Blood Vessels. 1991;28(1-3):46-51

Postischemic cerebral blood flow and neuroeffector mechanisms

Macfarlane R, Moskowitz MA, Tasdemiroglu E, Wei EP, Kontos HA.

Abstract

The influence of neuroeffector mechanisms in the regulation of postischemic cerebral blood flow was investigated by microsphere determination in 8 cats after chronic unilateral vascular deafferentation by trigeminal ganglionectomy. The animals were subjected to 90 min of reperfusion following 10 min of global ischemia induced by 4-vessel occlusion and systemic hypotension. Cortical hyperemia 30 min after reperfusion was attenuated by up to 48% in cortical gray matter ipsilateral to the side of trigeminal ganglionectomy (p less than 0.01). Axon reflex mechanisms involving the release of neuropeptides from peripheral sensory nerve fibers, such as substance P (SP), calcitonin gene-related peptide (CGRP) and neurokinin A (NKA), mediate this response. SP and NKA cause vasodilation by endothelium-dependent mechanisms (endothelium-dependent relaxing factor), whereas CGRP relaxes vascular smooth muscle by direct receptor interactions. Studies were therefore undertaken to determine the extent to which endothelium-dependent mechanisms mediate the hyperemia following global cerebral ischemia. In 7 intact cats, the postischemic response of pial arterioles to the topical application of acetylcholine (ACh; 10(-7) M), an endothelial-dependent vasodilator, was measured using a closed cranial window technique. Although ACh increased pial arteriolar caliber by 17% under resting conditions, the same dose elicited a vasoconstrictor response (87% of pre-ACh diameter 30 min after reperfusion) for the first 60 min of reperfusion after 10 min of ischemia. ACh-induced vasodilation was restored by 75 min (105%), but was less than control even at 120 min (109 vs. 117%; p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

PMID: 2001479