J Neurophysiol. 2010 Dec;104(6):3371-87 doi: 10.1152/jn.00078.2010. 2010 Oct 06.

The episodic nature of spike trains in the early visual pathway

Butts DA, Desbordes G, Weng C, Jin J, Alonso JM, Stanley GB.


An understanding of the neural code in a given visual area is often confounded by the immense complexity of visual stimuli combined with the number of possible meaningful patterns that comprise the response spike train. In the lateral geniculate nucleus (LGN), visual stimulation generates spike trains comprised of short spiking episodes ("events") separated by relatively long intervals of silence, which establishes a basis for in-depth analysis of the neural code. By studying this event structure in both artificial and natural visual stimulus contexts and at different contrasts, we are able to describe the dependence of event structure on stimulus class and discern which aspects generalize. We find that the event structure on coarse time scales is robust across stimulus and contrast and can be explained by receptive field processing. However, the relationship between the stimulus and fine-time-scale features of events is less straightforward, partially due to a significant amount of trial-to-trial variability. A new measure called "label information" identifies structural elements of events that can contain ≤30% more information in the context of natural movies compared with what is available from the overall event timing. The first interspike interval of an event most robustly conveys additional information about the stimulus and is somewhat more informative than the event spike count and much more informative than the presence of bursts. Nearly every event is preserved across contrast despite changes in their fine-time-scale features, suggesting that--at least on a coarse level--the stimulus selectivity of LGN neurons is contrast invariant. Event-based analysis thus casts previously studied elements of LGN coding such as contrast adaptation and receptive field processing in a new light and leads to broad conclusions about the composition of the LGN neuronal code.

PMID: 20926615