

3.1. Global spatial and temporal characteristics of HMM states 

Fig. 2 shows the spatial maps of the 8 networks (states) derived

from combining the MEG data across all participants. The states

http://camcan-archive.mrc-cbu.cam.ac.uk
https://osf.io/7d4wj
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Fig. 2. The 8 inferred HMM states. Each map shows the partial correlation between the state time course and the parcel-wise amplitude envelopes. Yellow colours represent 

amplitude envelope increases when the brain visits that state and blue colours represent envelope decreases. The partial correlation values have been thresholded to show 

correlation values above 50% of the maximum correlation across all states. To refer to the states, we use the same naming scheme applied by Hawkins et al. ( Hawkins et al., 

2020 ). (Color version of figure is available online) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

include three distributed frontotemporoparietal networks (FTP1,

FTP2, FTP3), a higher-order visual network (HOV), two early visual

networks (EV1, EV2) and two sensorimotor networks (SM1, SM2).

They are similar to those obtained from young adults in previous

studies ( Baker et al., 2014 ; Brookes et al., 2018 ; Hawkins et al.,

2020 ). Note that these spatial maps represent increases (warm

colours) or decreases (cool colours) in power compared to mean

power across the time-course. Nevertheless, they do not capture

all that drives the state divisions, as there is also the state covari-

ance matrix that captures functional connectivity differences. Thus

even though the spatial distribution of power in EV1 may look like

the inverse of that in EV2 (and likewise for SM1 and SM2), these

states still differ in the functional connectivity between ROIs. 

We next characterised the temporal properties of each state

in terms of 4 metrics: fractional occupancy (FO), mean life time

(MLT), number of occurrences (NO) and mean interval length

(MIL). Group averages for each measure in each state are shown

in Fig. 3 . Overall, primary (visuo-motor) states had higher num-

ber of occurrences than higher-order states. The most commonly-

occurring networks were sensorimotor network SM2 and early

visual network EV1, which had the highest mean FO and NO.

The network with the most prolonged visits (highest MLT) was

the high-order visual network HOV. Conversely, the least com-

mon network, with lowest FO and NO but greatest MIL, was fron-

totemporoparietal network FTP3. These findings largely agree with
Hawkins et al. (2020) and (to a lesser extent) with other previous

studies ( Baker et al., 2014 ; Brookes et al., 2018 ), though now based

on a much larger sample with a much larger age range. 

3.2. HMM states are related to both age and cognition 

Our next step was to apply CCA to relate the 32 temporal char-

acteristics of the HMM states (4 metrics for each of the 8 states)

to age. One participant who had no visits to one of the states

(HOV) was excluded from this analysis and from the analyses re-

ported below. Only a single CCA mode was possible (given the uni-

dimensional age variable), which explained 28.6% of the combined

variance ( R c = .53, p < 0.001). Table 2 shows the structure coeffi-

cients (r s ) for each metric of each state. As apparent in Table 2 , the

three frontotemporoparietal states (FTP1, FTP2, FTP3), the higher-

order visual state (HOV), and one of the sensorimotor states (SM1)

tended to show positive correlations with age for FO, MLT and NO

measures, and negative correlation for the MIL measure, whereas

the two early visual states (EV1 and EV2) tended to show nega-

tive correlations with age for FO, MLT, NO and positive correlation

for MIL. In other words, older people had more and longer occur-

rences of states involving frontotemporoparietal, higher-order vi-

sual, and sensorimotor states (with the exception of sensorimotor

state SM2, which did not show strong relationship with age), and

fewer, shorter occurrences of early visual states. 
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Fig. 3. Violin plots ( Hoffmann, 2015 ) of the four temporal characteristics of the HMM states: % fractional occupancy (FO; top-left), mean life time (MLT; top right), number 

of occurrences (NO; bottom-left) mean interval length (MIL; bottom-right). The first three measures are positive measures (i.e., indicate more frequent/longer duration of 

state’s occurrence), whereas the fourth measure (MIL) is a negative measure. The various states are indicated as FTP (frontotemporoparietal), HOV (higher-order visual), EV 

