Eur J Pharmacol. 1997 Oct 8;336(2-3):127-36

The selectivity of MDL 74,721 in models of neurogenic versus vascular components of migraine

Petty MA, Elands J, Johnson MP, Linnik MD, Hamel E, Moskowitz MA, Lee WS, McCarty DR, Hibert M, Baron BM.

Abstract

MDL 74,721 (R)-2-(N1,N1-dipropylamino)-8-methylaminosulfonylmethyl-1,2,3,4-te trahydronaphthalene, a sulfonamidotetralin, has been found to exhibit a 10,000-fold greater potency in neurogenic versus vascular models of migraine. Sumatriptan, a relatively pure 5-HT1D/5-HT1B receptor agonist, also showed higher potency versus neurogenic inflammation. However, for sumatriptan the potency difference (100-fold) in the two pathophysiological models was less pronounced than seen for MDL 74,721. The affinity profile of MDL 74,721 at 5-HT1 receptor subtypes may in part explain its ability to differentiate these two physiological responses. MDL 74,721 demonstrated nanomolar affinity for 5-HT1A (12.7 +/- 0.3 nM) and 5-HT1D (41.3 +/- 10.9 nM) but considerably lower affinity for 5-HT1B receptors (> 1000 nM). Serotonin-like activity was seen in in vitro functional assays including inhibition of forskolin-stimulated cAMP accumulation in human 5-HT1D receptor-transfected fibroblasts or eliciting vasoconstriction in isolated human pial arteries. The intrinsic activity (relative to 5 - HT[E(Amax)]) and affinity (pD2) for the human cerebrovascular 5-HT receptors were: 5-HT (100%, 7.51 +/- 0.09), sumatriptan (94%, 6.85 +/- 0.1) and MDL 74,721 (66%, 5.70 +/- 0.23). In anaesthetised cats, treatment with MDL 74,721 resulted in a dose-related reduction in the percentage of carotid flow going through the arteriovenous anastomoses to the lungs, with an ED50 of 0.3 mg/kg i.v., the same as sumatriptan. However, in the guinea-pig neurogenic model, MDL 74,721 inhibited plasma protein extravasation with an ED50 of 0.023 microg/kg compared to 2.5 microg/kg for sumatriptan. MDL 74,721 was also effective in this model (in rats) after oral administration. In conclusion, MDL 74,721 demonstrates a preclinical profile consistent with anti-migraine efficacy. Its marked preference for inhibiting neurogenic inflammation makes this compound a useful tool for assessing the relative contribution of this pathophysiological mechanism to the human disease state.

PMID: 9384224