Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2643-6 doi: 10.1109/EMBC.2012.6346507.

Frequency-domain measurement of neuronal activity using dynamic optical coherence tomography

Lee J, Boas DA.

Abstract

We report preliminary results on high-resolution in vivo imaging of fast intrinsic optical signals of neuronal activity in the frequency domain. An optical coherence tomography (OCT) system was used for dynamic imaging of the cross section of rodent somatosensory cortex at 250 frame/s. Neurons in the cortex were excited by contralateral forepaw stimulation, and the ipsilateral forepaw was stimulated as a control. Hemodynamic responses at the cortical surface, which were simultaneously measured using a CCD, confirmed that forepaw stimulation properly evoked neuronal activation. Analysis of the OCT signal in the frequency domain resulted in that the spectrum significantly increased at the stimulation frequency during activation. This spectrum change was only observed during contralateral stimulation and highly localized at the stimulation frequency in the frequency space. Therefore, the spectrum change we observed is likely associated with neuronal activation.

PMID: 23366468