(early-visual) and SM (sensorimotor). Mean and median are indicated by black and red lines, respectively (N = 595). See also Supplementary Figure 2, for violin plots of the 

temporal characteristics following the removal of outliers: the pattern of results remained unchanged, but the skewness (e.g., for HOV) was moderated. (Color version of 

figure is available online) 

Table 2 

Structure coefficients for the CCA relating HMM measures with age (N = 594) 

State Fractional Occupancy Mean Lifetime Number of Occurrences Mean Interval Length Age 

FTP1 .27 .13 .28 -.12 (1) 

FTP2 .23 .15 .24 -.21 

FTP3 .20 .44 .12 -.07 

HOV .23 .15 .34 -.07 

EV1 -.35 -.50 -.00 -.01 

EV2 -.45 -.38 -.33 .18 

SM1 .18 .04 .22 -.13 

SM2 -.03 -.09 .00 .02 

∗p < 0.05, ∗∗p < 0.005. Note: Each cell depicts structure coefficients ( r s ). Structure coefficients greater than |.2| are underlined. Coefficients are shown for each 

of the 4 HMM measures, for each state. The various states are indicated as FTP (frontotemporoparietal), HOV (higher-order visual), EV (early-visual) and SM 

(sensorimotor). r s for Age is 1, because this set contains only one variable. See also Supplementary Table 1 for the function coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once we established the effects of age on the pattern of oc-

currence of brain states, we asked how this pattern of occurrence

relates to cognition. To this end, we related the temporal char-

acteristics of the states to the 13 cognitive measures (see Meth-

ods). Twelve CCA modes showed a significant correlation coeffi-

cient (Bonferroni corrected p-values across 13 modes < .05). Nev-

ertheless, given the relatively low squared canonical correlation

( R ²c ) of most modes (see Supplementary Figure 1), only the first

mode, which accounted for 24% of the combined variance, was ex-

plored further (see Sherry & Henson, 2005 for a similar approach).

Fig. 4 presents the structure coefficients (r s ) of the first CCA mode

(Supplementary Table 2 further shows the function coefficients).

For the cognitive data, the coefficients resembled the pattern as-

sociated with poor (low) fluid intelligence that has been reported
before ( Borgeest et al., 2018 ). Specifically, r s was appreciably differ-

ent from zero for all the tests except the proverbs (ProV) and Spot-

the-Word (STW) tests, which capture instead crystallised intelli-

gence. Furthermore, it was negative for all fluid intelligence tasks,

except multitasking (MltTs) and motor speed (MRSp) tests, where

a positive r s value also means worse fluid intelligence, because

longer response-time measures represent worse performance. Im-

portantly, the four “higher-order” states (FTPs and HOV) were pos-

itively related to this cognitive profile, i.e., greater occurrence of

these states (as indicated by increased FO, MLT, NO and decreased

MIL) was associated with lower fluid intelligence. Furthermore, this

cognitive profile was associated with decreased activation of the

two early visual states (EVs). The two sensorimotor states did not

show strong relations to this cognitive profile. 
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Fig. 4. Outcomes of main CCA and moderation analyses (N = 594). (A) Structure coefficients ( r s ) for the CCA relating HMM measures with cognitive measures. Solid out- 

lines represent structure coefficients greater than |.2|, whereas dashed outlines represent structure coefficients smaller than |.2|. r s for brain HMM measures are shown in 

blue/white, with different shades representing different types of states. HMM measures are indicated as FO (fractional occupancy, MLT (mean lifetime), NO (number of occur- 

rences), and MIL (mean interval length). The various states are indicated as FTP (frontotemporoparietal), HOV (higher-order visual), EV (early-visual) and SM (sensorimotor). 

