Brain Res. 2003 Dec 5;992(2):193-204

Bilateral near-infrared monitoring of the cerebral concentration and oxygen-saturation of hemoglobin during right unilateral electro-convulsive therapy

Fabbri F, Henry ME, Renshaw PF, Nadgir S, Ehrenberg BL, Franceschini MA, Fantini S.

Abstract

Reductions in right prefrontal cerebral blood flow have been correlated with symptomatic improvement in depressed individuals receiving electroconvulsive therapy (ECT). Non-invasive near infrared spectroscopy has previously been shown to reliably measure changes in cerebral hemoglobin concentrations and oxygen saturation. In this study, we measured the concentration and oxygen saturation of hemoglobin on the right and left frontal brain regions of nine patients during right unilateral ECT. In all patients, we have found that the electrically induced seizure causes a stronger cerebral deoxygenation on the side ipsilateral to the electrical current (-21+/-5%) with respect to the contralateral side (-6+/-4%). On the brain side ipsilateral to the ECT electrical discharge, we have consistently observed a discharge-induced decrease in the total hemoglobin concentration, i.e. in the cerebral blood volume, by -7+/-3 microM, as opposed to an average increase by 6+/-3 microM on the contralateral side. The ipsilateral decrease in blood volume is assigned to a vascular constriction associated with the electrical discharge, as indicated by the observed decrease in cerebral oxy-hemoglobin concentration and minimal change in deoxy-hemoglobin concentration during the electrical discharge on the side of the discharge. These findings provide indications about the cerebral hemodynamic/metabolic mechanisms associated with ECT, and may lead to useful parameters to predict the individual clinical outcome of ECT.

PMID: 14625058