Int J Cancer. 2006 Jun 1;118(11):2672-7 doi: 10.1002/ijc.21713.

Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer

Figueiredo JL, Alencar H, Weissleder R, Mahmood U.

Abstract

Improvement in tumor detection using "smart" probes in combination with microcatheter fluorescence thoracoscopy was evaluated in a mouse model. These imaging probes increase in fluorescence intensity after protease activation; cathepsin B is a major activator of the probes used in this study. Lewis lung carcinoma cells were orthotopically implanted in the subpleural lung parenchyma. Two activatable near infrared (NIR) probes with different excitation and emission wavelength were administered intravenously to determine whether wavelength would modulate target to background ratio (TBR). Mice were selectively intubated and thoracoscopy performed. A 0.8 mm outer diameter imaging catheter was used to record simultaneous white-light (anatomic) and NIR (protease expression) images. At both wavelength pairs evaluated (680/700 and 750/780 nm excitation/emission), the intrinsic luminosity differences between tumors and normal lung in uninjected animals was low (p > 0.3 and p = 0.4, respectively and TBR near 1). In mice receiving protease probes IV, tumors were significantly more fluorescent than adjacent lung (p

PMID: 16380983