Corresponding HMM state maps are inset. For clarity, r s for each network are shown separately, though in practice all were included in a single CCA analysis. r s for the 

cognitive measures are shown in brown. Cognitive measures are fluid intelligence ( FldIn ), face recognition ( FacRec ), emotional expression recognition ( EmoRec ), multitasking 

(hotel task; MltTs ), picture-picture priming ( PicNam ), choice motor speed ( MRSp ), choice motor coefficient of variation ( MRCv ), visual short-term memory ( VSTM ), story recall 

( StrRec ), verbal fluency ( VrbFl ), sentence comprehension ( SntRec ), proverb comprehension ( ProV ), and spot the word ( StW ). Different shades indicate the distinction between 

cognitive abilities obtained via confirmatory factor analysis in Borgeest et al. ( Borgeest et al., 2018 ): fluid intelligence (dark brown), crystallised intelligence (light brown) or 

both (intermediate brown; for SntRec). For the response-time measures of MltTs and MPSp, lower scores indicate better performance (hence the opposite sign). (B) Scatter 

plot of bivariate correlations for six age groups. Dark shades of green represent younger adults, whereas light shades represent older adults. The relationship between HMM 

and cognitive profiles is higher for older adults (formally confirmed by a continuous moderation analysis; see text). (Color version of figure is available online) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Age moderates the relation between HMM states and cognition 

Finally, we asked whether the relationship between the HMM

brain profile and the cognitive profile differed with age. For this

moderation analysis, we constructed a multiple linear regression

model that included participants’ scores for the HMM profile, their

age and the interaction (HMM profile × age) as predictors, and par-

ticipants’ scores for the cognitive profile as the dependent vari-

able. The HMM scores were significantly associated with cogni-

tive scores after accounting for the main effect of age ( β = .13,

t (590) = 4.51, p < 0.001), demonstrating that the above brain-

cognitive relationship was not driven solely by age effects. More-

over, the interaction between age and HMM profile was also sig-

nificant ( β = .11, t (590) = 4.33, p < 0.001), demonstrating that the

brain-cognition relationship was moderated by age in a positive

sense, i.e., becoming more positive with age. To visualise this mod-

eration effect, the brain-cognition relation was repeated for six

equally-sized age groups (n = 99 for each group; 18–34 years old;

34–45 years old; 45–55 years old; 55–66 years old; 66–76 years

old; 76–88 years old). As shown in Fig. 4 , the brain-cognition rela-

tionship was stronger in the older groups. 

3.4. Additional control analyses 

As described above, we performed several additional analyses

in order to ensure that the results are robust and interpretable.

First, some of the temporal measures of the HMM states (and MIL

in particular) included a relatively large number of outliers (see
Fig 3 ). Therefore, we repeated the main CCA and moderation

analyses after excluding 98 participants depicting outliers ( SD > 3,

n = 496) in one or more measures. Following this removal, the tem-

poral characteristics of the HMM states remained similar to that

observed with the full sample (see Supplementary Figure 2). More-

over, the first CCA mode remained highly significant ( R c = .512,

R ²c = 26%, p < 0.001), and the pattern of structure correlations re-

mained remarkably similar to that observed with the full sample

(see Supplementary Figure 3). The results of the moderation anal-

ysis were also similar, with a significant association between HMM

and cognitive profiles after accounting for the main effect of age

( β = .16, t (492) = 5.18, p < 0.001), together with a significant inter-

action between age and HMM profile ( β = .13, t (492) = 4.84, p <

0.001). 

Second, for the majority of states, the HMM expression did not

correlate with age (see Supplementary Figure 4), suggesting that

the adherence with the general pattern observed across the sample

was similar across ages. Nevertheless, for three states (FTP3, EV1

and SM2), the HMM expression significantly correlated with age,

which we consider further in the Discussion. 

Moreover, we estimated R c against a distribution of 10,0 0 0 cor-

relation coefficients based on permuting across participants their

scores for the cognitive data. The canonical coefficient for the true

data ( R c = .49) was greater than that of the random permutations

(equivalent to p < 0.01, see Supplementary Figure 5). Furthermore,

our cross-validation analysis yielded canonical correlations across

training sets for the first mode that were similar to the original re-

sult (ranging between .45 and .56). For each iteration, we took the
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Table 3 

Structure coefficients for the CCA relating HMM measures with linear and quadratic age (N = 594) 

CCA Mode I 

State Fractional Occupancy Mean Lifetime Number of Occurrences Mean Interval Length linAge quadAge 

FTP1 .27 .14 .28 -.12 .99 .02 

FTP2 .23 .15 .24 -.21 

FTP3 .19 .44 .11 -.07 

HOV .24 .16 .35 -.08 

EV1 -.35 -.51 -.00 -.01 

EV2 -.45 -.38 -.33 .18 

SM1 .18 .04 .22 -.13 

SM2 -.03 -.08 .00 .02 

CCA Mode II 

State Fractional Occupancy Mean Lifetime Number of Occurrences Mean Interval Length linAge quadAge 

FTP1 -.04 -.35 .05 .01 -.02 .99 

FTP2 .04 -.15 .10 -.05 

FTP3 .52 .25 .46 -.46 

HOV -.42 -.50 -.31 .25 

EV1 .21 .07 .17 -.27 

EV2 .08 -.11 .19 -.19 

SM1 .10 -.32 .21 -.30 

SM2 -.04 -.27 .06 -.11 

∗p < 0.05, ∗∗p < 0.005. Note: Structure coefficients ( r s ) for two CCA modes are presented. Structure coefficients greater than |.2| are underlined. Coefficients are shown for each 

of the 4 HMM measures, for each state. The various states are indicated as FTP (frontotemporoparietal), HOV (higher-order visual), EV (early-visual) and SM (sensorimotor). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCA HMM and cognition weight vectors for the first mode from

the training subset, and multiplied them by the testing subset, in

order to estimate participant scores for HMM and cognition. We

then computed the correlation between these scores to estimate

the canonical coefficient for the testing subset. Mean R c was .32

(mean p = 0.007, see Supplementary Figure 5 for the full distribu-

tion). Importantly, the canonical coefficient was significant at p <

0.05 for 96.7% of the testing subsets and at p < 0.001 for 63.7%

of the testing subsets. Taken together, the results of these analyses

confirm that the first CCA mode was highly significant. 

In addition, correlating the standardized canonical function co-

efficients to assess the stability of the function weights yielded

mean absolute ρ of .32 (we use an absolute ρ because negative

and positive correlations indicate the same pattern of relations

across variables; mean ρ = .089, see Supplementary Figure 5 for

the full distribution). The correlation was significant at p < 0.001

for 35.9% of the testing subsets and at p < 0.05 for 72.4% of the

testing subsets. This suggests that the function weights were sta-

ble overall, although some degree of sample-dependent fluctuation

was also observed. 

Finally, to investigate potential non-linear (quadratic) age-

effects, we computed a quadratic age term, orthogonal to the linear

age term, and ran a CCA analysis that related the 4 HMM mea-

sures across all 8 states (Set 1, 32 variables) to both age terms

(Set 2, 2 variables). Both possible CCA modes were significant ( p

< 0.001) and explained 28.6% and 12.3% of the shared variance,

respectively. The structure coefficients (r s ) are shown in Table 3

below. The important finding is that the first CCA mode, which

was dominated by the (orthogonalized) linear term, was associ-

ated with the age-related shift from lower to higher-order states

that was shown above. The second component was dominated by

the quadratic term instead, had different HMM temporal character-

istics, and is considered further in the Discussion. 

4. Discussion 

Our results show that transient neural dynamics, particu-

larly those of high-order and early-visual states, differ across the

healthy adult lifespan, with an increasing importance for cogni-

tive function in older than younger adults. Importantly, by using a

novel data-driven method to infer brain states from MEG data, we
were able to overcome some of the limitations of the more com-

mon use of fMRI to examine ageing and cognition, such as con-

founding effects of vascular health, head motion and the ability

to examine only very slow dynamics owing to low-frequency fluc-

tuations of the fMRI response. More specifically, our finding that

age and decreased fluid intelligence are associated with increased

occurrence of brain states involving “higher-order” networks (such

as those straddling frontal, temporal and parietal cortex) are less

consistent with theories of functional compensation in ageing, and

more consistent with theories of reduced neural efficiency in age-

ing, as we expand below. 

We used a multivariate analysis (CCA) to relate the pattern of

brain dynamics (HMM profile) to age and to cognition, and to

examine whether the brain-cognition relationship was moderated

by age. This first analysis relating brain dynamics to age showed

that the occurrence (e.g., frequency and duration) of states in-

volving fronto-temporo-parietal and higher-order visual regions in-

crease with age, whereas the occurrence of states involving early-

visual regions decrease with age. The second analysis relating brain

dynamics to cognitive performance revealed that a similar pro-

file of increased occurrence of higher-order states and reduced

occurrence of early-visual states is associated with a pattern of

poorer performance on tests of fluid intelligence, but not tests of

crystallised intelligence. Importantly, our final moderation analy-

sis showed that this relationship between brain and cognitive pro-

files is not simply a result of shared influences of age (since age

was included as a covariate). Moreover, this moderation analysis

showed that the brain-cognitive relationship gets stronger with in-

creased age, such that reduced cognitive performance in older par-

ticipants is more strongly associated with the shift from early vi-

sual to higher-order networks than in younger participants. 

Dynamic fMRI resting state connectivity was recently linked

to overall performance in an extensive neuropsychological assess-

ment battery ( Cabral et al., 2017 ). In particular, better cognitive

performance was associated with increased stability of resting

states functional connectivity (i.e., prolonged lifetime and reduced

switching between brain states). Other studies have revealed that

resting state dynamics depend on age. For example, by measuring

multiscale entropy (MSE) to assess the variability of EEG and MEG

brain signal, McIntosh et al. (2014) were able to characterise devel-

opmental changes by decreased amount of local information pro-
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cessing, coupled with an increase in distributed information pro-

cessing (see also Brookes et al., 2018 , for age-effects on dynamic

neural networks from mid-childhood to adulthood). Nevertheless,

to our knowledge, this is the first study to report a resting state

shift from lower to higher-order networks in adults that is linked

to both age and cognition. 

This finding nevertheless shares some similarity with previ-

ous fMRI findings. For example, ( Davis et al., 2008 ) summarised

a pattern across a number of fMRI experiments (first observed by

Grady et al. (1994) ) in which older adults show increased ac-

tivity in anterior (e.g., frontal) brain regions, and decreased ac-

tivity in posterior (e.g., visual) brain regions, and called this the

“Posterior-to-Anterior Shift with Ageing” (PASA). Furthermore, it

has been hypothesised that one reason for this shift is “func-

tional compensation”, whereby older people activate frontal re-

gions to compensate for age-related impairments in posterior

brain regions, that is, in order to maintain levels of cognitive

performance ( Davis et al., 2008 ; Grady, 2012 ; Park & Reuter-

Lorenz, 2009 ). However, more recent fMRI studies have questioned

whether PASA reflects functional compensation, and suggest in-

stead that the increased frontal activation reflects reduced neu-

ral efficiency or specificity ( Glisky et al., 2001 ; Morcom & Hen-

son, 2018 ; Nyberg et al., 2012 ; Park et al., 2004 ; Raz & Ro-

drigue, 2006 ; West, 2000 ). The difference between these two inter-

pretations of the PASA finding is that, whereas the functional com-

pensation hypothesis predicts that anterior increases correlate with

better cognitive performance, the inefficiency hypothesis predicts

the opposite pattern of anterior increases correlating with worse

cognitive performance. This approach can be applied to our cur-

rent findings, which represent a similar shift from early visual to

higher-order regions, albeit during rest rather than during a task.

Here too, a compensation account predicts this age-related shift to

be associated with better cognitive performance, whereas an ineffi-

ciency account predicts the opposite pattern. Our findings support

the latter account, i.e., that increased occurrence of higher-order

states is associated with worse cognitive performance, specifically

in measures of fluid intelligence and particularly in older adults.

Importantly, unlike previous reports of the PASA pattern, the cur-

rent shift was observed during rest, suggesting that it might reflect

a stable property of the ageing brain. 

The results of our moderation analysis resemble those obtained

in a previous study ( Tsvetanov et al., 2016 ), which also investi-

gated the Cam-CAN cohort but using rsfMRI instead, and showed

that the relationship between brain connectivity and cognition in-

creased with age. In that case, the authors showed that the cog-

nitive function of older adults becomes increasingly dependent on

the balance of excitatory connectivity between networks, and the

stability of intrinsic neural representations within networks. Im-

portantly, they used biophysical modelling to account for the con-

founding effects of vascular health on the fMRI response. However,

their results were still limited to static connectivity driven by the

low-frequency fluctuations that are visible to fMRI, and to a small

subset of three brain networks (owing to the complexity of the

biophysical modelling). The current study overcomes these issues

by utilising rsMEG to measure i) the magnetic fields generated by

dendritic currents, rather than indirect vascular responses, ii) dy-

namic connectivity with much higher temporal resolution and iii)

whole-brain networks (within the limits of MEG resolution). 

Our control analysis, in which we included a quadratic age term

to investigate potential non-linear effects of age, yielded an inter-

esting pattern. Namely, unlike the linear age effect, which captures

the dissociation between the various network types (e.g., all FTP

networks showing similar temporal characteristics, that are distinct

from those of the EV networks), the quadratic age effect seems to

capture a more general dissociation between the various temporal
measures across all networks. Specifically, the quadratic age effect

was positive for the number of occurrences across states, but neg-

ative for mean life time and mean interval length. Because the lin-

ear and quadratic canonical components appear to affect different

measures, their combination cannot be simply interpreted in terms

of an acceleration/deceleration of the same age effect. We therefore

focus here on the simpler, linear effect; the quadratic effect could

be explored further in future studies. 

One caveat of the current study is that we used cross-sectional

data, which precludes direct inferences about ageing (as distinct

from cohort effects, owing to year of birth). However, we are not

aware of any longitudinal MEG data on such a large, representa-

tive population, and until such time, our results can be used to

justify and inform hypotheses for future rsMEG studies of ageing.

Furthermore, the HMM approach comes with some assumptions.

For example, it relies on group concatenation that here assumes

anatomical correspondence across the lifespan (though our use of

relatively large ROIs minimizes this issue); it requires a priori spec-

ification of the number of states, and it uses a Gaussian observa-

tion model which may be an oversimplification of the underlying

network dynamics ( Baker et al., 2014 ). Another potential limitation

of the study is the choice of a relatively coarse parcellation of 38

ROIs for the HMM modelling. This parcellation was used for spa-

tial dimensionality reduction, in order to make the modelling more

tractable and robust to small spatial variations across participants

( Quinn et al., 2018 ). The parcellation used here is the same as that

used previously to estimate large-scale functional connectivity net-

works in MEG ( Colclough et al., 2015 , 2016 ; Colclough et al., 2017 ;

Quinn et al., 2018 ). The use of a relatively coarse parcellation is

consistent with evidence that the effective dimensionality in MEG

sensor data (following removal of environmental components) is

∼70 ( Taulu & Simola, 2006 ); reinforced by findings from adaptive

parcellation approaches that find ∼70 ROIs is optimal based on the

MEG cross-talk function ( Farahibozorg et al., 2018 ). Nonetheless,

the fact remains that with MEG, the spatial resolution of the net-

work modelling is limited relative to fMRI. Finally, for some states

(FTP3, EV1, and EV2), the degree to which the state was expressed

varied with age. Namely, for FTP3 and EV1 the state expression was

lower for older compared to younger participants, whereas the op-

posite was true for SM2. This suggests that, for these states, the

results might be partially driven by variations in the spatial rather

than temporal expression of the HMM states and should be inter-

preted cautiously. Nevertheless, despite these limitations, our study

offers novel insights on the relationship between the cognitive se-

quelae of ageing and the underlying patterns of functional brain

dynamics, which may be used in the future for mechanistic justifi-

cation and assessment of interventions to reduce the personal and

societal burden of cognitive impairments in old age. 
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